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Abstract 
In this paper, by means of constructing a special cone, we obtain a sufficient condition for the ex-
istence of positive solution to semipositone fractional differential equation. 
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1. Introduction 
The aim of this paper is to investigate the existence of positive solutions to the semipositone fractional differen-
tial equation 
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where 2 3α< ≤ , 
0

Dα
+  is the standard Riemann-Liouville fractional derivative of order α  which is defined as 

follows: 
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where Γ  denotes the Euler gamma function and [ ]α  denotes the integer part of number α , provided that the 
right side is pointwise defined on ( )0,∞ , see [1]. Here, by a positive solution to the problem (1), we mean a 
function [ ]0,1u C∈ , which is positive in ( )0,1 , and satisfies (1). 
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Fractional differential equations have gained much importance and attention due to the fact that they have 
been proved to be valuable tools in the modelling of many phenomena in engineering and sciences such as 
physics, mechanics, economics and biology. In recent years, there exist a great deal of researches on the exis-
tence and/or uniqueness of solutions (or positive solutions) to boundary value problems for fractional-order dif-
ferential equations. Sun [2] studied the existence of positive solutions for the following boundary value pro- 
blems: 
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where 2 3α< ≤ , [ ] [ ) [ ): 0,1 0, 0,f × +∞ → +∞  is continuous and ( ), 0 0f t ≡/  on [ ]0,1 . But paper [2] did 
not give the results of the existence of positive solution when the nonlinearity can take negative value, i.e. se-
mipositone problems. 

The purpose of the present paper is to apply the method of varying translation together with the fixed point 
theorems in cone to discuss (1) without nonnegativity imposed on the nonlinearity. Meanwhile, we also allow 
the nonlinearity to have many finite singularities on [ ]0,1t∈ . 

2. Preliminaries and Lemmas 
In this section, we present several lemmas that are useful to the proof of our main results. For the forthcoming 
analysis, we need the following assumptions: 

(H1) ( ) [ ) [ ): 0,1 0, 0,f × +∞ → +∞  is continuous. For any ( ) ( )0,1 , ,1 0t f t∈ > , there exist constants 1 2 1r r> >  
such that ( ) ( ) ( ) ( ) ( ) [ )1 2, , , , 0 1, , 0,1 0, .r rc f t u f t cu c f t u c t u≤ ≤ ∀ ≤ ≤ ∈ × +∞  

(H2) ( ) ( ): 0,1 ,q → −∞ +∞  with [ ]0,1q L∈  and ( )1
10

0 dq s s R−< =∫ , 
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∫  where ( ) ( ){ }max ,0 ,q s q s+ =  ( ) ( ){ }max ,0 ,q s q s− = −   

( ),L G s  will be defined in the following text. 
In [3], the authors obtained the Green function associated with the problem (1). More precisely, the authors 

proved the following lemma. 
Lemma 2.1 [3]. For any [ ]0,1h C∈ , the unique solution of the boundary value problem 
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is given by 
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Lemma 2.2 [4]. The Green function ( ),G t s  defined by (4) satisfies the inequality 

( ) ( ) ( ) ( ) [ ], , , 0,1 ,p t G s G t s G s t s≤ ≤ ∀ ∈                          (5) 
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Remark 2.1. A simple computation shows that there exists a constant 0L >  such that 
( ) ( ) [ ], , , 0,1 .G t s Lp t t s≤ ∀ ∈  
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Remark 2.2 [5]. If ( ),f t u  satisfies (H1), then for any ( )0,1 ,t∈  ( ),f t u  is increasing on [ )0,u∈ +∞   

and for any [ ] ( )1 2, 0,η η ⊆ +∞ , [ ]
( )

1 2,

,
lim min .u t

f t u
uη η→+∞ ∈ = +∞  

Lemma 2.3 [6]. Let X be a real Banach space, Ω  be a bounded open subset of X with θ ∈Ω  and 
:A P PΩ →  is a completely continuous operator, where P is a cone in X. 
(i) Suppose that , , 1,Au u u Pλ λ≠ ∀ ∈∂Ω ≥  then ( ), , 1i A P PΩ = . 
(ii) Suppose that , ,Au u u P≤ ∀ ∈∂Ω/   then ( ), , 0i A P PΩ = . 
Consider the Banach space [ ]0,1X C=  with the usual supremum norm ( )0 1sup tu u t≤ ≤=  and define the  

cone ( ) ( ) [ ]{ }: , 0,1P x X x t p t u t= ∈ ≥ ∈ . Let ( ) ( ) ( )1

0
, dw t G t s q s s−= ∫ , then ( )w t  is the unique solution  

to (2) for ( ) ( )h t q t−= . Now we first consider the singular nonlinear boundary value problem 
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where ( ) ( ) ( ) ( ){ }*
max ,0 .u t w t u t w t− = −    We have the following Lemma. 

Lemma 2.4. If the singular nonlinear boundary value problem (2) has a positive solution ( )u t  such that 
( ) ( )u t w t≥  for any [ ]0,1t∈ . Then boundary value problem (1) has a positive solution ( ) ( ) ( )=v t u t w t− . 
Proof. In fact, if u is a positive solution to (6) such that ( ) ( )u t w t≥  for any [ ]0,1t∈ . Let ( ) ( ) ( )=v t u t w t− , 

then ( ) [ ]0, 0,1v t t≥ ∈ . Since ( )w t  is the unique solution to (2) for ( ) ( ) ,h t q t−=  for any [ ]0,1t∈ , we  
have ( ) ( )( ) ( )( ) ( )0

, 0D v t w t f t v t q tα
+ ++ + + = , which implies that ( ) ( ) ( )( ) ( )0

, 0D v t q t f t v t q tα
+ − +− + + = . So 

( ) ( )( ) ( )0
, 0D v t f t v t q tα

+ + + = . Consequently ( ) ( ) ( )=v t u t w t−  is positive solution to (1). This complete the 
proof of Lemma 2.4. 

For any u X∈ , define an operator 
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 = − + ∈    ∫                    (7) 

Since for any fixed u X∈ , we can choose 0 1c< <  such that 1c u < . Note that 
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Consequently, for any [ ]0,1t∈ , we have 
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Therefore, the operator T is well defined and : .T X X→  
Lemma 2.5. Assume that (H1), (H2) hold. Then :T P P→  is a completely continuous operator. 
Proof. For any u P∈ , in view of (2) we conclude that 
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Whence, it follows from (8) that ( ) ( ) ,Tu t Tu p t≥  which implies ( ) .T P P⊆  
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Next we show that :T P P→  is continuous. Suppose { } 0,mu P u P⊆ ∈ , and 0lim .m mu u→+∞ =  Then, there 
exists a constant 0M >  such that , 0,1, 2,mu M m≤ =  . Since for any [ ]0,1 ,t∈  

( ) ( ) ( )*
1m mu s w s u s u M M− ≤ ≤ ≤ ≤ +   , by Remark 2.2, we have 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( )

1

1

*
, , 1

1 ,1

1 1 ,1 .

m

r

r

f s u s w s q s f s M q s

M f s q s

M f s q s

+ +

+

+

− + ≤ + +  

≤ + +

 ≤ + + + 

                (9) 

Thus, we have 
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and ( ) ( )( ) ( ) ( )( )* *
0lim , ,m mf s u s w s f s u s w s→+∞ − = −       . It follows from the Lebesgue control convergence 

theorem that 
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which implies :T P P→  is continuous. 
In what follows, we need to prove that :T P P→  is relatively compact. 
Let D P⊆  be any bounded set. Then there exists a constant 1 0M >  such that 1u M≤  for any u D∈ . 

Similarly as (9), for any [ ], 0,1u D t∈ ∈  we have 

( ) ( )( ) ( ) ( ) ( ) ( )( )1*
1, 1 1 ,1 .rf s u s w s q s M f s q s+ +

 − + ≤ + + +                      (10) 

Consequently 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1

1

1 *

0

1
10

1
1 0

, , d

1 1 ,1 d

1 1 ,1 d

.

r

r

Tu t G t s f s u s w s q s s

G s M f s q s s

M G s f s q s s

+

+

+

 = − +    
 ≤ + + + 

 ≤ + + + 
< +∞

∫

∫

∫
                      (11) 

Therefore ( )T D  is uniformly bounded. 
Now we show that ( )T D  is equicontinuous on [ ]0,1 . For any [ ]1 2, , 0,1u D t t∈ ∈ , by (9), (11) and the Le-

besgue control convergence theorem, and noticing the continuity of ( ),G t s , we have 
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∫

∫             (12) 

Thus, ( )T D  is equicontinuous on [0,1]. The Arezlà-Ascoli Theorem guarantees that ( )T D  is relatively 
compact set. Therefore :T P P→  is completely continuous operator. 

Lemma 2.6. Let { }1 1: ,u P u LRΩ = ∈ <  then ( )1, , 1i T PΩ = . 
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Proof. Assume that there exists 0 11, zµ ≥ ∈∂Ω  such that 0 0.z Tzµ =  Then 0 0
1z Tz
µ

=  and 10 1.
µ

< ≤  

Thus we have 
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This contradiction shows that ( )1, , 1i T PΩ = . 
Lemma 2.7. There exists a constant 2 1R LR>  such that ( )2, , 0i T PΩ = , where { }2 2: .u P u RΩ = ∈ <  
Proof. Choose constants 1 2,η η  and N such that 
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From Remark (2.2), there exists 12R LR> , such that 
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 Obviously, 2 12 .R R LR> >  Now we show that 2, .u Tu u≥ ∈∂Ω/  In  

fact, otherwise, there exists 1 2y ∈∂Ω  such that 1 1.y Ty≥  By (2), for any [ ]1 2, ,t η η∈  we have 
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So 
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Consequently, [ ] ( ) ( )2

1 2 1

2

2 2,
1 min d .
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η
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contradiction shows that ( )2, , 0i T PΩ = . 

3. Main Results 
Theorem 3.1. Suppose that (H1), (H2) hold. Then, the boundary value problems (1) has at least one positive so-
lution ( )0z t , and exists a constant 0k >  such that ( ) ( ) [ ]0 , 0,1 .z t kp t t≥ ∈  

Proof of Theorem 3.1. Applying Lemma 2.6 and Lemma 2.7 and the definition of the fixed point index, we 
have ( )2 1

, \ , 1.R Ri T PΩ Ω = −  Thus T has a fixed point ( )0z t  in 
2 1

\R RΩ Ω  with 1 0R z R< < . Since 
1 0R z< , we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) [ ]
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0 0 00 0
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∫ ∫  

Let ( ) ( ) ( )0 0 .y t z t w t= −  It follows from Lemma (2.4) that ( )0y t  is a positive solution to boundary value 
problem (1), and there exists a constant 0k >  such that ( ) ( ) [ ]0 , 0,1 .y t kp t t≥ ∈  
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