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Abstract 
Dengue disease is the most common vector borne infectious disease transmitted to humans by in-
fected adult female Aedes mosquitoes. Over the past several years the disease has been increasing 
remarkably and it has become a major public health concern. Dengue viruses have increased their 
geographic range into new human population due to travel of humans from one place to the other. 
In the present paper, we have proposed a multi patch SIR-SI model to study the host-vector dy-
namics of dengue disease in different patches including the travel of human population among the 
patches. We have considered different disease prevalences in different patches and different tra-
vel rates of humans. The dimensionless number, basic reproduction number R0 which shows that 
the disease dies out if R0 < 1 and the disease takes hold if R0 ≥ 1, is calculated. Local and global sta-
bility of the disease free equilibrium are analyzed. Simulations are observed considering the two 
patches only. The results show that controlling the travel of infectious hosts from high disease 
dominant patch to low disease dominant patch can help in controlling the disease in low disease 
dominant patch while high disease dominant becomes even more disease dominant. The under-
standing of the effect of travel of humans on the spatial spread of the disease among the patches 
can be helpful in improving disease control and prevention measures. In the present study, a 
patch may represent a city, a village or some biological habitat. 
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1. Introduction 
Dengue disease is regarded as a serious infectious disease. The four serotypes of viruses DEN 1 to DEN 4 are 
responsible for the disease. It is one of the re-emerging diseases in tropical and subtropical countries. A person 
infected by one of the four serotypes of dengue viruses will never be infected again by the same serotype, but 
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the person loses immunity to other serotype of viruses and becomes more susceptible in developing dengue he-
morrhagic fever [1]. The prevalence of the disease has been increasing dramatically and the disease has become 
a major public health problem in recent years. According to World Health Organization, dengue has shown 30 
fold increase globally over five decades. About 50 - 100 million new infections are estimated to occur annually 
in more than 100 endemic countries. Almost fifty percent of the world’s population lives in the countries where 
dengue is endemic [2]. 

There have been many mathematical studies to understand the dynamics of infectious diseases. Mathematical 
models can help in providing guides and suggestions for the control of the disease to the concerned authorities. 
Kermack and McKendrick introduced an SIR model to study the transmission of infectious diseases [3] which 
became very popular in the mathematical study of epidemic diseases. Esteva and Vargas proposed an SIR-SI 
model to study the transmission dynamics of dengue disease considering constant [4] and variable [5] host pop-
ulations. Since then, different mathematical models have been proposed to study dengue disease transmission. 
Authors in [6] [7] studied the impact of awareness in the transmission of dengue disease. Pinho et al. [8] used 
mathematical model for dengue disease transmission with the aim of analyzing and comparing two dengue epi-
demics that occurred in Brazil. Pongsumpun [9] studied the incubation period of dengue viruses using SEIR 
model. Edy and Supriatna proposed a two dimensional epidemic model to study the transmission of dengue dis-
ease restricting the dynamics for two dimensions for the constant host and vector populations [10]. 

Emerging and re-emerging diseases like dengue disease spread very quickly due to the travel of infective hu-
man population from one region to the other. They spread the disease in new regions. Different spatial models 
have been developed to study infectious diseases. Arino and Driessche [11] [12] studied the disease spread in 
meta-populations and they developed multicity model to study the infectious diseases in different cities. Wang 
and Mulone [13]; and Wang and Zhao [14] proposed epidemic models with population dispersal to describe the 
dynamics of disease spread between n patches and two patches. Hsieh et al. proposed a multi-patch epidemic 
model to study the impact travel between patches for the spatial spread of influenza [15]. 

Lee and Castillo-Chavez [16] formulated the two patch dengue transmission model to explore the role of res-
idence times in dengue transmission dynamics and optimal control strategies assuming that only the human 
budgets their residence time across the patches. In the present work, we have discussed the multi-patch SIR-SI 
model to study the transmission dynamics of dengue disease among n-patches. We have investigated the impact 
of travel rates of humans in the transmission dynamics and control of dengue disease. We have assumed differ-
ent travel rates and different disease prevalences in different patches. 

2. Model Formulation 
For the formulation of the model, we divide human population in three classes, susceptible, infective and recov-
ered. Let h

iS , h
iI , h

iR  respectively denote the number of susceptible humans, infective humans and recovered 
humans in patch i. Also, we divide mosquito population in two compartments only, susceptible and infective 
mosquitoes. Let v

iS , v
iI  respectively denote the number of susceptible mosquitoes and infective mosquitoes in 

patch ( )1, 2,3, ,i i n=  . 
The SIR-SI Model for 1, 2, ,i n=   for dengue disease transmission shown in Figure 1, whose parameters 

are discussed in Table 1, is described by the following system of differential equations 

( )
1 1

1 1

1 1

d
d

d
d

d
d

d
d

d
d

h h n n
h h v h h S h S hi i
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∑ ∑

∑ ∑
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Figure 1. Flow chart of the model. 

 
Table 1. Parameters used in the model. 

Symbols Description 
h
id  death rate in host population 
v
id  death rate in vector population 
h
iγ  recovery rate of host population 
h

iβ  transmission probability from vector to host 
v
iβ  transmission probability from host to vector 

b  biting rate of vector 
h
iA  recruitment rate of host population 
v
iA  recruitment rate of vector population 
, ,S I R

ijm  travel rate of susceptible, infective, recovered host population from patch j to patch i, i j≠  

 
where, 

( ) ( ) ( ) ( )h h h
i i i iS t I t R t H t+ + =  (Total host population in patch i in time t) 
( ) ( ) ( )v v

i i iS t I t V t+ =  (Total vector population in patch i in time t) 
The total host and vector population sizes in all n-patches in time t is 

( ) ( ) ( ) ( )
1 1

,
n n

i i
i i

H t H t V t V t
= =

= =∑ ∑  

Theorem 1. The system of Equations (2.1) has a unique disease free equilibrium point. 
Proof: A disease free equilibrium (DFE) for the system of Equations (2.1) is a steady state solution of the sys-

tem where 0h
iI =  and 0v

iI =  for 1, 2,3, ,i n=  . 
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In disease free situation, 

1 1
0

n n
h h R h R h
i i ij j ji i

j j
d R m R m R

= =

− + − =∑ ∑  

In matrix form, 

0hRζ− =                                      (2.2) 

where, 

1 1 12 1
1

21 2 2 2 T
2 1 2

1 2

, , , ,

h R R R
j n

j
R h R R

j n h h h hj n

R R h R
n n n jn

j n

d m m m

m d m m
R R R R

m m d m

ζ

≠

≠

≠

 + − −
 
 − + −   = =   
 
 − − + 
 

∑

∑

∑







   



 

Here, ζ  has all off-diagonal entries negative and every column has positive sum. So, ζ  is a non-singular 
M-matrix. Since all the off diagonal elements are non-zero, ζ  is irreducible [17]. Hence, ζ  has a positive in-
verse and the system of Equations (2.2) has a unique solution. So, 0hR =  is the solution of the system, i.e.,

0h
iR =  for 1, 2,3, ,i n=  . Hence, in disease free situation, 0h

iI = , 0v
iI = , 0h

iR =  for all 1, 2,3, ,i n=  . 
Also, *h h

i iS S= , *v v
i iS S= . 

Now, we show that the disease free equilibrium is unique. From the system of Equations (2.1), in disease free 
situation: 

For the host populations only: 

1 1 12 1
*1

1 1
*21 2 2 2

2 22

*

1 2

h S S S
j n

h hj
S h S S

h hj n
j

h h
S S h S n n
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     − + −     =     
     
        − − + 
 

∑

∑

∑





 

   



 

i.e., 
*h hCS A=                                      (2.3) 

where, 

( )1
diag nh S S

i jij
C d m M

=
= + −∑ , 

12 1

21 2

1 2

0
0

0

S S
n

S S
S n

S S
n n

m m
m m

M

m m

 
 
 =  
 
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



   



 

T T* * * *
1 2 1 2, , , , , , ,h h h h h h h h

n nA A A A S S S S   = =      

For vector populations only: 
*

1 1 1
*

2 2 2

*

0 0
0 0

0 0

v v v

v v v
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
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i.e., 
*v vDS A=                                       (2.4) 
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where, 

( ) T T* * * *
1 2 1 2diag , , , , , , , ,v v v v v v v v v

i n nD d S S S S A A A A   = = =      

Here, the matrix C has positive column sums and each non-diagonal element is negative. So, the matrix C is an 
irreducible and non-singular M-matrix. Again, since C is an irreducible non-singular M-matrix, C must have posi-
tive inverse, i.e., 1 0C− >  [17]. Hence, there is a unique solution * 1 0h hS C A−= > . 

Also, the matrix D is a diagonal matrix with positive diagonal elements. So, there exists 1D−  with positive 
diagonal elements. Hence, * 1v vS D A−=  is unique solution of *v vDS A= . The results show that there always 
exists a unique disease free equilibrium point. 

3. Basic Reproduction Number 
Basic reproduction number 0R  is defined as the expected number of secondary cases produced by a typical in-
fective individual introduced into a completely susceptible population. 

We use next generation matrix method [18] [19] to find the basic reproduction number. For, we order the in-
fected variables by 1 2 1 2, , , , , , ,h h h v v v

n nI I I I I I  . Then, 

*

11 12

21 22 *

0 diag

diag 0

h
hi
i

i

v
vi
i

i

b S
HF F

F
F F b S

H

β

β

  
  

    = =           

 

11 12 11

21 22 22

0
0

V V V
V

V V V
   

= =   
   

 

where, 

( )11 22
1

diag , diag
n

h h I I v
i i ji i

j
V d m M V dγ

=

 
= + + − = 

 
∑  

Here, the matrix 11V  has column sums, 1 0, , 0h h
nd d> >  and all off diagonal elements are negative. So, the 

matrix 11V  is an irreducible non-negative M-matrix. Hence, 1
11V −  exists and is positive, i.e., 1

11 0V − > . 
Also, 22V  is a diagonal matrix with positive entries. So, nonnegative 1

22V −  exists. The basic reproduction 
number 0R  for the system (2.1) is the spectral radius of { }1 1FV FVρ− −= . 

In fact, 
1 1 1

12 11 121 11 12 22
1 1

21 22 21 22 21 11

0 0 0 0 0
0 0 0 0 0

F V F V F V
FV

F V F V F V

− − −
−

− −

        
= = =        
         

 

Theorem 2. If R0 < 1, then the disease free equilibrium is locally asymptotically stable and unstable if R0 > 1. 
Proof: Let 11J  and 12J  be the matrices of partial derivatives evaluated at the disease free equilibrium. The 

Jacobian matrix for the linearization of the system about the disease free equilibrium is obtained as the block 
structure 

11 12

0
J J

J
F V

 
=  − 

 

Matrix J is triangular. So, the eigenvalues of J are those of the partition matrices 11J  and F V− . Also, 

11

0
0
C

J
D

− 
=  − 

 

Matrices C and D (matrices defined in Theorem 1) are non-singular M matrices. So, spectral abscissa, 
( ) ( )0, 0s C s D− < − <  [17] and eigenvalues of the matrix 11J  have negative real parts. 
Hence, the matrix J will have eigenvalues all with negative real parts if the matrix F V−  has all eigenvalues 

with negative real parts. Also, F is non-negative matrix and V is non-singular M-matrix. So, eigenvalues of 
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F V−  will have negative real parts if and only if { }1 1FVρ − <  [19]. i.e., disease free equilibrium is locally 
asymptotically stable if and only if the basic reproduction number { }10 1R FVρ −= < . 

If 0 1R > , then ( ) 0s F V− > . It shows that at least one eigenvalue lies in right half plane. So, the disease free 
equilibrium is unstable if 0 1R > . 

Theorem 3. If R0 < 1, then the disease free equilibrium is globally asymptotically stable and unstable if R0 > 1. 
Proof: Since, *h h

i iS S≤  and *v v
i iS S≤ , we have from the system of Equations (2.1), 

( )*

1 1

*

d
d

d
d

h h n n
h v h h h I h I hi i
i i i i i ij j ji i

j ji

v v
v h v vi i
i i i i

i

I b S I d I m I m I
t H

I b S I d I
t H

β γ

β
= =

≤ − + + −

≤ −

∑ ∑
                        (3.1) 

Consider the linear system 

( )*

1 1

*

d
d

d
d

h h n n
h v h h h I h I hi i
i i i i i ij j ji i

j ji

v v
v h v vi i
i i i i

i

I b S I d I m I m I
t H

I b S I d I
t H

β γ

β
= =

= − + + −

= −

∑ ∑
                        (3.2) 

The system of Equations (3.2) can be written as 
d
d

A
t
=

u u                                        (3.3) 

where, 
T

1 2 1 2, , , , , , , , .h h h v v v
n nI I I I I I A F V = = − u    Here, F is a non-negative matrix and V is a non-negative 

M- matrix. So, 

( ) { }10 1s F V FVρ −− < ⇔ <  

i.e., Eigenvalues of F V−  lie on left half plane if 0 1R < . Hence, each positive solution of (3.3) satisfies 
lim 0
t→∞

=u                                        (3.4) 

i.e., lim 0, lim 0h v
i it t

I I
→∞ →∞

= =  for all 1, 2,3, , .i n=   

Since all the variables in the system of Equations (2.1) are non-negative, the use of Comparison theorem [20] 
[21] leads to  

lim 0, lim 0h v
i it t

I I
→∞ →∞

= =  for all 1, 2,3, , .i n=                        (3.5) 

From the system of Equations (2.1), we have 

1 1

d
d

h n n
h h R h R hi
i i ij j ji i

j j

R d R m R m R
t = =

= − + −∑ ∑                            (3.6) 

i.e., d ,
d

h
hR R

t
ζ= −  (In matrix form) 

Here, ζ  (matrix defined in Theorem 1) is non-singular M-matrix. So, all eigenvalues of ζ−  lie in the left half 
plane. Hence, 

lim 0, 1, 2,3, ,h
it

R i n
→∞

= =  . 

Again, as t →∞ , 

1 1

d
d

d
d

h n n
h h h S h S hi
i i i ij j ji i

j j

v
v v vi
i i i

S A d S m S m S
t

S A d S
t

= =

= − + −

= −

∑ ∑
                          (3.7) 

In matrix form 
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d
d

h h hS A CS
t
   = −                                  (3.8) 

d
d

v v vS A DS
t
  = −                                   (3.9) 

Here, matrices C and D are non-singular M-matrices, all their eigenvalues lie in left half plane. Therefore, if hS  
and vS  be the homogeneous solutions of Equation (3.8) and Equation (3.9), then 

lim 0t hS→∞ =  and lim 0t vS→∞ =  

Matrix C is an irreducible, non-singular M-matrix. So, the matrix C has positive inverse. * 1h hS C A−=  is a par-
ticular solution and *h h

hS S S= +  is the general solution of Equation (3.8). Also, Matrix D is diagonal matrix 
with positive diagonal elements. So, D has an inverse with positive diagonal elements. Hence, * 1v vS D A−=  is a 
particular solution and *v v

vS S S= +  is the general solution of Equation (3.9). And, 
* *lim , lim , lim 0, lim , l0 im 0h h h h v v v

t i i t i t i t i i t iS S I R S S I→∞ →∞ →∞ →∞ →∞= === =  

for all 1, 2,3, , .i n=   
Thus, as t →∞ , we obtain the equilibrium point ( )* *, 0, , 0, , 0,0, , 0h v

i iS S  . Hence, the disease free equili-
brium is globally asymptotically stable if 0 1R < . If 0 1R >  [19], Theorem 2 admits that the disease free equili-
brium point is unstable. 

4. For n = 2 (Considering Two Patches Only) 
We have 

* * * *
1 1 2 2 1 1 2 2

11 12 21 22
1 2 1 2

0, diag , , diag , , 0
h h h h v v v vb S b S b S b SF F F F

H H H H
β β β β   

= = = =   
   

 

and 1 1 21 12
11

21 2 2 12

h h I I

I h h I

d m m
V

m d m
γ

γ
 + + −

=  
− + + 

, ( )12 21 22 1 20, 0, diag ,v vV V V d d= = =  

Basic Reproduction Number 

{ } ( ) ( ) ( )
1

2 21 2 2 2 2 2 2 2
0 01 02 02 01 01 02

1 2 2 4 1
2

R FV a R R a R R a a R Rρ −  = = + + − + −  
 

where, 

( ) ( )
12 21

1 1 21 2 2 12 12 21

1
I I

h h I h h I I I

m ma
d m d m m mγ γ

= +
+ + + + −

 

( )
2 * *

1 1 1 1
01 2

1 1 1 1 21

h v h v

v h h I

b S SR
d H d m

β β
γ

=
+ +

 (Basic reproduction number, Patch 1) 

( )
2 * *

2 2 2 2
02 2

2 2 2 2 12

h v h v

v h h I

b S SR
d H d m

β β
γ

=
+ +

 (Basic reproduction number, Patch 2) 

5. Numerical Results and Discussions 
We considered the case of two patches and computed basic reproduction number 0R  for the numerical results. 
The parameter values chosen for the simulation are: 1 579984H = , 2 420477H =  [22], 1 10000vA = , 1 3b = ,

1 0.75hβ =  [8], 1 0.75vβ = , 2 1000vA = , 2 0.75hβ =  [8], 2 0.5vβ = , 1 21 14v vd d= =  [9], 1 20.00003914h hd d= =  
[22], 1 21 14h hγ γ= =  [9]. With 12 21 010, 1I Im m R= = >  and 02 1R < . Thus, patch 1 is a high disease dominant 
patch and patch 2 is a low disease dominant patch. 

Figure 2 shows the dynamics of susceptible hosts of patch 1 and patch 2. Patch 1 is a high disease dominant 
patch, so the susceptible host population in the patch decreases most rapidly over the time. Patch 2 is a low disease 
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dominant patch. So, the number of susceptible hosts in patch 2 increases initially due to the travel of susceptible 
hosts from patch 1. Afterwards, due to the interaction of susceptible hosts with infectious mosquitoes and due to 
the natural death of some humans, the susceptible host population starts decreasing. 

When the susceptible hosts come in contact with infectious mosquitoes, hosts get infected. So, the population 
size of infected hosts increases (Figure 3). Eventually, the infected host population decreases to zero due to their 
recovery from the disease and due to the natural death of some humans. 

Changes in basic reproduction number 0R  with the changes in travel rates are illustrated in Figure 4. It is 
observed that basic reproduction number 0R  decreases with the increasing values of 21

Im . Also, the number 
increases when the values of travel rate 12

Im  are increased. The figure shows that, the burden of disease reduces 
when the travel rates of hosts from high disease dominant patch to low disease dominant patch are high. The 
burden of disease increases when the travel rates of hosts from low disease dominant patch to the high disease  
 

 
Figure 2. Dynamics of susceptible host population. 

 

 
Figure 3. Dynamics of infected host population. 
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dominant patch are high. Thus, we should increase the travel rates of hosts from high disease dominant patch to 
the low disease dominant patch to bring the disease under control. 

Basic reproduction number 0R  of two patches is determined by the basic reproduction numbers, 01R  of 
patch 1 and 02R  of patch 2. Figure 5 shows that 0R  increases together with 01R  and 02R . If basic repro-
duction numbers of the both patches are high, then the basic reproduction number 0R  gets higher. Thus, if any 
one of the two patches is more disease dominant and there is mobility between the two patches, then this can 
cause the whole system to be more endemic. 

6. Discussion of Travel Restrictions 
In this section, the dynamics of the host population is observed with the restriction of the travel of symptomatic 
hosts from one patch to the other patch. 

Restricting the travel of symptomatic hosts from low disease dominant patch to high disease dominant patch  
 

 
Figure 4. Basic reproduction number against 12

Im  and 21
Im . 

 

 
Figure 5. Basic reproduction number 0R  against 01R  and 02R . 
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( 12 0Im =  and keeping other parameters constant), Figure 6 shows that the burden of disease can be reduced in 
patch 1 but patch 2 becomes even more disease dominant (Figure 7). 

Similarly, when 21 0Im =  and all other parameters are same i.e., on restricting the travel of symptomatic trav-
elers from high disease dominant patch to low disease dominant patch, we find that basic reproduction number 
of patch 1 increases (Figure 8) and basic reproduction number of patch 2 decreases (Figure 9). Thus, the dis-
ease in low disease dominant patch can be controlled by restricting the travel of symptomatic hosts from high 
disease dominant patch to low disease dominant patch. 

Dynamics of infected host populations are observed in Figure 10 and Figure 11 with travel restrictions. 
When infected hosts of patch 1 are restricted to travel (Figure 10) more hosts in patch 1 (very few hosts in patch 
2) are observed infected of the disease when compared with the case that infected hosts of patch 2 are restricted 
(Figure 11) to travel. The graphical results (Figure 10, Figure 11) suggest that the disease spread in patch 2 can 
be brought under control by restricting the travel of infected hosts from patch 1 to patch 2. 

 

 
Figure 6. Basic reproduction number of patch 1 against 21

Im  with 12 0Im = . 
 

 
Figure 7. Basic reproduction number of patch 2 against 21

Im  with 12 0Im = . 
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Figure 8. Basic reproduction number of patch 1 against 12

Im  with 21 0Im = . 
 

 

Figure 9. Basic reproduction number of patch 2 against 12
Im  with 21 0Im = . 

7. Conclusions 
In the present work, we have studied the effect of travel of humans on the transmission dynamics of dengue dis-
ease. We discussed the disease transmission dynamics between n-patches by subdividing vector population in 
susceptible and infectious class and host population in susceptible, infectious and recovered class. 

We defined the multi-patch basic reproduction number 0R  by taking each patch together. Basic reproduction 
number 01R  of patch 1 and 02R  of patch 2 are calculated. The results show that the disease dies out if 0 1R <  
and invades the population if 0 1R > . Theorem 2 and Theorem 3 show that the disease free equilibrium is lo-
cally and globally asymptotically stable if 0 1R <  and unstable if 0 1R > . 

Travel of human from one place to another place affects the whole dynamics of the dengue disease transmis-
sion. We have shown that traveling of infected human changes the less disease dominant patch to high disease  
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Figure 10. Dynamics of infected host population with 21 0Im = . 

 

 
Figure 11. Dynamics of infected host population with 12 0Im = . 

 
dominant patch. Also, restricting the travel of infected hosts helps in controlling the disease. Basic reproduction 
number is seen higher when there is higher travel rate from low disease dominant patch to the high disease do-
minant patch. The basic reproduction number is seen lowered when there is higher travel rate from high domi-
nant disease patch to the low disease dominant patch. Thus, we can control the disease in low disease dominant 
patch by restricting the travel of infected hosts from high disease dominant patch. 
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