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Abstract

In this paper, we define the harmonic oscillator with random damping in non-Markovian thermal
bath. This model represents new version of the random oscillators. In this side, we derive the over-
damped harmonic oscillator with multiplicative colored noise and translate it into the additive
colored noise by changing the variables. The overdamped harmonic oscillator is stochastic diffe-
rential equation driving by colored noise. We derive the change in the total entropy production
(CTEP) of the model and calculate the mean and variance. We show the fluctuation theorem (FT)
which is invalid at any order in the time correlation. The problem of the deriving of the CTEP is
studied in two different examples of the harmonic potential. Finally, we give the conclusion and
plan for future works.
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1. Introduction

In the 1980s, studies of linear and non linear oscillators were extended to the case of colored noise driving force.
Many applications of the random damping in Markovian thermal bath include water waves influenced by
turbulent wind field, the Ginzburg-Landau equation with a convective term, mean flow passing through a region
under study, open flows of liquids, dendritic growth, chemical waves and motion of vortices [1]-[7] respectively.
The effect of correlations in the random driving force on the stationary probability density and its moments were
studied [8]-[12]. The exact formula is found for the first moment and the system of equations for second
moments for harmonic oscillator with random mass [13]. The analytical expressions are derived for the sta-
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tionary probability density of the particle’s energy [14]. Both theoretical approaches were formulated in the
context of the standard Langevin equation [15] [16], where the friction force was proportional to the speed with
a constant friction coefficient and additive Gaussian white noise. The non-equilibrium process efforts are com-
monly formulated in the form of stochastic thermodynamic culminates into fluctuation relations connecting exten-
sive thermodynamic variables such as work, free energy, and entropy [17]-[21]. The violation of the Markovian
approximation of the environment leads to generation of additional entropy [21]. The ideas behind the entropy
production are studied and some insights are given about relevance [22]. The statistical properties of stochastic
entropy production associated with the non stationary transport of heat through system coupled to a time depen-
dent nanisothermal heat bath [23]. When the harmonic oscillator with external noise in non-Markovian thermal
bath, the cumulants of order two and three contain the natural effects of the non-Markovian bath through the
noise correlation time, consequently the non Gaussian characteristic of the totel entropy change drives to a
breakdown of the usual fluctuation theorems [24]. The purpose of this paper is discussing the change in total
entropy production for the harmonic oscillator with random damping in non-Markovian thermal bath and stu-
dying the fluctuation theorem (FT) at any order in time correlation when the harmonic potentials are represented
the time dependent driving force or the time dependent dragging force where this force is arbitrary time depen-
dent. We derive in this paper the stochastic differential equation (SDE) driving by the multiplicative colored
noise and translate it into additive colored noise by changing variables from x to y. In this side, in order to
compatible the additive colored noise system with potential, we change variables in harmonic potentials (time
dependent driving force and time dependent dragging force). We calculate the mean, variance and the distri-
bution function for the change in total entropy production in new formulas of the harmonic potentials. We show
that in our model, the fluctuation theorem is invalid at any order in the noise correlation time. Finally, we pre-
sent our conclusion and we give the future works. This paper can be divided by six sections. In Section 2, we
define the new model based on the SDE driving by additive colored noise in the overdamped approximation,
and we find the Fokker Planck equation which it is associated of the SDE. In Section 3, we change variables in
Equation (1) from x into y, this represent first example. In this example, we find the change in total entropy,
mean and variance. In Section 4, we change variables in Equation (2), this represent second example. In this
example, we also compute the change in total entropy, mean and variance. In Section 5, we show that the FT is
invalid at any order in the time correlation. Finally, we introduce the conclusions and future works.

2. Stochastic Differential Equation (SDE) Driving by Additive Colored Noise in
Overdamed Approximation

In this section, we define the harmonic oscillator with random damping in non-Markovian thermal bath. We de-
rive the stochastic differential equation (SDE) driving by the multiplicative colored noise and translate it into the
additive colored noise by changing variables in overdamped approximation and its stochastic treatment. Our

model can be defined as,
. dv du At t-s A pt t—s
X =V M- === Oexp[—T}(l+ &)V, ds = —kx+ f, —?joexp[—T}(l+ &)V ds, 1)

where £ is Ornstein-Uhlenbeck noise (special type of colored noise), A is friction constant, z is corre-
lation time, U (x,t) is the harmonic potential, f, is arbitrary time depend force, x(t) is particle’s position
and v, isthe velocity. The & is Gaussian distribution with zero mean and correlation function is,

(&) =%exp[—t%s] @)

where D=k,TA such that k, is Boltzmann constant and T is heat temperature. We assume that the
following ,

A t—s
¢ =—?J‘Oexp[—7}(l+ &), ds, ®)

and read the Equation (1) as,

m%:—kx+ft+¢t. (4)
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In overdamped approximation , the Equation (1) become,

@ =kx— T, (5)
taking the time derivative of Equation (3) we get,
; A
h=-2rgv-L ©)
Substituting Equation (5) in (6), one can obtain,
o f + f, - I3< ’ @
(rk+ /1)(1+ 5‘)
tk+ 4
. A .
let b=zf+f and a= , the Equation (7) read as,
k+ 1
x=al =K ®)
1+a¢
By using power series at first order in the noise ¢, , the above equation become,
b, —kx —kx
k-aBT)_ o (ke ©
A A
(b —kx) 2 b —kx ; ; i inli
let f(x)=a 7 and g(x)=-a®—~—— where g(x)= zero. Equation (9) is SDE driving by multipli-

cative colored noise. To translate Equation (9) from multiplicative colored noise into additive ,we must divided
Equation (9) by g (x), one can obtain,

X 1
=——+¢&, 10
let,
X
y=—, (11)
9(x)
then the translation [25] is defined as,
dz
y=[——, (12)
3@
then the Equation (10) is,
. 1
y=-—+¢. (13)
a
Equation (13) represent SDE driving by additive colored noise. The Fokker Planck equation [25] is defined,
dP 1dP d°P
—=——+D|1-exp|— , 14
dt ady ( p{ Dde (14)

where the initial condition P(y,0/y,)=5(y—Y,), we solve the Fokker Planck equation by Fourier trans-
formation [26] as,

F[P(y.t/Y,) ]— I exp[-ry]P(y.t/y,)dy =P (y.,t/y,), (15)
we take the time derivative into above equation, we have,
dP(r.t/y,) 1 1dP t|)d*P
TR G A\ =2 iDl1- =
dt ZHJ xp[-] ady " exp[ } dy? a. (16)
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Assume that di =ir , then we have,
y
5(r,t/y0)=exp{—Mtr2+(E—y0]r] (17)
a
where M, =Dt+ Dz (exp [—i}—lj then the transition probability is,
T

.2
|:y_yo+lt:l
L aj]

ex
P 4M

t

P(th/yO): (18)

2,IM,

To obtain the initial distribution function we must assume that %—T =0 at zero order in time correlation that

mean (z converge to zero), then we get,

P(yy)=—=, (19)

where the initial distribution is exponential distribution. Then the marginal probability of the particle’s position
is,

P = ’ 20
Y)=—0p5 (20)
also the distribution of y is exponential distribution , and note thaty and y, have same exponential distribution.
3. The First Example

In this section, we change variables in the time dependent driving force from x into y which is defined as

U(x,t):%xz—xf‘, (21)

where f, is arbitrary time depend force and under the new formula of the harmonic potential, we calculate the
change in the total entropy production (CTEP), mean and the variance. From Equation (12), we have,

1 a’ky
x==|hb —exp| —||. 22
Substituting Equation (22) in Equation (21), one can obtain,
U(yt)—i b —exp —ﬂ 2—3 b, —exp _aky f (23)
o2k yl k 2"

Equation (23) represent first new formula of harmonic potential in y. The change in new harmonic potential
can be defined as,

a’ky

, , rftexp{— } o
AU(y,t):i{exp{—zaTw}—exp{—zaﬂkyOH— A +(Tft) f , (24)

2k k 2k
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where we assume that f (0)= f (0)=0. The based on the stochastic thermodynamic approach [17] [27] [28],
the first law thermodynamic like can be defined as,

where the work can be computed [29] as,
t@U(y,S) T ot azky . 1et -
w =jOTds=Ejo{bs —exp[—T fsds—E'[o f_b.ds. (26)
The mean of the work is calculated as,
2
W)Y=Z1"b, - (exp _aky i",sds—l “£.b,ds, (27)
k /0 A k o
. a’ky
where the quantity ( exp|— 7 can be found as,
a’ky w a’ky | A
exp| — =| exp|- P(y)dy=——"—. 28
M e o e
Putting Equation (28) inside Equation (27), we get,
. 1ot -
= fds——| fb.ds, 29
J[smng}sskLHs (29)
the variance of the work can be calculated as,
72 ot a’k -
var (W):k—z_[O var[exp {—TyD f 2ds, (30)

. a’ky || .
where the quantity var| exp 7 is found as,

ZkyD: S an
A A+2a’kD (/1+a3D)

Substituting Equation (31) inside Equation (30). one can obtain,

var [exp -

2 2
var (W) =" 4 — 4 [ f.2ds. (32)
k®| 1+ 2a’kD (/1+a3D) 0
The change in the environment entropy AS_ is obtain as,
W —AU (y,t
ps, <V -AU (D
T
2a’ky, 2a’ky : a’ky (33)
exp{—l}—exp{— 1 rf exp| - P (z'f) _f?
=—+ + - .
2KT KT 2KT
The change in entropy of the system AS s given as,
p
as =it W) Y Yo (34)

P(y,) aD aD’

Now, we can find the CTEP AS,, as,

tot
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AS,, =AS, +AS

2 2
exp {_ 2a/1ky0 } _exp {_ 2a/1ky}
=—+ (35)

T 2kT

2
f, exp{—afy}
Y Y Yo

kT aD aD

tot

+ + 70

and the mean of the AS,, s,

(ASy, ) =(ASe ) +(AS)

P

+ 36
T 2kT (36)
- a’ky
rf, <exp {— D
A
KT ab aDb
. " 2a’ky,
we must calculate the following quantities ( exp ) (y) and (y,) as,
2a’ky, - 2a%ky, | 4 y)
exp| ——22|)=| exp| - P dyo =———, 37
< p{ A D J p{ A (%) 0%y A+2a°kD &9
2 2
where <exp {—mb = <exp{— 2a°ky }> ,
A A
=_[°°yl3(y)dy=i, (38)
0 ab
and,
0 1
y0>=fo yop(yo)dyozﬁl (39)
note here (y,)=(y). Putting Equation (29) and an above quantities’s values inside Equation (36), we get,
t A Z‘f A
AS b ———— f ds — f b ds+—————+— , 40
(Au) = kTJ[S /1+a3kD} k KT A+akD ! “0)
: : . . 2a’ky,
before we find the variance of the CTEP, we make some the following assumptions, let C, =exp 7

2 2
with it coefficient c, =i, C, =exp _aky with it coefficient c, =—L, C, =exp _ky with it
2kT A 2kT A

coefficient ¢, :Tk—_];_‘, C, =y withitcoefficient ¢, =¢, and C; =y, withitcoefficient c; = —%,
a
1 5 ) 5 5
var (S, ) = T—zvar (W)+> clvar(C;)+2), Zcichov(Ci ,C, ) (41)
i=1 i=l j=i+l
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2 2
we must calculate the following quantities var {Cl =exp {—%TK%D , var (Cz =exp {— 2aﬂkyD ,

a’ky
var| C, = exp || var(C, =y) and var(Cy=y,) as,

A A2
var (C,) = — - 5 (42)
A+4a’kD (i+2a3kD)
2
var (C,) = A - A 5 (43)
A+4a’kD (/1+2a3kD)
note here var(C,)=var(C,),
2
var (C,) = A - A > (44)
A+2a°kD (/1+a3kD)
var (C,) :i, (45)
aD
and,
var (C,) = i (46)
aD
Putting Equation (32) and an above quantities’s values in Equation (41), one can obtain,
2 2 2
var (AS,,) =i2 T—z 4 - 4 . “flds |+ L . 2/13 2 .
Tl k“| A+2a’kD (/1+a3D) 0 4(kT) A+4a’kD (/1+2a3kD)
; (47)
rf 2 5 5
( t)z /13 B A |+ 1 2+ZZ_ZCiCjCOV(Ci'Cj)'
(kT) A+2a’kD (ﬂ+a3kD) (aD) i=1 j=i+l
At zero order in time correlation z , the change in totel entropy production in here read as,
o oo ol 2
ASy =+ 1Yo (48)
T 2KT ab
where W =—%.[; fb.ds thenthe meanof AS, is,
% ; f b.ds
(ASM> = T ’ (49)
and variance,
1 22 217 2 53
var (AS,, ) = - + +2 cc.Cov(C,,C,), (50)
(4%) a(kTY’ [ﬂ+4kD (z+sz)2] (D)’ Z“zl Cov(©.C)

where ¢, =0 and var(W)=0. Here we note that: First, the If’(y) and Is(yo) are exponential distributions
but they in [24] are Gaussian. The second, at zero order in time correlation we not found linear relation between
the mean and variance of the change in totel entropy , while it exist in [24].

4. The Second Example

In this section , we change variables in the time dependent driving force from x into y which is defined as
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k(. fY
U(x,t)==| x—-11, 51
() =5 x— 1] 1)
where f, is arbitrary time depend force and under the new formula of the harmonic potential , we calculate the
change in the total entropy production (CTEP), mean and the variance. Substituting Equation (22) in Equation
(51), one can obtain,

2
1| . a’ky

U(y,t)=—|zf —exp|—1]| , 52
(y)zdrt p{ ﬂﬂ (52)

Equation (52) represent second new formula of harmonic potential iny .

-2
1] . a’ 1 2a’k

U(y,t)=§{rft—exp{—7ky1 —Eexp{—TyO}, (53)

where we assume that (0) =0. The work can be computed as,

:_j {r ff -cf, exp{ a;y ds. (54)

The mean of the work is calculated as,

o)=L j;{fz FFof {ﬁ}ds (55)

and the variance of the work is,

tyy Y 22

var(W) kz 0 's /1+233kD_(/1+a3kD)2 ds

(56)

We note that, the mean of the work in first and second example are different, while, the variance is equal. The
change in the environment entropy AS. is defined as,

2 2 2
B exp{— 2a kyo}—exp{— 2a ky} » exp{ ky}
_ W A A A
ASp =—+ - +V, (57)
T 2kT KT
. \2 _
(cf) - W-W £
where v, = Tt Note that, S —S; = T +—= T , that mean of the change in entropy of the environ-
ment different in two examples. The mean of the change in entropy of the environment is calculated as,
: A
_ 1 A 7t [/1 + a3kD}
(AS¢) = ij {z’ f.f —rf[ +a3kDﬂds+ = +,. (58)
The variance of the AS; is,
_ . var(W) 3 3 3
var (AS ) = T( ) +Y civar (C)+2) > ccCov(C;,C)), (59)
i=1 i=1 j=i+1
since the variance of the AS_ s,
ar (W 3 33
var (AS; ) = VT—(2)+ Y clvar(C)+2> Y ¢e,Cov(C,,C)), (60)

i=1 i=1 j=i+l

then we note, the variance of the change in entropy of the environment is same in tow examples, while the mean

is different. Now, we can calculate AS,, as,
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2
} rf, exp[—aky

2 2
e {_ 2a/1kyO } Cexp {_ ZaAky ! }
AS, =WV, + +y_y°+vt. (61)

T 2kT KT aD
is,

The mean of the AS

tot

_ 1 C y)
(S ) = o I;[z'z f.f —7f [mﬂds. (62)

The variance of the AS,, is,
s 1|7 A Al ¢
Var(As“”)_T_z FIO l+2a3kD_(/1+a3kD)2 fods
1 | A(aD)’ L1 24 2R (63)
4(kT)*| A+4a°kD | 4(kT)* | A+42°kD (/1+2a3kD)2
( f)2 2 5 5
Th A A 2
+ - + +2 ¢c;Cov(C;,C,).
(kT)2 A+2a’kD (/1+a3kD)2 (aD)4 éjgl : ( ])
At zero order in time correlation , the CTEP AS, is,
ol 22 -]
85, = 5 64
2kT D
the mean is,
(AS4)=0, (65)
and variance is,
= 1 2 2% 2 S
var(AS,, ) = - + +2 c,c.Cov(C,,C,), 66
(450 4(kT)2[l+4kD (/1+2kD)2} (D)’ ZJZ Cov(€.C) 0

where W =0 and c, =0. Here note that: At zero order in time correlation, in first example
1t -
E [, fb,ds

(ASy)=— while in second example <A§tot> =0, also the var (AS,,) and var(AS,,) intwo exam-

ples are different. From Equations (59) and (60), we conclude that the variance of the CTEP is the same in two
examples and at any order in time correlation and also we can not find any linear relation between the mean and
variance of the CTEP at any order in time correlation , while ref. [24] is shown that the entropy variance is same
in his two examples at first order in time correlation and it found the relation between the mean and variance of
the CTEP at first order in time correlation.

5. Fluctuation Theorem

In this section, we show the fluctuation theorem (FT) is invalid at any order in time correlation whether the
distribution function of the change in the total entropy production (CTEP) is Gaussian or non Gaussian. We
study the distribution function of the CTEP with respect first example , because any example chosen no problem.
We base on the relation between the moments and cumulants to find the distribution function of the CTEP
which is defined as,

2
Tas, =€Xp[H (x)]= exp{i/clu - KZZU $e } (67)
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2
K,U

where s Is generating function and H () =liru- +--- is cumulant function, such that «; = (ASM>,

Kk, =Vvar(AS,,), ... are first cumulant, second cumulant, third cumulant and so on. We calculate the distribution
function of the CTEP in two perspectives. The first perspective, at second order of approximation in u, the
Equation (62) becomes,

2
X, = €XP {izclu - KZZU } (68)

from above equation, we find that the y,;  is generating function of the Gaussian distribution function, that

mean AS,, has Gaussian distribution with mean (AStm> and variance var (AS, ). The FT is invalid as
P(AS
PASy) -
P(-ASy)

The other perspective, at any order in u, this perspective is studied in [24], it show that the distribution
function of the CTEP is non Gaussian and the FT is invalid as

P(ASy,)
———#exp|AS,, | 70
P(-ASy,) PLASi] (70)
Based on Equation (70), we note that ,at any order in time correlation, the FT in our work is invalid, while at
zero order in time correlation, the FT in [24] becomes valid.

6. Conclusion and Future Work

In this letter, we defined the harmonic oscillator with random in non-Markovian thermal bath and we derived the
SDE driving by multiplicative colored noise. By changing variables, we translated SDE from multiplicative
colored noise into additive colored noise to become the calculations easier. Under the new formulas of the har-
monic potential in the two examples, we derived the change in the total entropy production (CTEP) of the our
model and calculated the mean and the variance. By comparing our results in the two examples, we found the
variances of the CTEP are the same while the means are different. At zero order in the time correlation, in first
example the mean of the CTEP equal zero while in other example the mean is nonzero, also we find the
variances in the two examples are different. In the two examples we can not obtain on the linear relation be-
tween the variance and the mean at any order in time correlation, while [24] it obtained this relation at zero order
in the time correlation. The FT in our work is invalid at any order in the time correlation while in [24] the FT is
valid at zero order in the time correlation. Finally , we will study the harmonic oscillator with random frequency
in Markovian and non-Markovian thermal bath. This problem will be done in future.
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