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  Abstract 
We study the mixing rate of non-backtracking random walks on graphs by looking at 
non-backtracking walks as walks on the directed edges of a graph. A result known as 
Ihara’s Theorem relates the adjacency matrix of a graph to a matrix related to 
non-backtracking walks on the directed edges. We prove a weighted version of Iha-
ra’s Theorem which relates the transition probability matrix of a non-backtracking 
walk to the transition matrix for the usual random walk. This allows us to determine 
the spectrum of the transition probability matrix of a non-backtracking random walk 
in the case of regular graphs and biregular graphs. As a corollary, we obtain a result 
of Alon et al. in [1] that in most cases, a non-backtracking random walk on a regular 
graph has a faster mixing rate than the usual random walk. In addition, we obtain an 
analogous result for biregular graphs. 
 

Keywords 
Graph, Random Walk, Non-Backtracking Random Walk, Ihara Zeta Identity,  
Mixing Rate 

 

1. Introduction 

A random walk on a graph G is a random process on the vertices of G in which, at each 
step in the walk, we choose uniformly at random among the neighbors of the current 
vertex. Random walks have been studied extensively, and are used in a variety of algo-
rithms involving graphs. For a comprehensive survey on random walks on graphs, see 
[2], and for applications of spectral techniques to random walk theory, see [3]. Random 
walks on graphs have the useful property that given any initial distribution on the ver-
tex set, the random walk converges to a unique stationary distribution as long as the 
graph is connected and not bipartite. The speed at which this convergence takes place is 
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referred to as the mixing rate of the random walk. In a graph where a random walk has 
a fast mixing rate, vertices can be sampled quickly using this random process, making 
this a useful tool in theoretical computer science. 

A non-backtracking random walk on a graph is a random walk with the added con-
dition that, on a given step, we are not allowed to return to the vertex visited on the 
previous step. Viewed as a walk on vertices, a non-backtracking random walk loses the 
property of being a Markov chain, making its analysis somewhat more difficult. How-
ever, their study has received increased interest in recent years. Recently, Angel, Fried-
man, and Hoory [4] studied non-backtracking walks on the universal cover of a graph. 
Fitzner and Hofstad [5] studied the convergence of non-backtracking random walks on 
lattices and tori. Krzakala et al. [6] use a matrix related to non-backtracking walks to 
study spectral clustering algorithms. Most pertinent to the current paper, Alon, Benja-
mini, Lubetzky, and Sodin [1] studied the mixing rate of a non-backtracking walk for 
regular graphs. In particular, they prove that in most cases, a non-backtracking random 
walk on a regular graph has a faster mixing rate than a random walk allowing back-
tracking. 

In this paper, we study the mixing rate for a non-backtracking random walk, with the 
goal of removing the condition of regularity needed in the results of Alon et al. in [1]. 
We take a different approach than Alon et al. by looking at the non-backtracking walk 
as a walk along directed edges of a graph, as is done in [4]. This allows us to turn the 
non-backtracking random walk into a Markov chain, but on a larger state space, which 
in turn allows us to determine the stationary distribution to which a non-backtracking 
walk converges for a general graph, whether or not it is regular. In the case of regular 
graphs, our approach allows us to compute the spectrum of the transition probability 
matrix for a non-backtracking random walk, expressed in terms of the eigenvalues of 
the adjacency matrix. This allows for easy comparison of the mixing rates of a 
non-backtracking random walk, and an ordinary random walk. As a corollary, this 
gives us an alternate proof of the result in [1] for regular graphs. Our approach gives 
more information than the approach in [1], since we give the full spectrum of the tran-
sition probability matrix. In addition, we are able to compute the spectrum of the 
non-backtracking transition probability matrix for biregular graphs. As a corollary, we 
generalize the result in [1] for regular graphs to an analogous result for biregular 
graphs. 

A key component in our proof is a weighted version of a result known as Ihara’s 
Theorem, also called the Ihara zeta identity, which relates an operator indexed by the 
directed edge set of a graph to an operator indexed by the vertex set of the graph. Iha-
ra’s Theorem was first considered in the study of number theoretic zeta functions on 
graphs, and was first proved for regular graphs by Ihara in 1966 (see [7]). Numerous 
other proofs have been given since, along with generalizations to irregular graphs, by 
Hashimoto ([8], 1989), Bass ([9], 1992), Stark and Terras ([10], 1996), Kotani and Su-
nada ([11], 2000), and others. We will give an elementary proof of Ihara’s Theorem that, 
to our knowledge, is original. In addition, we follow ideas similar to those in [11] to 
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obtain a version of Ihara’s Theorem with weights that allows us to study the relevant 
transition probability matrices for random walks. 

The remainder of this paper is organized as follows. In Section 2, we give the neces-
sary background and preliminary information on random walks, and develop the cor-
responding theory for non-backtracking walks, including the convergence of a non- 
backtracking walk to a stationary distribution for a general graph. We accomplish this 
via walks on the directed edges of a graph. We also investigate bounds obtained from 
the normalized Laplacian for a directed graph. We also give the relevant background on 
Ihara’s Theorem, and a new elementary proof. In Section 3, we prove our weighted ver-
sion of Ihara’s formula. Finally, in Section 4, we use this formula to obtain the spectrum 
of the transition probability matrix for a non-backtracking random walk for regular 
and biregular graphs. This gives a new proof of the result of Alon et al. concerning the 
mixing rate of a non-backtracking random walk on a regular graph, and generalizes this 
result to the class of biregular graphs. 

2. Preliminaries  
2.1. Random Walks  

Throughout this paper, we will let ( ),G V E=  denote a graph with vertex set V and 
(undirected) edge set E, and we will let n V= , m E=  and vol(G) denote the sum of 
the degrees of all the vertices of G. A random walk on a graph is a sequence 
( )0 1, , , kv v v  of vertices iv V∈  where iv  is chosen uniformly at random among the 
neighbors of 1iv − . Random walks on graphs are well-studied, and considerable litera-
ture exists about them. See in particular [2] and [3] for good surveys, especially in the 
use of spectral techniques in studying random walks on graphs. 

The adjacency matrix A of G is the n n×  matrix with rows and columns indexed by 
V given by  

( )
1 if ~

,
0 otherwise.

u v
A u v 

= 


 

It is a well-known fact that the ( ),u v  entry of kA  is the number of walks of length 
k starting at vertex u and ending at vertex v. Define D to be the n n×  diagonal matrix 
with rows and columns indexed by V with ( ), vD v v d= , where vd  denotes the degree 
of vertex v. A random walk on a graph G is a Markov process with transition probabili-
ty matrix 1P D A−= , so  

( )
1 if ~

,
0 otherwise.

u

u v
dP u v


= 


 

Given any starting probability distribution 0f  on the vertex set V, the resulting ex-
pected distribution kf  after applying k random walk steps is given by 0

k
kf f P= . 

Here we are considering 0f  and kf  as row vectors in n . 
Note that, in general, P is not symmetric for an irregular graph, but is similar to the 

symmetric matrix 1 2 1 2D AD− − . Thus, the eigenvalues of P are real, and if we order 
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them as 1 2 nµ µ µ≥ ≥ ≥ , then it is easy to see that 1 1µ =  with eigenvector 1 , and 
1nµ ≥ − . By Perron-Frobenius theory, if the matrix P is irreducible, then we have that 

2 1µ < , and if P is aperiodic, then 1nµ > − . The matrix P being irreducible and aperi-
odic corresponds to the graph G being connected and non-bipartite. 

The stationary distribution for a random walk on G is given by  

( ) ( )
.

vol
vdv
G

π =  

The stationary distribution has the important property the Pπ π= , so that a ran-
dom walk with initial distribution π  will stay at π  at each step. An important fact 
about the stationary distribution is that if G is a connected graph that is not bipartite, 
then for any initial distribution 0f  on ( )V G , we have  

( ) ( ) ( )0lim t

t
f P v vπ

→∞
=  

for all v (see [2]). 
Knowing that a random walk will converge to some stationary distribution, a funda-

mental question to consider is to determine how quickly the random walk approaches 
the stationary distribution, or in other words, to determine the mixing rate. In order to 
make this question precise, we need to consider how to measure the distance between 
two distribution vectors. 

Several measures for defining the mixing rate of a random walk have been given (see 
[3]). Classically, the mixing rate is defined in terms of the pointwise distance (see [2]). 
That is, the mixing rate is  

( ) ( )
1

,
lim sup max , .

tt

u vt
P u v vρ π

→∞
= −  

Note that a small mixing rate corresponds to fast mixing. Alternatively, the mixing rate 
can be considered in terms of the standard 2L  (Euclidean) norm, the relative point-
wise distance, the total variation distance, or the χ -squared distance. In general, these 
measures can yield different distances, but spectral bounds on the mixing rate are es-
sentially the same for each. See [3] for a detailed comparison of each. For our purposes, 
we will primarily be concerned with the χ -squared distance, which will be defined 
below. 

The mixing rate of a random walk is directly related to the eigenvalues of P.  
Theorem 1 (Corollary 5.2 of) Let G be a connected non-bipartite graph with transition 

probability matrix P, and let the eigenvalues of P be 1 21 1nµ µ µ= > ≥ ≥ > − . Then 
the mixing rate is { }2max , nµ µ .  

Thus, the smaller the eigenvalues of P, the faster the random walk converges to its 
stationary distribution.  

2.2. Non-Backtracking Random Walks  

A non-backtracking random walk on G is a sequence ( )0 1, , , kv v v  of vertices iv V∈  
where 1iv +  is chosen randomly among the neighbors of iv  such that 1 1i iv v+ −≠  for 

1, , 1i k= − . In other words, a non-backtracking random walk is a random walk in 
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which a step is not allowed to go back to the immediately previous state. A non-back- 
tracking random walk on a graph is not a Markov chain since, in any given state, we 
need to remember the previous step in order to take the next step. In order for this to 
be well-defined, we assume throughout the remainder of the paper that the minimim 
degree of G is at least 2. 

Define ( )kP  to be the n n×  transition probability matrix for a k-step non-back- 
tracking random walk on the vertices. That is ( ) ( ),kP u v  is the probability that a 
non-backtracking random walk starting at vertex u ends up at vertex v after k steps. 
Note that ( )1P P= , where 1P D A−=  is the transition matrix for an ordinary random 
walk on G. However, ( )kP  is not simply kP  since a non-backtracking random walk 
is not a Markov chain. 

This process can be turned into a Markov chain, however, by changing the state 
space from the vertices of the graph to the directed edges of the graph. That is, replace 
each edge in E with two directed edges (one in each direction). Then the non-back- 
tracking random walk is a sequence of directed edges ( )1 2, , , ke e e  where if 

( ),i j ke v v= , and ( )1 ,i r se v v+ =  then k rv v=  and s jv v≠ . That is, the non-back- 
tracking condition restricts the walk from moving from an edge to the edge going in the 
opposite direction. Denote the set of directed edges by E



. The transition probability 
matrix for this process we will call P . Observe that  

( ) ( )( )
1 if and

1, , ,
0 otherwise.

v

v x y u
dP u v x y

 = ≠ −= 


  

Note that P  is a 2 2m m×  matrix. Note also that kP  is the transition matrix for a 
walk with k steps on the directed edges. 

Lemma 1. Given any graph G, the matrix P  as defined above is doubly stochastic.  
Proof. Observe first that the rows of the matrix P  sum to 1, as it is a transition 

probability matrix. In addition, the columns of P  sum to 1. To see this, consider the 
column indexed by the directed edge ( ),u v .  

The entry of this column corresponding to the row indexed by ( ),x y  is 1
1yd −

 if 

y u=  and if v x≠ . Since y u=  this is equal to 1
1ud −

. Otherwise, the entry is 0.  

Thus the column sum is  

~

11 1
1 1

u

x u u u
x v

d
d d

≠

−
= =

− −∑  

as claimed.                                                             □ 
Define the distribution : Eπ →



   by  

 
( )vol G

π =
 

where  is the vector of length 2m with each entry equal to 1. 
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Lemma 2. Let 0 :f E →


   be any distribution on the directed edges of G. If the 
matrix P  is irreducible and aperiodic, then  

0
kf P π→


  

as k →∞ .  
Proof. It follows from Lemma 1 that π  is a stationary distribution for P . This fol-

lows because, since the columns of P  sum to 1, we have  

.Pπ π=   

Therefore, if the sequence 0
kf P   converges, it must converge to π . Now, P  being 

irreducible and aperiodic are precisely the conditions for this to converge.         □ 
Let f be a probability distribution on the vertices of G. Then f can be turned into a 

distribution f  on E


 as follows. Define 

( )( ) ( )1, .
u

f u v f u
d

=  

Conversely, given a distribution g  on E


, define a distribution g on the vertices by  

( )
( )

( )
,

, .
u v E

g u g u v
∈

= ∑


  

Thus, given any starting distribution 0 :f V →   on the vertex set of G, we can 
compute the distribution after k non-backtracking random walk steps :kf V →   as 
follows. First compute the distribution 0f  on the directed edges as above, then com-
pute 0

k
kf f P= 

 , then kf  is given by ( ) ( )~ ,k kv uf u f u v= ∑  . The following proposi-
tion tells us that this converges to the same stationary distribution as an ordinary ran-
dom walk on a graph. 

Theorem 2. Given a graph G and a starting distribution 0 :f V →   on the vertices 
of G, define ( )

0
k

kf f P=  to be the distribution on the vertices after k non-backtracking  

random walk steps. Define the distribution :Vπ →   by ( ) ( )vol
vdv
G

π =  (note that  

this is the stationary distribution for an ordinary random walk on G). Then if the ma-
trix P  is irreducible and aperiodic, then for any starting distribution 0f  on V, we 
have  

as .kf kπ→ →∞  

Proof. As described above, take the distribution 0f  on vertices to the corresponding 
distribution 0f  on directed edges. Then define 0

k
kf f P= 

 . Then by Lemma 2, kf   

converges to π . Now  
volG

π = , and observe that  

( ) ( ) ( ) ( )( )
~ ~

1 , .
vol vol

u

v u v u

du u v
G G

π π= = =∑ ∑   

So pulling the distribution π  on directed edges back to a distribution on the vertic-
es yields π . Thus the result follows.                                   □ 

Definition 1. The χ -squared distance for measuring convergence of a random walk 
is defined by  
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( )
( ) ( )

( ) ( )( )
( )

1 22
,

max .
t

y V G x V G

P y x x
t

x
π

π∈ ∈

 − ′∆ =   
 
∑







 

Notice that since  ( )vol Gπ = ,  

( ) ( ) ( )2 22 1 1max max
2 2

t t
y yy y

t P P
m m

χ π χ π′∆ = − = − 

   

Theorem 3. Let 1 2 21, , , mµ µ µ=   be the eigenvalues of P . Then the convergence 
rate for the non-backtracking random walk with respect to the χ -squared distance is 
bounded above by 1max .i iµ≠   

Proof. We have  

( ) ( ) 22 1max .
2

t
yy

t P
m

χ π′∆ = − 

  

Observe that uχ π−   is orthogonal π , which is the eigenvector for 1µ , so we see 
that  

( )
1

1 max .
2

t
ii

t
m

µ
≠

′∆ ≤  

Therefore,  

( )( )1
1

lim max .
t

it i
t µ

→∞ ≠
′∆ ≤

 
□ 

2.3. Non-Backtracking Walks as Walks on a Directed Graph  

The transition probability matrix P  for the walk on directed edges can be thought of 
as a transition matrix for a random walk on a directed line graph of the graph G. In this 
way, theory for random walks on directed graphs can be applied to analyze non-back- 
tracking random walks. Random walks on directed graphs have been studied by Chung 
in [12] by way of a directed version of the normalized graph Laplacian matrix. In [12], 
the Laplacian for a directed graph is defined as follows. Let P be the transition probabil-
ity matrix for a random walk on the directed graph, and let φ  be its Perron vector, 
that is, Pφ φ= . Then let Φ  be the diagonal matrix with the entries of φ  along the 
diagonal. Then the Laplacian for the directed graph is defined as  

1 2 1 2 1 2 * 1 2

.
2

P PI
− −Φ Φ +Φ Φ

= −  

This produces a symmetric matrix that thus has real eigenvalues. Those eigenvalues are 
then related to the convergence rate of a random walk on the directed graph. In partic-
ular, the convergence rate is bounded above by ( )( )1

12 log min x xλ φ− − , where 1λ  is 
the second smallest eigenvalue of   (see Theorem 7 of [12]). 

Applying this now to non-backtracking random walks, define P  as before. Then as 
seen above, φ  is the constant vector with ( ) ( )1 volv Gφ =  for all v. Then the di-
rected Laplacian for a non-backtracking walk becomes  
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*

2 .
2m

P PI +
= =

 

  

Then Theorem 1 of [12], applied to the matrix   as defined, gives the Rayleigh quo-
tient for a function :f E →



  by  

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )
( )

2

,,*

* 2

,

, , , , ,
1 .
2 ,

v wu v E G
w u

u v E G

f u v f v w P u v v w
f fR f
f f f u v

∈
≠

∈

−

= =

∑ ∑

∑











  

From this it is clear that   is positive semidefinite with smallest eigenvalue 0 0λ = . If 

0 1 2 10 mλ λ λ −= ≤ ≤ ≤  are the eigenvalues of  , then Theorem 7 from [12] implies 
that the convergence rate for the corresponding random walk is bounded above by  

( )
1

2 log vol
.

G
λ

 

We remark that for an ordinary random walk on an undirected graph G, the conver-
gence rate is also on the order of ( )11 λ  , where   now denotes the normalized 
Laplacian of the undirected graph G. Note that  

 ( )
( )

( )1 :
inf

f V G
f D

R fλ
→

⊥

=




 

where ( ) ( ) ( ) ( )( )
( ) ( )

2

2
uv E G

vv V G

f u f v
R f

f v d
∈

∈

−
=
∑

∑
 denotes the Rayleigh quotient with respect to  

 , and  

 ( )
( )

( )1 :
inf

f E G
f

R fλ
→

⊥

=


 




 
with R  given above. 

The following result shows that the Laplacian bound does not give an improvement 
for non-backtracking random walks over ordinary random walks. 

Proposition 1. Let G be any graph, and let   be the normalized graph Laplacian 
and   the non-backtracking Laplacian defined above. Then we have  

( ) ( )1 1 .λ λ≤   

Proof. Let ( ):f V G →   be the function orthogonal to D that achieves the mini-
mum in the Rayleigh quotient for  . So  

( )
( ) ( ) ( )

( ) ( )( )

( )
( )

2

1 20 and .uv E G
v

v V G v
v V G

f u f v
f v d

f v d
λ ∈

∈

∈

−
= =

∑
∑

∑
  

Define :f E′ →


  by ( ) ( ),f u v f u′ = . Observe that  

( ) ( )
( )

( ) ( )
( )

( )
( )

, ,
, 0.u

u V Gu v E G u v E G
f u v f u f u d

∈∈ ∈

′ = = =∑ ∑ ∑
 

 

So f ′  is orthogonal to . Therefore  
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( ) ( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )
( )

( )( )
( ) ( )( )

( )
( )

( )
( ) ( )( )

( )
( )

{ } ( )
( ) ( )( )

( )
( )

( ) ( )

2

,,

1 2

,

2
2

,,
,

2 2

,

2

,
12

, , , , ,
1
2 ,

1
1

1 1
2 2

.

v wu v E G
w u

u v E G

v wu v v
u vw u

u
u v u V G

u v E G

u
u V G

f u v f v w P u v v w

R f
f u v

f u f v f u f vd

f u f u d

f u f v
R f

f u d

λ

λ

∈
≠

∈

≠

∈

∈

∈

′ ′−

′≤ =
′

− −−
= =

−
= = =

∑ ∑

∑

∑ ∑ ∑

∑ ∑

∑

∑







 



 
□ 

2.4. Ihara’s Theorem  

The transition probability matrix P  defined above is a weighted version of an impor-
tant matrix that comes up in the study of zeta functions on finite graphs. We define B 
to be the 2 2m m×  matrix with rows and columns indexed by the set of directed edges 
of G as follows.  

( ) ( )( ) 1 if and
, , ,

0 otherwise.
v x y u

B u v x y
= ≠

= 


 

The matrix B can be thought of as a non-backtracking edge adjacency matrix, and 
the entries of kB  describe the number of non-backtracking walks of length k from one 
directed edge to another, in the same way that the entries of powers of the adjacency 
matrix, kA , count the number of walks of length k from one vertex to another. The 
expression ( )det I uB−  is closely related to zeta functions on finite graphs. A result 
known as Ihara’s Theorem further relates such zeta functions to a determinant expres-
sion involving the adjacency matrix. While we will not go into zeta functions on finite 
graphs in this paper, the following result equivalent to Ihara’s theorem will be of inter-
est to us.  

Ihara’s Theorem. For a graph G on n vertices and m edges, let B be the matrix de-
fined above, let A denote the adjacency matrix, D the diagonal degree matrix, and I the 
identity. Then  

( ) ( ) ( )( )2 2det 1 det .
m n

I uB u I uA u D I
−

− = − − + −  

We remark that the expression ( )det I uB−  is the characteristic polynomial of B 
evaluated at 1 u , multiplied by the appropriate power of u . In this way the complete 
spectrum of the matrix B is given by the reciprocals of the roots of the polynomial 
( ) ( )( )2 21 det

m n
u I uA u D I

−
− − + − . Numerous proofs of this result exist in the litera-

ture [7]-[11]. For completeness, we will include here an elementary proof that uses only 
basic linear algebra. To the knowledge of the author, this proof is original. To begin, we 
will need a lemma giving a well-known property of determinants. 

Lemma 3. Let M be a k l×  matrix, N a l k×  matrix, and A an invertible k k×  
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matrix. Then  

( ) ( ) ( )1det det det .A MN A I NA M−+ = +  

Proof. Note that  

( )
1

1 1 1

0 0
.

0 0
II N I N I NA M

A M A A MNI I A M I

−

− − −

−    +   
=      +      

 

Taking determinants of both sides gives the result.                          □ 
Proof of Ihara’s Theorem. Define S to be the 2m n×  matrix  

( )( ) 1 if
, ,

0 otherwise
v x

S u v x
=

= 


 

so S is the endpoint incidence operator. Define T to be the 2n m×  matrix given by  

( )( ) 1 if
, ,

0 otherwise
u x

T x u v
=

= 


 

so T is the starting point incidence operator. We will also define τ  to be the 2 2m m×  
matrix giving the reversal operator that switches a directed edge with its opposite. That 
is,  

( ) ( )( ) 1 if ,
, , ,

0 otherwise
b c a d

a b c dτ
= =

= 


 

Now, a straightforward computation verifies that 
,B ST τ= −                              (1) 

,A TS=                                (2) 

and  
.D T Sτ=                               (3) 

Then from Lemma 3 and (1) we obtain 

( ) ( )( ) ( )

( ) ( )( )1

det det det

det det

I uB I u ST I u uST

I u I uT I u S

τ τ

τ τ −

− = − − = + −

= + − +
 

where u is chosen so that the matrix I uτ+  is inverivle. 
Observe that 2 Iτ = , so that ( )( ) ( )21I u I u u Iτ τ− + = − , so  

( ) ( )1
2

1
1

I u I u
u

τ τ−+ = −
−

. Thus, applying (2) and (3), the above becomes 

( ) ( ) ( )

( ) ( )

( )
( )

( )( )

( ) ( )( )

2

2

2 2

2

2 2

det det det
1

det det
1

1det det 1
1

1 det

n

m n

uI uB I u I T I u S
u

uI u I TS uT S
u

I u u I uA u D
u

u I uA u D I

τ τ

τ τ

τ

−

 − = + − − − 
 = + − − − 

= + − − +
−

= − − + −
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where the last step is obtained by observing that ( ) ( )2det 1
m

I u uτ+ = − . This is the de-
sired equality for our choice of u. This is a polynomial of finite degree in u, and there 
are infinitely many u that make I uτ+  invertible, so the equality holds for all u.   □ 

3. A Weighted Ihara’s Theorem  

In this section, we will give a weighted version of Ihara’s Theorem. The proof presented 
in the previous section does not lend itself well to generalization to the weighted setting, 
so we will not follow that strategy. Rather, we will follow the main ideas of the proof of 
Ihara’s theorem found in [11] to obtain our weighted version of this result. 

To each vertex ( )x V G∈  we assign a weight ( ) 0w x ≠ , and let W be the n n×  
diagonal matrix given by ( ) ( ),W x x w x= . Define S and T to be the matrices from the 
proof of Ihara’s Theorem in the previous section, and define S SW=  and T WT= . 
So S  is the weighted version of the endpoint vertex-edge incidence operator, and T  
is the weighted version of the starting point vertex-edge incidence operator. Define τ  
from the proof of Ihara’s Theorem, and define τ  to be the weighted version of τ , 
that is  

( ) ( )( ) ( )2 if ,, , ,
0 otherwise
w b b c a da b c dτ
 = == 


  

Finally, define the 2 2m m×  matrix P  by  

( ) ( )( ) ( )2 if ,, , ,
0 otherwise.
w b b c a dP a b c d
 = ≠= 


                 (4) 

Then P  is the weighted version of the non-backtracking edge adjacency matrix B seen 
above in Ihara’s theorem, with ( )2w b  the weight on edge ( ),a b . We remark that if 
we take ( ) 1 1xw x d= −  for each ( )x V G∈ , then P  is exactly the transition 
probability matrix for a non-backtracking random walk on the directed edges of G de-
fined in Section 2.2. This case is our primary focus, but we note that our computations 
apply for any arbitrary positive weights assigned to the vertices. 

Now, a straightforward computation verifies that 

P ST τ= − 

                              (5) 

and  

.TS WAW=                              (6) 

We will define A WAW= . Note that ( ) ( ) ( ) ( ), ,A u v w u w v A u v= , so this is the adja-
cency matrix for the weighted graph with edge weights ( ) ( )w u w v . The matrix A  is 
similar to 2W A , so when ( ) 1 1xw x d= − , this is the matrix whose entries are the 
transition probabilities for a single step of a non-backtracking random walk G. 

From (5) and (6) we obtain the following equations.  

( ) ( ) 2 2 2I uP I u I uST u ST uτ τ τ− − = − + −   

                    (7) 

( ) ( ) 2 2 2I u I uP I uST u ST uτ τ τ− − = − + −   

                    (8) 
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We define D  to be the diagonal n n×  matrix ( ) ( ) ( )2 2
~, v xD x x w x w v= ∑  and 

observe that T S Dτ = 

 . It then follows that  

( ) ( )( ) ( )2 2 2I uP I u u S S I uA u Dτ τ− − + = − +   

                 (9) 

( ) ( )( ) ( )2 2 2T I u I uP u I uA u D Tτ τ− − + = − +   

                (10) 

We remark that in the proof in [11], they use the unweighted versions of each of 
these matrices, so τ  rather than τ  yields 2 Iτ = . Hence S and T will factor through 

2τ , so that the 2 2u τ  term stays on the right hand side of the above equations. Here we 
have 2τ  is a 2 2m m×  diagonal matrix with ( ) ( )( ) ( ) ( )2 22 , , ,u v u v w u w vτ = . De-
pending on the ( )w u ’s this matrix might not behave nicely with respect to the action 
of S and T, hence the extra terms that need to stay on the left-hand side above. This 
difference from [11] is one of the primary difficulties in generalizing this result. 

We will now perform a change of basis to see how the operator ( ) ( ) 2 2I uP I u uτ τ− − +

   
behaves with respect to the decomposition of the space of functions :f E →



  as the 
direct sum of ImageS  and TKerS . To this end, fix any basis of the subspace TKerS , 
and let R be the ( )2 2m m n× −  matrix whose columns are the vectors of that basis 
(note that S  has rank n). Define M S R =  

 . This will be our change of basis  

matrix. To obtain the inverse of M, form the matrix 
( )
( )

1T T

1T T

S S S

R R R

−

−

 
 
 
  

  

 and observe that  

( )
( )

( ) ( )
( ) ( )

1 1 1T T T T T T

1 1 1T T T T T T 2

0
.

0
n

m n

S S S S S S S S S S R I
S R

IR R R R R R S R R R R

− − −

− − −
−

   
      = =              

         





 

Therefore we have that 
( )
( )

1T T

1
1T T

S S S
M

R R R

−

−

−

 
 =  
  

  

. 

Applying this change of basis, direct computation, applying (7) and (9), yields 

( )
( )

( ) ( )( )
1T T 2 2

2 2
1T T

.
0

S S S I uA u D uTR u T RI uP I u u S R
IR R R

τ
τ τ

−

−

 
 − + − +   − − + =        

  

   





    (11) 

Therefore, the matrix ( ) ( ) 2 2I uP I u uτ τ− − +

   is similar to the matrix  
2 2

0
I uA u D uTR u T R

I
τ − + − +

 
 

   



, so they have the same determinant. Thus, we have  

proven a weighted version of Ihara’s Theorem, which we state as the following. 
Theorem 4. Let G be a graph on n vertices and m edges, and assign an arbitrary pos-

itive weight ( ) 0w x >  assigned to each vertex x. Let P  be the 2 2m m×  weighted 
non-backtracking edge adjacency matrix with edge weight ( )2w v  assigned to edge 
( ),u v  as defined in (4). Let A  be the weighted n n×  adjacency matrix with edge 
weight ( ) ( )w u w v  assigned to each edge. Let τ  be the weighted reversal operator 
defined above, and D  the n n×  diagonal matrix with  
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( ) ( ) ( )2 2
~, v xD x x w x w v= ∑  as defined above. Then we have  

( ) ( )( ) ( )2 2 2det det .I uP I u u I uA u Dτ τ− − + = − + 

   

As a corollary to the decomposition in Equation (11), if we take ( ) 1w x =  for all x, 
then 2 Iτ = , and the usual unweighted Ihara’s Theorem falls out immediately. 

If we take ( ) 1
1x

w x
d

=
−

, then P  becomes the transition probability matrix for 

the non-backtracking walk on directed edges, and ( )
( ) ( )

1,
1 1u v

A u v
d d

=
− −

 . This is  

clearly similar to the matrix ( ) 1D I A−− . So in this case A  is similar to the matrix 
whose entries are the transition probabilities for a single step in a non-backtracking 
random walk. (Note, however, that ( ) 1D I A−−  is not the transition probability matrix 
for a non-backtracking random walk.) 

4. The Mixing Rate of Non-Backtracking Random Walks  
4.1. An Alternate Proof for Regular Graphs  

Applying the results of the previous section to regular graphs yields a different proof of 
the results from [1] on the mixing rate of non-backtracking random walks on regular 
graphs. 

Let G be a regular graph where each vertex has degree d. Then choosing  
( ) 1 1w x d= −  for all x yields gives us that P  is the transition probability matrix 

for the non-backtracking random walk on G. We remark that, from the previous  

section, we have 1
1d

τ τ=
−

 , 
( )

2
2

1
1

I
d

τ =
−

 , 1
1

A A
d

=
−

 , and 
( )21

dD I
d

=
−

 .  

Therefore, the decomposition in (11) becomes  

( ) ( )

( )

2

2

2

*
1 1

~ .
0 1

1

u uI A I
d d

I uP I u
u I

d

τ

 
− + − − − −   

  −
 −   



  

Noting that τ  can be thought of as block diagonal with m blocks of the form  
( )

( )
0 1 1

1 1 0
d

d
 − 
 − 

, then taking determinants, we find that  

( )
( ) ( )

2
2 2 2

2 2det 1 1 det
1 11 1

m m n
u u u uI uP I A I

d dd d

−
     
   − − = − − +     − −− −     

  

and hence  

( )
2

2

1

1det 1 1
1 1 1

m n
n

i

i

uI uP u u
d d d

λ
−

=

    − = − − +     − − −    
∏  

where the product ranges over all the eigenvalues iλ  of the adjacency matrix A for 
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1, ,i n=  . As remarked previously, the left hand side ( )det I uP−   is the characteristic 
polynomial of P  evaluated at 1 u , so from this we obtain the spectrum of P .  

Theorem 5. Let G be a d-regular graph with m edges and n vertices, and let P  be 
the 2 2m m×  transition probability matrix for a non-backtracking random walk as de-
fined above. Then the eigenvalues of P  are  

( )
( ) ( )
2 4 11 , , 1, ,

1 2 1
i i d

i n
d d

λ λ± − −
± =

− −
  

where iλ  ranges over the eigenvalues of the adjacency matrix A, and ( )1 1d± −  each 
have multiplicity m n− .  

From this we obtain the result from [1]. 
Corollary 1. Let G be a non-bipartite, connected d-regular graph on n vertices for 

3d ≥ , and let ρ  and ρ  denote the mixing rates of simple and non-backtracking 
random walk on G, respectively. Let λ  be the second largest eigenvalue of the adja-
cency matrix of G in absolute value. 

If 2 1dλ ≥ − , then  

( )
1.

2 1
d

d
ρ
ρ

≤ ≤
−



 

If 2 1dλ < −  and ( )1od n= , then  

( ) ( )1 .
2 1

d o
d

ρ
ρ
= +

−


 

Proof. We remark that the expression 
( )

( )

2 4 1
2 1

d
d

λ λ+ − −

−
 is precisely the ex-  

pression derived by Alon et al. in [1] for the mixing rate of a non-backtracking random 
walk on a regular graph, and we may proceed with the analysis of the convergence rate 
in the same way they do. The convergence rate is given by the second largest eigenvalue 
of P , which will be obtained setting λ  to be the second largest eigenvalue of A. Let 
µ  be this eigenvalue. 

For 2 1d dλ− ≤ ≤  we have  

( )
( )

( )

2 4 1
.

2 1 2 1
d

d d d
λ λλ λ+ − −

< ≤
− −

 

So 
( )2 1d d
λ λµ≤ ≤
−

. Since 
d
λ  is the second largest eigenvalue of the transition  

probability matrix P for the usual walk, the first case follows. 
For 2 1dλ < − , µ  is complex, and we obtain  

( )
( ) ( )

( )
( )

2 222 2
2 4 1 4 1 1

2 1 2 1 2 1 1
d d

d d d d
λ λ λλµ

 + − − − −   = = + =  − −  −  −   
 

so 
1

1d
µ =

−
. 
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We remark that in this case that 2 1dλ < − , a classic result of Nilli [13] related to  
the Alon-Boppana Theorem implies that we are never too far below this bound. Indeed, 
the result states that if G is d-regular with diameter at least ( )2 1k + , then  

2 1 12 1
1

dd
k

λ − −
≥ − −

+
. With the restriction that ( )1od n= , then the diameter is at  

least ( )( ) 11 1 logdo n−− , and so ( )( )1 1 2 1o dλ > − − , and the second case follows. □ 

4.2. Biregular Graphs  

A graph G is called ( ),c d -biregular if it is bipartite and each vertex in one part of the 
bipartition has degree c, and each vertex of the other part has degree d. In the weighted  

Ihara’s Theorem, we have ( ) ( )( ) ( ) ( )
2 1, , ,

1 1u v

u v u v
d d

τ =
− −

 , so in the case where G is 

( ),c d -biregular, then we have 
( ) ( )

2 1
1 1

I
c d

τ =
− −

 . So since 2τ  is a multiple of the  

identity, as with regular graphs, in the decomposition (11), the 2 2u τ  term can be tak-
en to the other side of the equation. Note that D  is diagonal with  

( ) ( ) ( ) ( ) ( )~

1,
1 1 1 1v u

u v

cD u u
d d c d

= =
− − − −∑  if u has degree c, or 

( ) ( )1 1
d

c d− −
 if  

u has degree d. Then 2D τ−   is diagonal with entry  

( ) ( ) ( ) ( )
1 1

1 1 1 1 1
c

c d c d d
− =

− − − − −
 or 

( ) ( ) ( ) ( )
1 1 .

1 1 1 1 1
d

c d c d c
− =

− − − − −
 Hence  

the decomposition (11) becomes  

( ) ( )

( ) ( )

2

T

2

1 10 0
1 1 *

1 10 0~ 1 1

0 1
1 1

M I
c dI u u

M II uP I u d c

u I
c d

τ

    
    − − − +   
    

− −     − −   
 

  
−   − −  



  

where T

0
0
M

A
M
 

=  
 

 is the adjacency matrix of G. 

Note that τ  is similar to a block diagonal matrix with blocks of the form  
( )

( )
0 1 1

1 1 0
c

d
 − 
 − 

, so taking the determinant above we obtain  

( ) ( )( )

( )( )

2

22
2

T

det 1
1 1

1 10 0
1 11 det

1 11 1 0 0
1 1

m

m n

uI uP
c d

M I
u c dI u u

c d M I
d c

−

 
− −  − − 

    
      − − = − − +     − −           − −    



 

so  
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( ) ( ) ( )

2

2

2
T

1
1 1

det 1 det
1 1

1
1 1

m n
u uI M

d cuI uP
c d u uM I

d c

−

  
+  − −    − = +    − −     −  − −  

  

We will look at the matrix 

2

2
T

1
1 1

1
1 1

u uI M
d c

u uM I
d c

  
+  − −  

   +  − −  

. Suppose the first part in the  

bipartition of G has size r, and the second part has size s, where without loss of general-
ity, r s> . By row reduction, this has the same determinant as the matrix  

( ) ( )

2

2 2
T

2

1
1 1

10 1
1 1 11

1

u uI M
d c

u uI M M
c c du

d

  
+  − −  

   − −  − − −  + − 

 

which is  

( ) ( )

( ) ( )

2 2
T

2

2 2 2 2
T

1 11 det 1
1 1 1 11

1

= 1 det 1 1 .
1 1 1 1 1

r

r s

u u I M M
d c c du

d

u u u uI M M
d c d c d

−

 
    
 + + −   − − − −     + 

− 

     
+ + + −      − − − − −     

 

Now, the above determinant is given by the product of the eigenvalues of the matrix. 
Observe that if λ  is an eigenvalue of the adjacency matrix A, then 2λ  is an eigenva-
lue of TM M . Therefore, in all we have  

( ) ( ) ( )

( ) ( )

2 2

2 22 2

1

det 1 1
1 1 1

1 1
1 1 1 1

m n r s

s
i

i

u uI uP
c d d

uu u
c d c d

λ

− −

=

   
− = − +    − − −  

   
× + + −    − − − −   
∏



 

where the product ranges over the s  largest eigenvalues of A (or in other words, 2
iλ  

ranges of the s eigenvalues of TM M ). Therefore the characteristic polynomial is given 
by  

( ) ( ) ( )

( ) ( )

2 2

2 2
2 2

1

1 1det
1 1 1

1 1 .
1 1 1 1

m n r s

s
i

i

uI P u u
c d d

uu u
c d c d

λ

− −

=

   − = − +    − − −  
   × + + −    − − − −   

∏



 

Thus we can explicitly obtain the eigenvalues of P . 
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Theorem 6. Let G be a ( ),c d -biregular graph, let the part with degree c have size r, 
and the part with degree d have size s, and assume without loss of generality that r s≥ . 
Suppose G has n vertices and m edges. Then the eigenvalues of the non-backtracking 
transition probability matrix P  defined above are  

( ) ( )
1 1,

11 1
with multiplicity m n each i with multiplicity r s each

dc d
± − ± −

−− −
 

as well as the 4 roots of the polynomial  

( ) ( ) ( ) ( ) ( ) ( )
2

4 21 1 1
1 1 1 1 1 1

iu u
c d c d c d

λ 
+ + − +  − − − − − − 

 

for each value of iλ  ranging over the s positive eigenvalues of the adjacency matrix A. 
These roots are  

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

22 21 1 1 1 4 1 1
, 1, , .

2 1 1
i ic d c d c d

i s
c d

λ λ− − − − ± − − − − − − −
± =

− −
   (12) 

We can now give a version of Corollary 1 for ( ),c d -biregular graphs. 
Corollary 2. Let G be a ( ),c d -biregular graph with , 2c d ≥ . Let 2 cdρ λ=  be 

the square of the second largest eigenvalue of the transition probability matrix P for a 
random walk on G, and let 2ρ µ=  be the square of the second largest modulus of an 
eigenvalue of P . Let λ  be the second largest eigenvalue of the adjacency matrix of G. 
Then we have the following cases. 

If 1 1c dλ > − + − , then  

( ) ( ) ( ) ( )
1 11 1.

2 1 1 1 2 1 1 1
cd c d

c d c c d d
ρ
ρ

 − + − − ≤ ≤
 − − − + − − + − 



 

If 1 1c dλ < − + −  and both c and d are ( )1on , then  

( ) ( ) ( )1 .
2 1 1

cd o
c d

ρ
ρ
≤ +

− −


 

Proof. We need to compare the eigenvalues of P  to the eigenvalues of  

1

T

10

1 0

M
cP D A

M
d

−

 
 

= =  
 
  

. Note that for λ  an eigenvalue of A, we have  

T

0
0
M x x

M y y
λ

     
=     

     
 

which implies My xλ=  and TM x yλ= . Then observe  

T T

1 1 110
,

1 1 1 10

x My xM
c c d cc

cdM y M x y
d d d c d

λ
      
      
     = = 
      
             

 

so the eigenvalues of P are cdλ  where λ  ranges over the eigenvalues of A. Note 
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that the largest eigenvalue of A is cd . 
Let µ  equal the expression (12), and consider the following cases. 
If 1 1c d cdλ− + − ≤ ≤ , then µ  is real. Direct computation verifies that, eva-

luating the expression (12) at cdλ =  yields 1 cdµ λ= =  and cdµ λ<  for 
λ  in this range. Therefore, in this case the eigenvalue of P  always has smaller abso-
lute value than the corresponding eigenvalue of P, implying ρ ρ≤ . The lower bound 
follows from (12) ignoring the square root inside. Thus the first case follows. 

If 1 1c dλ < − + − , then µ  is complex, and direct computation shows  

( ) ( )
2 1 ,

1 1c d
µ =

− −
 

so  

( ) ( )( )1 4
1

1 1c d
µ =

− −
 

A version of the Alon-Boppana Theorem exists for ( ),c d -biregular graphs as well, 
proven by Feng and Li in [14] (see also [15]). 

Theorem 7. [14] Let G be a ( ),c d -biregular graph, and let λ  be the second largest 
eigenvalue of the adjacency matrix A of G. Then  

( ) ( ) ( )22 2 1 1 1
1 1

c d
c d

k
λ

− − −
≥ − + − −  

where the diameter of G is greater than ( )2 1k + .  
Observe that certainly the diameter is at least logcd n , so that the condition on the 

degrees and Theorem 7 imply that  

( ) ( ) ( )( )2 2 1 1 1 1 .c d oλ ≥ − − −  

As 
( ) ( )

2 1
1 1c d

µ =
− −

, so this gives the result for the second case.           □ 

5. Conclusions  

We have looked at non-backtracking random walks from the point of view of walking 
along directed edges. For the special cases of regular and biregular graphs, our weighted 
version of Ihara’s Theorem (Theorem 4) has given us the complete spectrum of the 
transition probability matrix for the non-bakctracking walk, allowing for easy compar-
ison between the non-backracking mixing rate, and the mixing rate of the usual ran-
dom walk. Clearly, it would be desirable to extend these reults to more general classes 
of graphs. The difficulty in applying Theorem 4 directly is with the term involving 2τ . 
As seen in Section 3, 2τ  is a 2 2m m×  diagonal matrix with  

( ) ( )( ) ( ) ( )
2 1, , , .

1 1u v

u v u v
d d

τ =
− −

  

In the case of regular and biregular graphs, this expression is constant (we get 
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( )1 1d −  and ( )( )1 1 1c d− −  for the d-regular and ( ),c d -biregular cases respective-
ly), making 2τ  simply a multiple of the identity. This allows the difficulty to be han-
dled relatively easily. Regular and biragular graphs are in fact the only graphs for which 

2τ  is a multiple of the identity, suggesting that these exact techniques will not work as 
nicely on more general classes of graphs. If a cleaner version of Theorem 4 could be 
proven, then, aside from being interesting in its own rite, it could potentially be used to 
extend our results on non-backtracking random walks. 
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