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Abstract 
This paper presents the solution of coupled radiative transfer equation with heat conduction equ-
ation in complex three-dimensional geometries. Due to very different time scales for both physics, 
the radiative problem is considered steady-state but solved at each time iteration of the transient 
conduction problem. The discrete ordinate method along with the decentered streamline-upwind 
Petrov-Galerkin method is developed. Since specular reflection is considered on borders, a very 
accurate algorithm has been developed for calculation of partition ratio coefficients of incident 
solid angles to the several reflected solid angles. The developed algorithms are tested on a para-
boloid-shaped geometry used for example on concentrated solar power technologies. 
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1. Introduction 
The study of the thermal and radiative heat transfer in semitransparent media plays an important role for indus-
trial applications such as thermal insulation [1], photo-thermal therapy [2], glass forming [3] [4], porous media 
[5] and many others [6]. The steady thermal equation is commonly used to give a global and sometimes suffi-
cient solution [7] [8] but, in some applications [2] [3], the knowledge of the evolution of the thermal heat trans-
fer is necessary. 

The coupling takes into account of the steady-state radiative transfer equation (RTE), as well as the transient 
heat conduction equation (HCE). Such a transient coupling is well derived in [9] [10]. The RTE is an inte-
gro-differential equation that contains an advection term and also an angular integral term corresponding to a 
gain by scattering. Deterministic and statistical methods are both popular in the radiative transfer community to 
solve the RTE. For the determinist methods, the most well-known angular discretization methods are the dis-
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crete ordinate methods [9] [11] [12] and the PN  methods [2] [10] [13]. The RTE being a hyperbolic equation, 
the finite volume methods (FVM) are widely used for such kind of equation, for the spatial discretization [14] 
[15]. To add more, Finite Element Methods (FEM) are useful for complex geometries. In FEM, the classical 
Galerkin FEM in its original version, is not suited for the RTE, due to first order differential [16]. In such case, 
the Streamline-Upwind Petrov-Galerkin (SUPG) stabilizes the solution by adding artificial diffusion [11] [17]. 
Other methods have been developed in the past [9] [10] [18]-[23]. For the statistical methods, the Monte Carlo 
[23] [24] and Ray Tracing [25] model the transport of photons using samples and randoms. The statistical me-
thods are easy to handle for simple geometries and consume low memory. Moreover, to calculate an exchange 
between two surfaces/volumes, the methods are fast. However, when the geometries are complex, when the so-
lution is to be found in a whole enclosure, and when the radiative properties are heterogeneous, then the statis-
tical methods are difficult to handle and the CPU time needed to obtain an accurate solution may become ex-
tremely high. 

Due to the second-order diffusion operator, the Galerkin finite element methods are efficient to solve the HCE 
as long as the nonlinear partfrom the blackbody radiance is properly dealt with. Lattice Boltzmann [7] and 
meshless methods [8] may also be good alternative to finite elements for this rather simple physics. Recently, 
Monte Carlo methods have been developed specifically for coupled conduction, convection and radiative trans-
fers [26]. 

The paper is organized as follow. In Section 2, the physical models are presented: in one hand the radiative 
transfer equation along with mixed diffuse/specular boundary conditions, and, in the other hand, the transient 
heat conduction equation along with its specific boundary conditions. The Section 3 deals with the numerical 
methods which are used to solve the coupling RTE-HCE. A discrete ordinate method for angular discretization, 
combined with SUPG, a decentered finite element scheme for space discretization, allow the solution of the 
RTE. For the HCE, Euler implicit scheme combined with a Galerkin finite element method are used to solve the 
energy problem. Section 4 finally deals with numerical results. A three-dimensional paraboloid is considered. 
Numerical results are given for several refractive index coefficients yielding to model on some cases highly re-
flecting materials as well as, on other cases, non-reflecting boundary reflections. According to cases, the tem-
perature evolution inside the medium of concern greatly changes.  

2. Mathematical Models 
Two models are presented: the radiative transfer equation and the heat transfer equation, both with their respec-
tive boundary conditions. The speed of the light being much higher than the conduction time constant, the steady 
solution of the radiative transfer equation is considered for all given conduction time steps. 

The radiative transfer equation is written as follow:  

( ) ( ) ( ) ( ) ( )( )
4

. , , , , d ,s bI I x s I I T t
π

β σ κ′ ′ ′∇ + = Φ +∫s x s s s x s s x                 (1) 

where I is the radiative intensity for a monochromatic wavelength in 2 1 1Wm μm sr− − − , solution of the radiative 
transfer equation which is to be solved for all direction s  in the unit sphere and for all x  into the open 
bounded domain D . sσ  is the scattering coefficient, κ  is the absorption coefficient and sβ σ κ= +  is the 
so-called extinction coefficient in 1m− , Φ  is the scattering phase function and ( )bI T  is the given Planck 
function defined for a given wavelength in vacuum 0λ  [9]: 
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where 16 2
1 1.191 10 WmC −= × , 2

2 1.4388 10 KmC −= × . Moreover, the behavior of the radiative intensity on 
borders is important to be well taken into account in order to simulate a physics close to the reality. For a 
smooth media, specular reflection is considered: 

( ) ( ) ( )( ), , ( . ) ,[ 2 . ] on and such as . 0I I I Dρ= + − ∂ ∀ <x s x s s n x s s n n s s n             (3) 

The first term in the right-hand-side of the equality sign is the Dirichlet contribution which may explain ex-
ternal sources for example. The other term is the gain by specular reflection from the incident direction 

( )2 .−s s n n . ( ). [0,1]ρ ∈s n  is the reflection coefficient based on the Fresnel formulation and the Snell-Des- 
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cartes law. The reflectivity coefficient depends of the scalar product . cos iθ=s n  and the index of refraction𝑛𝑛�. 
The blackbody emissivity ( )bI T  depends explicitly of the temperature ( , )T t x  supposed unknown. The 

temperature is the solution of the following unsteady-conduction equation: 

( ) r, ΔT(t, ) .q ( , )T
T t D t
t

∂
= −∇

∂
x xx                            (4) 

where T
p

kD
cρ

=  is the thermal diffusivity coefficient, k  the thermal conductivity ( )1 1WK m− − , ρ  is the 

density ( )3kgm−  and pc  is the specific heat capacity ( )1 1J kg K− − . The divergence of the radiative flux 

( ) ( )
4

. , , dr bq t I I s
π

κ κ∇ = − ∫x x s  depends on the radiative intensity and the temperature. The temperature at  

0t =  is supposed known ( ) ( )00,T T=x x . Also, Robin boundary conditions areapplied on borders to simulate 
convective transfers with an external fluid at temperature extT :  

( )( , ) ( ) ( , ) onext
T t h T T t D∂

= − ∂
∂

x x x
n

 

where h  is the exchange coefficient. 

3. Mathematical Approximations 
In the general case, the RTE and the HCE cannot be solved analytically. Some numerical tools need to be de-
veloped to get an approximation of the continuous solution. The discretization of the RTE and the HCE are re-
spectively presented. 

To cut off the integral problem into the radiative transfer equation, the unit sphere is discretized into dN  
solid angles with a main direction ms . The radiative transfer equation becomes a system of dN  equations with 

dN  unknowns, noted ( )mI x  each being continuous in space. As the number of directionsis limited, the spe-
cular condition is also discretized accordingly: 

( ) ( ) ( ) ( ),1. , 1, ,dN
m m s j m j j b djI I I I T m Nβ σ ω κ

=
∇ + = Φ + ∀ = …∑ms x x x              (7) 

( ) ( ) ( ) ( ),. 0. ( )m m m j jI I Iρ δ
>

= + ∑
jm s nx x s n n x                       (8) 

where jω  corresponds to the weight associated to the direction js , and ( ),m jδ n  is the partition ratio coeffi-
cient representing the proportion of the radiative intensity jI  which is reflected towards the direction ms , tak-
ing into account of the weight ( ).ρ ms n  according to Fresnel law.  

The Galerkin finite element method being as well known unstable for the radiative transfer equation due to 
the advection term . mI∇s , the streamline-upwind Petrov-Galerkin method uses an additional term to the test 
function v  to throw off the scheme and to get stability. To obtain the weak formulation, the thm  equation of 
the global system is multiplied by the test function .v vγ+ ∇ms , it is then integrated on the full domain D , and  
the Green theorem is finally used to express the boundary conditions. To add stability, 0.3 Dhγ = , with Dh  

depend of the mesh refinement of D  [17]. The variational formulation reads, with ( ),1m s m m mβ κ σ ω= + − Φ : 

( ) ( )
( ) ( ) ( )

( )

. 0

, . 0 . 0

. 0

. [ . ]d 1 . dΓ

. d , . dΓ

. dΓ . d

m m m m mD

j m j s j mj jD
j m

m bD

I I v v I v

I v v I

I v I v v

γ β β γ

ω σ γ ρ δ

γ

>

> <
≠

>

 − ∇ − ∇ + + 

− Φ + ∇ +

= + + ∇

∫ ∫
∑ ∫ ∫

∫ ∫

m

i m

m

m m ms n

m m ms n s n

m ms n

s s x s n

s x s n n vn s

s n s x



 



           (9) 

To cut off the temporal derivative, the first order implicit Euler scheme is used. Moreover, at a given time 
step, the divergence of the flux rq  is calculated at the previous time step to remove the nonlinearity due to the 
blackbody term ( )bI T . The weak formulation of the conduction problem reads: 

1
1 1

ext. d dΓ . d dΓ
N N

N N N
T rD D D D

T Dh T DhD T v T v v q v T v
t k t kδ δ

+
+ +

∂ ∂
+ ∇ ∇ + = −∇ +∫ ∫ ∫ ∫x x        (11) 
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4. Numerical Solution 
The set of the varatiational Formulations (9)-(11) gives us steady-state solutions of radiative intensities along 
with the transient solution of the temperature in the whole domain. The geometry of concern is a paraboloid with 
a height of 4/3m and a diameter of 4m. The equation of the paraboloid surface is given by 2 20.333( )z x y= + . 
The physical properties are the following. The absorption coefficient is 10.4mκ −= , the isotropic scattering 
coefficient is 10.1msσ

−= . Next, the thermal conductivity is 1 11Wm Kk − −= , the density is 32kgmρ −= , the 
heat capacity is 1 15J kg Kpc − −= , and the convective exchange coefficient is 25mh −= . At 0st = , the temper- 
ature is ( )0 300KT =x . A collimated beam is entering to the medium on the full plan surface such as 

( ) 3 2 1 1
0, 10 Wm μm srI − − − −=x s . Solutions are presented below for three values of refractive index. The first case,  

with n = 1, considers the border is transparent, there is no reflection. Another case, with n = 1.8, considers that 
the reflected part is very important. The last case stands in between, with n = 1.4. 

Figure 1 presents the evolutions of the radiative intensity and of temperature at t = 0.5 s along the longitudin-
al axis, and Figure 2 presents the same data in cross-sections. It can be observed that the maximum radiative in-
tensity increases with the refraction index. Hence worth, the temperature inside the medium also greatly in- 

 

 
Figure 1. Evolution of the radiative intensity and of temperature à t = 0.5 s along the longitudinal axis. 

 

 
Figure 2. Top: radiative intensity; bottom: temperature at t = 0.5 s. For each, the first is for n = 1, the 
second is for n = 1.4, the third is for n = 1.8. 
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creases with the refraction index. As an example an increase of the index factor from 1 to 1.4 increases the 
maximum temperature difference from 164 to 220 K. In the same manner, an increase of the index factor from 
1.4 to 1.8 increases the maximum temperature difference from 220 to 551 K. This confirms that the design of 
materials for such systems is highly important. 
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