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1. Introduction 

Adaptive blind beamforming plays an important role in the contemporary communica-
tion systems where it constantly tributes to the enhancement of the signals that tend to 
be received or transmitted. Adaptive beamforming is achieved through varying the tap 
weights assigned to each antenna at every time instant applying signal processing algo-
rithm. 

The weights are adjusted such that maximum array sensor gain is obtained with mi-
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nimal amount of residual error. On processing the beamforming signals, the computa-
tional complexity depends on the algorithm which works upon the signals. The recent 
UKF-CMA algorithm for blind beamforming application works quite well compared to 
other beamforming techniques such as Least Mean Squared-Constant Modulus Algo-
rithm (LMS-CMA) and Recursive Least Mean Squared-Constant Modulus Algorithm 
(RLS-CMA) with higher computational complexity [1]. 

The UKF-CMA algorithm enabled in Gaussian conditions converges to optimal so-
lution when measurement noise is considered. However, UKF-CMA with process noise 
results in sub-optimal solution [2] [3]. The CM criterion is incorporated into Weiner 
filter through which adaptability is achieved [2]. Generally, Constant Modulus (CM) 
cost functions with quadratic nature are very sensitive to array tap weights and can be 
minimized using Stochastic Gradient Descent methods (SGD) and the stability of SGD 
methods relatively depends on the step-size selected and thus results in slow rate of 
convergence [2]. 

An approximation of various CM algorithms is proposed. The computational cost of 
the Lagrangian formulated beamforming methods is higher over the regularized beam-
forming methods [4]. In unscented transform, the choice of sigma points is controlled 
by λ, which in turn linearises equal to the second order Gauss filter that results in op-
timal convergence of the solution [3] [5]. A new discriminant based non-negative ma-
trix factorization algorithm is proposed for facial image characterization problems 
where discriminant analysis is based on the classification features [6]. 

A variant of NMF algorithm is proposed for blind source separation where it is a 
promising solution for spectral unmixing in hyper-spectral image processing and fea-
ture extraction [7]. Different methods of initialization are studied for NMF algorithm, 
where initialization plays an important role since decomposition is non-convex with 
many local minima [8]. 

Non-Negative Matrix Factorization Algorithm 

Non-Negative Matrix Factorization (NMF), a relatively novel technique for dimen- 
sionality reduction, has been in the growing fast since its origin. It incorporates the 
non-negativity constraint and thus achieves the parts-based representation as well as 
enhancing the construe of the problem correspondingly [9] [10]. Some new algorithms 
for NMF are proposed for blind source separation application when sources are 
statistically dependent by imposing constraints to the matrix [11]. Multichannel NMF 
decomposition algorithms are proposed for blind audio source separation. More 
variants of NMF algorithms for blind sources separation techniques can be found in 
[12]-[14]. An extensive survey of NMF algorithms can be seen in [15]. In rectangular 
matrix, the solution is normally iterative and the steps normally require a 

( )min ,s b s b× × . In NMF, we make sure that the complexity is reduced to s b t× × , 
where t is the rank of the matrix. This is achieved by factoring the matrix, as a product 
of 2 matrices, where first matrix acts as a set of basis vectors and other is positive 
definite. In quadratic problems, the coefficient matrix has to be positive-definite which  
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is not true in general case, NMF forces the coefficient matrix to be positive-definite that 
results in closed-form solution. 

Figure 1 describes about the flow of the algorithm. 
The algorithm can be given as, 
Initialize ,o oU V  and 0m =  
for 

1m m+ ←U U  o 
[ ]m

m m m  

ZV
U V V

 

1m m+ ←V V  o 1

1 1

m

m m m

+

+ +

  
  

Z U

V U U




 

1m m← +  
end 
Where s b×∈Z  , s t

m
×
+∈U  , b t

m
×
+∈V   are non-negative matrices and the reduced 

rank t is given by ( )min ,t s b<  where ( ), ,s b t +∈ . 
In this paper, we have reduced the computational complexity of UKF-CMA algorithm 

by reducing dimensionality of the matrix computation, which is achieved through the 
non-negative matrix factorization. 

Note: Notations followed in the paper are bold small letters are vector. Capital letters 
are matrix. 

2. Beamforming Model 

Consider a linear array of size L of uniform spacing 
2

d λ
≤  and n is the number of  

source signals (interference and desired signals). The signal output of an adaptive 
beamformer is represented as [1],  
 

 
Figure 1. Flowchart of NMF-UKF-CMA algorithm. 
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m m=z u w                                  (1) 

The input signal vector 1L
m

×∈u   as,  

m m m= +u Ds n                              (2) 

where 1L×∈w  , 1, 2, ,; ; ;m m m n ms s s ←  s 
 is the source signal vector whose first ele- 

ment is desired signal and remaining elements of the vector are made as interference 
signals, 1L

m
×∈n   is circular complex Gaussian noise at m-th time instant. 

The spatial signature matrix [ ]1 2 L= Θ Θ ΘD  , Where L k×∈D  ,  
( )121 1 1 j Lj je e e γγ γ − −− − Θ =  


, ( )sino jk dγ θ= , γ  is the array phase function, ok   

is the phase constant, d is the array spacing, iθ  is thi  element of the AOA vector 
1Lθ ×∈ . 

The Constant Modulus (CM) cost function for adaptive beamforming problem can 
be formulated as 

( ),min
qp

p q m ζ = −  w
J w u w                        (3) 

where 0p > , 0q >  and ζ  is the signal modulus of the desired signal ms , which is 
a known a priori. As stated, the optimization problem is non-convex and non-linear. 

3. Algorithm Formulation 

The constant modulus criterion in (3) assumes that the unknown system model mf  
for the input signal mu  is equal to the constant modulus of the desired signal ζ  in (5). 

| 1m m−←f f                                    (4) 

| 1

p

m m mζ −← u f                                (5) 

The final state space model is obtained by incorporating process noise mq . Since 
initial received signal is unknown, so we take it as noise mv  adding to the model in (7). 
Applying the non-linearity ( )g . p=  in (8). 

| 1 | 1m m m m m m− −← +f A f q                              (6) 

( )| 1 1m m mL vζ −← + +f                             (7) 

( )| 1gm m m−←Z f                                  (8) 

1

1

0
0

m
m m

m mz
−

−

   
← ←   

   

I f
A f

u
 

where 1 1 1 1,L L L
m m

+ × + + ×∈ ∈A f   and 1 1L
m

+ ×∈q   is the process noise. 
In (10) m ≈Z Z

   is approximated by non-negative matrix factorization. 

m m←Z U V

                                    (9) 

m m m→U V Z                                  (10) 

where s b
m

×∈Z  , s t
m

×
+∈U  , b t

m
×
+∈V   are non-negative matrices and the reduced 

rank t is given by ( )min ,t s b<  where ( ), ,s b t +∈ . In the algorithm formulation, we 
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ignore the process noise mq  on including leads to suboptimal solution. 

4. Proposed NMF-UKF-CMA Algorithm 

The proposed NMF-UKF-CMA algorithm is as follows, 
Input: mu , mw , L , α , β , κ , λ , mw , cw  
Initialize: 1,α ←  2,β ←  0,κ ←  1,wn L← +  ( )2 1 2,w wn nλ α κ← + − − +   

( ) ( )1 , ,
2m w w

w

ones n n
n λ

←
+

w  ,c m←w w  ( )1 ,m
wn

λ
λ

←
+

w   

( ) ( )
21 1c

wn
λ α β

λ
← + − +

+
w  then initialize the unscented Kalman filter with  

[ ]0 0ˆ ; , 1 wn← ←w P I1 0  of size w wn n× , 
for 1m ≥  
do 
Compute and update 

• Extract the sigma points 2 1
| 1W w wn n

m m
× +

− ∈  as 

( ) ( )| 1 1 1 1 1 1ˆ ˆ ˆWm m m m w m m w mn nλ λ− − − − − −
 ← + + − + w w P w P      (11) 

where 1wn ×∈w   is an initial weight vector. 
• Extract matrix mA  for the input signal mu  as 

0
0m

m

I
u
 

←  
 

A  

and then get the sigma points 2 1
| 1W w wn n

m m
× +−

− ∈  for the updated state as 

| 1 | 1W Wm m m m m
−

− −← A                            (12) 

where w wn n
m

×∈A  . 
• Extract the posteriori estimate 1

| 1ˆ wn
m m

×−
− ∈w   as 

2 1

| 1
1

ˆ W
wn

j j
m m m m

j

+
− −

−
=

← ∑w w                           (13) 

where j denotes the j-th column vector for | 1Wm m
−

−  and j—the element for vector 
w wn n

m
×∈w  . 

• Extract the sigma priori covariance w wn n
m

×− ∈P   as 

( ) ( )
2 1

| 1 | 1
1

W W
wn

j j j j j
m c m m m m m m

j

+
− − − − −

− −
=

← − −∑P w w w


             (14) 

where j is the j-th column vector for m
−w  and j-th element for vector cw . 

• Extract the sigma points 2 1
| 1

w wn n
m m

× +−
− ∈Z   through non-linear function as 

( )| 1 | 1g W j
m m m m
− −

− −←Z                          (15) 

where ( )g . . p←  for each element of the j-th column vector for | 1Wm m
−

−  for 
1, 2, , 2 1wj n← + . 

• The output sigma points are approximated using non-negative matrix factorization 
algorithm as 2 1

| 1
w wn n

m m
× +−

− ∈Z   
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| 1 | 1 | 1m m m m m m
−

− − −←Z U V

                            (16) 

where w wn t
m

×
+∈U  , 2 1w wn t

m
+ ×

+∈V   are non-negative matrices and reduced rank 
( )min , 2 1w w wt n n< + . 

• Applying the output sigma points to extract the estimated output 1
| 1ˆ wn

m m
×−

− ∈z   as 
2 1

| 1 | 1
1

ˆ
w jn

j
m m m m m

j

+
− −

− −
=

← ∑z w Z                           (17) 

• The obtained crosscovariance matrix 1wn
mm

×∈C   as 

( ) ( )
2 1

| 1 | 1 | 1
1

ˆW
w jn

j j
mm c m m m m m m m

j

+
− − − −

− − −
=

← − −∑C w w Z z


             (18) 

• The obtained autocovariance mmR  as 

( ) ( )
2 1

2
| 1 | 1

1
ˆ ˆ

w j jn
j

mm c m m m m m m v
j

σ
+

− − − −
− −

=

← − − +∑R w Z z Z z 


             (19) 

where 12
| 11

1 ˆ
1

wn j
v m mj

wn
σ − −

−=
=

− ∑ z  

• Now apply the Kalman innovation matrix and the update formulas as 

1
m mm mm

−←K C R                              (20) 

( )*ˆ ˆ ˆm m m mζ− −← + −w w K z                      (21) 

1
| 1m m m m mm m
− −

−← −P P K R K                      (22) 

• Update the optimal weight vector ( )1: 1,1m wn−← −w w . end 

5. Simulation and Results 

In this section, the performance of NMF-UKF-CMA algorithm is compared with 
existing UKF-CMA algorithm. An uniform linear array of length L = 20 and of spacing 

2d λ=  for simulation. The constant modulus signals are generated by Minimum 
Shift Keying (MSK) Modulation scheme with unity modulus and the interference plus 
noise signal were set as Gaussian distributed random variables with mean, 0 and noise 
variance of 1. An uniform distribution of π−  to π  is followed for phase. The desired 
direction of arrival is set as 10˚ and for interference signals are set as 25˚, −30˚ and 
−45˚. The CMA criterion is chosen as p = 1 and q = 2 in the simulations, for which we 
achieve optimal signal-to-interference-plus-noise ratio (SINR). In addition to SINR in 
dB, Mean Square Deviation (dB) and Array Sensor Gain (dB) are the parameters, 
also used to estimate the performance of the array algorithms. MSD is defined as 

( )1020 log m m ms z s− . The value of ν  is set as 0.75 in all the simulations. The plots 
simulated are stochastic averages of 500 independent simulations. 

Simulation-1 
In Simulation-1, The interference plus noise signal of variance ( 2

nσ ) is set as 0.1. 
From Figure 2, NMF-UKF-CMA algorithm has improved gain and grating lobe 
suppression compared to UKF-CMA. Lesser mean square deviation for NMF-UKF-  
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Figure 2. Simulation 1: SINR in dB (left), Array Sensor Gain in dB (center), MSD in dB (right) with 2 0.1nσ ← . 

 
CMA for the given noise variance to the UKF-CMA. The proposed NMF-UKF-CMA 
algorithm attains much better SINR compared with UKF-CMA as the sample size 
increases. The convergence of NMF-UKF-CMA algorithm gives better attenuation of 
interferences compared to UKF-CMA and it converges within the limited sample space. 

Simulation-2 
In Simulation-2,The interference plus noise signal of variance ( 2

nσ ) is set as 0.0316. 
From Figure 3, We achieve similar results compared to UKF-CMA as the noise 
variance decreases. We could observe betterment of proposed algorithm MSD com- 
pared to UKF-CMA. The SINR values of NMF-UKF-CMA algorithm closely follow the 
UKF-CMA algorithm. 

Simulation-3 
In Simulation-3, The number of antennas L in the array is increased to 60 and 

remaining parameters are set as in simulation 1. From Figure 4, we achieve an in- 
creased SINR for NMF-UKF-CMA algorithm as the number of antenna is increased. 

Simulation-4 
In Simulation-4, The number of sources M is increased to 7, interference’s added in 

the direction of 35˚, 55˚, −55˚ and the number of antennas L is decreased to 4 and p is 
set as 0.5 for the simulation are performed. From Figure 5, As seen, there is de- 
gradation in SINR as the number of sources increased. The similarity in performance 
can be seen for NMF-UKF-CMA and UKF-CMA as the number of sources increased. 

6. Conclusion 

A technique for dimensionality reduction and compression of cross-covariance matrix 
is achieved through NMF Algorithm, found to be more effective in beamforming. NMF 
achieves superiority over the classic low rank reduction algorithms such as PCA and 
LDA by imposing purely additive constraint or positivity criteria on the matrix. The 
initialization and the determination of number of basis vectors add to faster con- 
vergence of the solution. By incorporating the technique in to a adaptive blind 
beamforming problem, our proposed NMF-UKF-CMA algorithm has better performance 
compared to UKF-CMA algorithm. On close observation, as the number of antennas in 
the array and noise variance increases, we achieve better Sensor Array Gain, Signal  
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Figure 3. Simulation 2: SINR in dB (left), Array Sensor Gain in dB (center), MSD in dB (right) with 2 0.0316nσ = . 

 

 
Figure 4. Simulation 3: SINR for 4M = , 60L =  and 2 0.1nσ = . 

 

 
Figure 5. Simulation 4: SINR for 7M = , 4L =  and 2 0.1nσ = . 

 
to Interference plus Noise Ratio and Mean Squared Deviation with reduced computa-
tional complexity. 
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