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Abstract 
 
One dimensional advection dispersion equation is analytically solved initially in solute free domain by con-
sidering uniform exponential decay input condition at origin. Heterogeneous medium of semi infinite extent 
is considered. Due to heterogeneity velocity and dispersivity coefficient of the advection dispersion equation 
are considered functions of space variable and time variable. Analytical solution is obtained using Laplace 
transform technique when dispersivity depended on velocity. The effects of first order decay term and ad-
sorption are studied. The graphical representations are made using MATLAB. 
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1. Introduction 

Managing the groundwater resources and rehabilitation 
of polluted aquifers, mathematical modeling is a power-
ful tool. The contaminant concentration distribution be-
haviour along/against unsteady groundwater flow in aq-
uifer is studied through mathematical modeling as it is an 
important approach to formulate the geo-environmental 
problems and provides the best possible solution for re-
ducing its impact on the environment. The pollutant’s 
solute transport from a source through a medium of air or 
water is described by a partial differential equation of 
parabolic type derived on the principle of conservation of 
mass, and is known as advection–diffusion equation 
(ADE). In one-dimension it contains two coefficients, 
one represents the diffusion parameter and the second 
represents the velocity of the advection of the medium 
like air or water. In case of porous medium, like aquifer, 
velocity satisfies the Darcy law and in non-porous me-
dium, like air it satisfies the laminar conditions. The dis-
persive property differs from pollutant to pollutant. 

The literature contains analytical solutions for solute 
transport in homogenous and heterogeneous porous me-
dia. Analytical solutions in one-, two-, and three-dimen- 
sional advection-dispersion transport equations with 
constant coefficients in homogeneous medium which 
have been collected in various compendiums [1-4]. Some 

more works in homogeneous medium has been compiled 
[5-10]. Using the theory [11] that relates dispersion di-
rectly to velocity, analytical solutions were obtained for 
solute transport along unsteady flow through homoge-
neous medium [12-15]. According to the dispersion the-
ory [16] the dispersion parameter is proportional to 
square of velocity. Though much analytical solutions are 
not available based on this theory but some works [17,18] 
do occur. Some large sub-surface formations exhibit va- 
riable dispersivity properties either as a function of time 
or function of distance observed [19]. So the advection- 
dispersion equation with constant coefficients may not be 
appropriate for solute transport in heterogeneous media. 
Analytical solutions are available for space and/or time 
dependent coefficients manly in finite domain are very 
less in number. Analytical solutions for heterogeneous 
porous media for transport equation with time dependent 
coefficients [20-23]. Distance dependent analytical solu-
tion for one dimensional transport in porous media with 
an exponential dispersion function were solved [24,25] 
for uniform input condition and [26] for periodic input 
condition which describe the solute transport due to spa-
tially dependent dispersion along uniform flow through 
heterogeneous semi-infinite media. The limitations of 
analytical solutions of the ADE with coefficients being 
function of space variables discussed [27]. Analytical so-
lution of the advection-diffusion transport equation using 
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a change-of-variable and integral transform technique 
obtained [28]. Further the technique of generalized inte-
gral transform to get analytical solutions of ADE in het-
erogeneous media with different spatially dependent dis- 
persivity discussed [29]. A closed form analytical solu-
tion for spatially-varying initial conditions was derived 
for Dirichlet and Cauchy boundary conditions each with 
Bateman-type source terms [30]. Some work on distance 
dependent [31-40]. Longitudinal and transverse disper-
sion in two dimensional flows in aquifer-aquitard system 
have been investigated analytically [41]. The numerical 
solution of a fractional partial differential equation with 
Riesz-Space fractional derivative in a finite domain is 
discussed [42]. They considered two types of fractional 
partial differential equation, first one is the Riesz frac-
tional diffusion equation and the second is the Riesz frac- 
tional advection-diffusion equation and provided three 
numerical methods to deal with the Riesz-Space frac-
tional derivative. Also a finite difference approximation 
for two sided space fractional partial differential equation 
was provided [43]. 

In the present work one-dimensional advection diffu-
sion equation is solved for dispersivity depended on 
square of velocity. The medium is of inhomogeneous 
nature and is of semi infinite extent. Due to inhomogene-
ous medium both the parameters dispersion and fluid 
velocity depends on space and time. Initially aquifer is 
considered to be solute free. The input point source is of 
exponentially decreasing nature at the origin and at the 
other end its concentration gradient is considered to be 
zero. The effect of first order decay of temporally de-
pendent and adsorption is also considered in this work to 
get the physical insite of the problem. Laplace transform 
technique is used to obtain the analytical solution. 

2. Mathematical Formulation and Its 
Analytical Solution 

The linear Advection-Diffusion partial differential equa-
tion in one dimension in general form with absorption 
and decay term may be written as 

     , ,
c c

D x t u x t c t c
t x x

           
   (1) 

where c  is the solute concentration at a position x  at 
time t ,  ,D x t  represents the solute dispersion and 
 ,u x t  is velocity of the medium transporting the solute 

particles,  u t  is first order decay or production term 
[T–1],   is source/sink of dimension [ML–3T–1], 1K  is 
empirical constant and 0  is the porosity. Initially the 
medium is solute free. An exponential decay type input 
point source concentration is assumed at the origin of the 
medium of uniform nature where q is the contaminant 

decay rate of dimension inverse of time [T–1]. It means 
that the input concentration decreases with time at the 
source. The second boundary condition is assumed to be 
of second type (flux type) of homogeneous nature. Thus 
the initial and two boundary conditions are as follows:  

 , 0; 0, 0c x t t x                (2) 

   0, exp ; 0, 0c x t c qt x t            (3) 

and 

0; , 0
c

x t
x


  


          (4) 

In [44] they considered the co-efficients of Equation 
(1) are temporally dependent and [23] assumed spatially 
dependent in a constant point source and derived their 
analytical solutions. But in this paper due to heterogene-
ity velocity is considered spatially dependent of linearly 
interpolated nature, and also velocity is assumed tempo-
rally dependent. Due to heterogeneous medium it’s not 
always possible that the source of contaminants is con-
stant, so in this paper the source of contaminant at the 
origin is of exponentially decay type. The expressions for 
each coefficient velocity, dispersion and first order decay 
are considered in degenerate forms as follows: 

    
        

0

22
0 0

, 1 ,

, 1  and  

u x t u f mt ax

D x t D f mt ax t f mt 

 

  
 (5) 

where the coefficient a  is the heterogeneity parameter 
of dimension inverse of that of space variable, and m  is 
an unsteadiness parameter of dimension inverse of that 
of time variable, 0D , 0u  and 0  in above expressions 
referred as initial dispersion coefficient of dimension [L2 

T–1], initial velocity of dimension [L2 T–1] and initial firs 
order time decay rate of dimension of inverse of time 
[T–1].  

3. Dispersion through Heterogeneous 
Medium along Unsteady Flow 

Using the expressions (5), the advection-diffusion Equa-
tion (1) can now be written as 

     

 

22
0 0

0

1 1
c c

D f mt ax u f mt ax c
t x x

f mt c 

          
 

(6) 

or 

      

 

2

0 0

0

1
1 1

c c
D f mt ax u ax c

f mt t x x

c
f mt



          

 
(7) 
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Let us introduce a new time variable *T  defined by 
[45] by the transformation as  

 *

0

d
t

T f mt t                (8) 

The dimension of *T  is same as dimension of t , so 
it is referred to as a new time variable. An expression for 
 f mt  chosen such that for 0t  , we get the value of 

* 0T  , so that the initial condition not affected in new 
time domain. Also a space variable transformation is 
introduced [23,46] as 

 1
log 1X ax

a
               (9) 

The initial value problem together with their initial 
and boundary conditions in new time and space variable 
becomes 

   

   

2

0 0 1* 2

0 0

c c c
D f mt u f mt

XT X

au c
f mt



  
 

 

  
       (10) 

 * *, 0; 0, 0c X T T X             (11) 

   * * *
0, 1 ; 0; 0c X T c qT X T    ,      (12) 

and 

*0; , 0
c

X T
X


  


           (13) 

where    1 1f mt f mt   is another time dependent 
expression in non-dimensional variable mt  and 

 0 0aD u   is non dimensional coefficient. 
To eliminate the first order decay term form the Equa-

tion (10), introducing the transformation as: 

  *
0 0expc C au T             (14) 

With the use of Equation (14), Equation (10), becomes 

   

    

2

0 0 1* 2

*
0 0exp

C C C
D f mt u f mt

XT X

au T
f mt

 

  
 

 

 
      (15) 

Further using a space variable Z  and time variable 
T  through the transformations as: 

 
 

1f mt
Z X

f mt
               (16) 

and 

 2
1

0

d
t

T f mt t               (17) 

The one-dimensional advection-diffusion Equation (15) 

with their initial condition (11) and boundary conditions 
(12)-(13) may now be written as 

  
2

*
0 0 0 02 2

1

exp
( )

C C C
D u au T

T ZZ f mt

   
   

 
(18) 

 , 0; 0, 0C Z T T Z              (19) 

  * *
0 0 0( , ) (1 ) exp ;

0; 0, 0

C Z T c qT au T

Z T Z

  

  
   (20) 

0; , 0
C

Z T
Z


  


           (21) 

The time variable *T  has to be expressed explicitly 
in terms of T . An expression of exponentially decreas-
ing nature is chosen as 

   expf mt mt              (22) 

So from Equation (8), we get 

   *

0

1
exp d 1 exp

t

T mt t mt
m

        

or 

 *log 1mt mT    

Also using the transformation in Equation (17) we get 

       2 2 2

0 0

1 d 1 2 d
t t

T f mt t f mt f mt t         

or 

     
21

1 exp 2 2 1 exp
2

T mt mt mt
m

 
 

       
 

 

or 

    
  

2 2* *

*

1
log 1 1 1

2

2 1 1

T mT mT
m

mT






     




   


 

In  f mt , m  is much smaller than one, so its sec-
ond and higher degree terms in the logarithmic and bi-
nomial expansions in above equations are omitted. So we 
get  

*
1T T , where   2

1 1           (23) 

Thus the initial value problem (18) and their condi-
tions (19)-(21), becomes 

   

2

0 02

11 2 2 exp

C C C
D u

T ZZ

m T AT  

  
 

 
    

    (24) 
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 , 0; 0, 0C Z T T Z             (25) 

     0 1, 1 exp ; 0; 0, 0C Z T c q T AT Z T Z     (26) 

0; , 0
C

Z T
Z


  


           (27) 

where  0 0 1A au    . 
Now to find the analytical solution for Equation (24), 

Laplace transform technique is used, but to apply it more 
conveniently the convective term from the Equation (24) 
is to be removed by the use of the transformation as 

   
2

0 0

0 0

, , exp
2 4

u u
C Z T K Z T Z T

D D

 
  

 
     (28) 

The initial and boundary value problem from (24-27) 
in terms of new dependent variable  ,K Z T  may now 
be written as 

   

2

0 2

2
1 0 01 2 2 exp 2

K K
D

T Z

m T T u Z D   

 


 
     

 (29) 

 , 0; 0, 0K Z T T Z               (30) 

     2
0 1, 1 exp ;

0; 0, 0

K Z T c q T T

Z T Z

  

  
     (31) 

0

0

0; , 0
2

uK
K Z T

Z D


   


         (32) 

where 
2

2 0

04

u
A

D R
    and  0 0 1A au     

Applying Laplace transformation on the above bound-
ary value problem, the problems become in second order 
ordinary differential equation in the Laplacian domain 
p  as : 

   

2

2
0

01
22 2

0

21 2
exp ,

2

d K Rp
K

DdZ

um
Z

Dp p


 



           

  (33) 

     2
0 2

1
, 0; 0K Z p c p Z T

p




 
     
  

,  (34) 

and 

0

0

d
0; ; 0

d 2

uK
K Z T

Z D
            (35) 

After using the boundary conditions (34) and (35), its 
particular solution may be obtained as 

     
 

     
 

     
 

0 0 1
022 2

1
22 2 2 2

0

1
22 2 2 2

0 0

, exp

21 2

exp

21 2

exp 2

c qc
K Z p Z p D

p p

m

R p p p p

Z p D

m

R p p p p

u Z D


 

 
   

 
   

 
    

   
    

     

 

    
     



  (36) 

where 2 2
0 04u D   

Now taking the inverse Laplace transform of Equation 
(36), the solution in  ,K Z T may be obtained. Using 
the transformation (28) and (14) the desired solution may 
be obtained as 

 
 

 

 

 

0 2 2

2 2 4 4
1

1 122 2

1
0 1 12 2

0

1
0

1
1 12 2 22 2

1
2 2

1 1 2
( , )

2

2

21 1
2

4

1
2

2 1 2
( )

2

21 2

c x t c
R

m
C D

m
c q T Z C

D

T Z D
D

m
C D

m

 
 

    

 

 
  



 
  


 

       
   
 

           
         

         


 

  
 
 

22 2

2 2 4 4
1 1

2 2 2 2 22 2

exp( )

2 21 2

AT

m m T

 

     
    

 
  
   
     
    

 (37) 

where 

0
1

0 0 0

1 1
exp

2 2

u Z
C Z Z erfc T

D D D T
 

   
        

   
; 

0
1

0 0 0

1 1
exp

2 2

u Z
D Z Z erfc T

D D D T
 

   
        

   
; 

1

0

0 0 0

1 1
exp

2 2

C

u Z
Z Z AT erfc T

D D D T
 

 

   
        

   

; 
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1

0

0 0 0

1 1
exp

2 2

D

u Z
Z Z AT erfc T

D D D T
 

 

   
        

   

; 

  2 2
0 0 1 0 0; 4A au u D     ; 

2
2 0

04

u
A

D
   ; 

 
 

1f mt
Z X

f mt
 ;  1

log 1X ax
a

  ; 

   1 1f mt f mt  ; *
1T T  ;   2

1 1    ; 

0

0

aD

u
   ;  *

0

d
t

T f mt t  ; 

The solution defined by Equation (37) describes the sol-
ute transport for exponential decay type input condition 
at origin in heterogeneous semi infinite domain. 

4. Illustration and Discussion 

The analytical solution of the present hydrodynamics 
dispersion is obtained as given in Equation (37). The 
concentration values  0c C  are evaluated from the 
solution for the input values: reference concentration 
 0C  = 1, initial velocity  0u  = 0.61 (km/year), initial 
dispersivity  0D = 0.71 (km2/year), heterogeneity pa-
rameter ( a ) = 0.1 (km–1), unsteady parameter ( m ) = 0.1 
(km-1), contaminant decay rate ( q ) = 0.1 (km–1), initial 
first order decay ( 0 ) = 0.5 (year–1) , and the initial 
source/sink ( 0 ) = 0.2  3 1ML T  . Concentration at-
tenuation with position and time is studied in the domain 

 0 1x km  , at t  = 0.4, 0.7 and 1.0 (year). It is illus-
trated in Figure 1. Full line curves are drawn for decel-
erating flow filed represented by    expf mt mt   
and dotted curves are drawn for accelerating flow field 
represented by    expf mt mt . In case input concen-
tration, i.e.  0c C  at 0x   decreases with time but 
solute transport of lower input concentration source is 
faster than that of source having higher input value. It is 
evident that, in view of the dispersion parameter being 
proportional to square of velocity, solute transport is 
much faster in case of accelerating flow field than that 
along decelerating flow field. The effect of heterogeneity 
is studied in Figure 2. For it concentration values 
 0c C  are evaluated from solution (37) at 1.0t   and 
a   0.1, 0.2, 0.3, for both the flow field. It may be ob-
served that solute transport faster along accelerating flow 
field in a medium of higher heterogeneity (causing larger 
increase in velocity from origin to the end x ) than that in 
a medium of lower heterogeneity. But the trend reverses 
in a decelerating flow field. 

The effect of first order decay and zero order produc-
tion are studied through Figure 3. It is drawn at 1.0t    
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Figure 1. Illustration of solute transport at different times 
when 2D u , 0.1a =  (km–1), = 0.1m  (year–1), 0 = 0.5  
(year–1), 0 = 0.1 , and = 0.1q  (km–1) described by solu-
tion (37). Solid and dotted curves are drawn for 

  0

2
exp 1u = u mt ax  , and   0

2
exp 1u = u mt ax  re-

spectively. 
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Figure 2. Illustration of the effect of heterogeneity on the 
solute transport when 2D u , described by solution (37), at 

= 0.1t  (year). Solid and dotted curves are drawn for 

  0

2
exp 1u = u mt ax   and   0

2
exp 1u = u mt ax  re-

spectively, = 0.1m (year–1). 
 
and 0.1a  . It may be observed that solute transport is 
fastest in the absence of both the parameters. It is slowest 
in the presence of first order decay but in the absence of 
the production term. 

5. Conclusions 

One-dimensional analytical solution of advection – dif-
fusion equation with variable coefficients is obtained 
using Laplace transformation technique. The source con-  
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Figure 3. Illustration of solute transport for different pa-
rameters when 2D u , 0.1a =  (km-1) and = 0.1m  (year–1) 
at time = 0.1t  (years). 

 
centration is a point uniform source of exponentially 
decay nature. The expressions for both the coefficients 
are considered in both the independent variables but in 
degenerate forms given by Equation (5). With the help of 
certain transformations the variable coefficients are re-
duced into constant coefficients. Such forms of the two 
coefficients are conceived which correspond to the dif-
ferent dispersion theory (Scheidegger, 1957). The change 
in velocity due to heterogeneity and unsteadiness may be 
varied by assigning appropriate values to the separate 
parameters of the both. It may be concluded from the 
present study that the concentration level in case of ac-
celerating diffusive source along decelerating flow do-
main are the least. From engineering point of view this 
observation may be important to keep the emission of 
polluting solute particles from a source of accelerating 
nature. The effects of first order decay and adsorption are 
considered and their impact illustrated by graph. 
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