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Abstract 
In this paper, we shall present the strong laws of large numbers for fuzzy set-valued random va-
riables in the sense of ∞

Hd . The results are based on the result of single-valued random variables 
obtained by Taylor [1] and set-valued random variables obtained by Li Guan [2]. 
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1. Introduction 
With the development of set-valued stochastic theory, it has become a new branch of probability theory. And 
limits theory is one of the most important theories in probability and statistics. Many scholars have done a lot of 
research in this aspect. For example, Artstein and Vitale in [3] had proved the strong law of large numbers for 
independent and identically distributed random variables by embedding theory. Hiai in [4] had extended it to 
separable Banach space. Taylor and Inoue had proved the strong law of large numbers for independent random 
variable in the Banach space in [5]. Many other scholars also had done lots of works in the laws of large num-
bers for set-valued random variables. In [2], Li proved the strong laws of large numbers for set-valued random 
variables in Gα  space in the sense of dH metric. 

As we know, the fuzzy set is an extension of the set. And the concept of fuzzy set-valued random variables is 
a natural generalization of that of set-valued random variables, so it is necessary to discuss convergence theo-
rems of fuzzy set-valued random sequence. The limits of theories for fuzzy set-valued random sequences are al-
so been discussed by many researchers. Colubi et al. [6], Feng [7] and Molchanov [8] proved the strong laws of 
large numbers for fuzzy set-valued random variables; Puri and Ralescu [9], Li and Ogura [10] proved conver-
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gence theorems for fuzzy set-valued martingales. Li and Ogura [11] proved the SLLN of [12] in the sense of 
Hd∞  by using the “sandwich” method. Guan and Li [13] proved the SLLN for weighted sums of fuzzy set-   

valued random variables in the sense of Hd∞  which used the same method. In this paper, what we concerned are 
the convergence theorems of fuzzy set-valued sequence in Gα  space in the sense of Hd∞ . 

The purpose of this paper is to prove the strong laws of large numbers for fuzzy set-valued random variables 
in Gα  space, which is both the extension of the result in [1] for single-valued random sequence and also the 
extension in [2] for set-valued random sequence. 

This paper is organized as follows. In Section 2, we shall briefly introduce some concepts and basic results of 
set-valued and fuzzy set-valued random variables. In Section 3, I shall prove the strong laws of large numbers 
for fuzzy set-valued random variables in Gα  space, which is in the sense of Hausdorff metric Hd∞ . 

2. Preliminaries on Set-Valued Random Variables 
Throughout this paper, we assume that ( ), ,µΩ   is a complete probability space, ( ), ⋅X  is a real separable  
Banach space, ( )XK  is the family of all nonempty closed subsets of X , and ( ) ( )( )b kX XK K  is the family  

of all non-empty bounded closed(compact) subsets of X , and ( )kc XK  is the family of all non-empty compact 
convex subsets of X . 

Let A and B be two nonempty subsets of X  and let λ ∈ , the set of all real numbers. We define addition 
and scalar multiplication by 

{ }: ,A B a b a A b B+ = + ∈ ∈  

{ }:A a a Aλ λ= ∈  

The Hausdorff metric on ( )XK  is defined by 

( ) { }, max inf , infsup supH b B a Aa A b B
d A B a b a b

∈ ∈∈ ∈
= − −  

for ( ),A B∈ XK . For an A in ( )XK , let { }( )0 ,HA d A=K . 
The metric space ( )( ),b HdXK  is complete, and ( )bc XK  is a closed subset of ( )( ),b HdXK  (cf. [14],  

Theorems 1.1.2 and 1.1.3). For more general hyperspaces, more topological properties of hyperspaces, readers 
may refer to the books [15] and [14]. 

For each ( )A∈ XK , define the support function by 

( )* * * *, , , ,sup
a A

s x A x a x
∈

= ∈X  

where *X  is the dual space of X . 
Let *S  denote the unit sphere of *X , ( )*C S  the all continuous functions of *S , and the norm is defined  

as sup .C x
v ∗ ∗∈

=
S

 

The following is the equivalent definition of Hausdorff metric. 
For each ( ), bcA B∈ XK , 

( ) ( ) ( ){ }* * * *, sup , , : .Hd A B s x A s x A x S= − ∈  

A set-valued mapping ( ):F Ω→ K X  is called a set-valued random variable (or a random set, or a multi-  
function) if, for each open subset O of X , ( ) ( ){ }1 :F O F Oω ω− = ∈Ω ∩ ≠∅ ∈ . 

For each set-valued random variable F, the expectation of F, denoted by [ ]E F , is defined by 

[ ] { }d : ,FE F f f Sµ
Ω

= ∈∫  

where df µ
Ω∫  is the usual Bochner integral in [ ]1 ,L Ω X , the family of integrable X -valued random variables,  

and [ ] ( ) ( ) ( ){ }1 ; : , . .FS f L f F a eω ω µ= ∈ Ω ∈X . 



L. M. Shen, L. Guan 
 

 
585 

Let ( )k XF  denote the family of all functions [ ]: 0,1v →X  which satisfy the following conditions: 
1) The level set ( ){ }1 : 1v x v x= ∈ = ≠ ∅X . 
2) Each v is upper semicontinuous, i.e. for each ( ]0,1α ∈ , the α  level set ( ){ }:v x v xα α= ∈ ≥X  is a 

closed subset of X . 
3) The support set ( ){ }0 : 0v cl x v x+ = ∈ >X  is compact. 

A function v in ( )k XF  is called convex if it satisfies 

( )( ) ( ) ( ){ }1 min , ,v x y v x v yλ λ+ − ≥  

for any ( ], , 0,1x y λ∈ ∈X . 
Let ( )kc XF  be the subset of all convex fuzzy sets in ( )k XF . 
It is known that v is convex in the above sense if and only if, for any ( ]0,1α ∈ , the level set vα  is a convex 

subset of X  (cf. Theorem 3.2.1 of [16]). For any ( )kv∈ XF , the closed convex hull ( )kccov∈F X  of v is  
defined by the relation ( )cov covαα

=  for all ( ]0,1α ∈ . 

For any two fuzzy sets 1 2, ,ν ν  define 

( ) ( ) ( ]{ }1 2 1 2sup 0,1 : ,x x α αν ν α ν ν+ = ∈ ∈ +  

for any .x∈X  
Similarly for a fuzzy set ν  and a real number λ , define 

( ) ( ) ( ]{ }sup 0,1 : ,x x αλν α λν= ∈ ∈  

for any .x∈X  
The following two metrics in ( )k XF  which are extensions of the Hausdorff metric dH are often used (cf. [17] 

and [18], or [14]): for ( )1 2, kv v ∈ XF , 

( )
( ]

( )1 2 1 2

0,1
, , ,supH Hd v v d v vα α

α

∞

∈
=  

( ) ( )11 1 2 1 2
0

, , d .H Hd v v d v vα α α= ∫  

Denote ( )0 0: , supHF Kv d v I vαα
∞

>= = , where 0I  is the fuzzy set taking value one at 0 and zero for all  
0x ≠ . The space ( )( ),k Hd∞XF  is a complete metric space (cf. [18], or [14]: Theorem 5.1.6) but not separable 

(cf. [17], or [14]: Remark 5.1.7). 
It is well known that v vα ββ α<

=


, for every ( ]0,1α ∈ . Due to the completeness of ( )( ),k Hd∞XF , every  

Cauchy sequence { }:nv n∈  has a limit v in ( )k XF . 
A fuzzy set-valued random variable (or a fuzzy random set, or a fuzzy random variable in literature) is a map-

ping ( ): kX Ω→ F X , such that ( ) ( )( ){ }:X x X xα ω ω α= ∈ ≥X  is a set-valued random variable for every 
( ]0,1α ∈  (cf. [18] or [14]). 

The expectation of any fuzzy set-valued random variable X, denoted by [ ]E X , is an element in ( )k XF  
such that, for every ( ]0,1α ∈ , 

[ ]( ) [ ],E X E Xαα
=  

where the expectation of right hand is Aumann integral. From the existence theorem (cf. [19]), we can get an 
equivalent definition: for any x∈X , 

( ) ( ) [ ] [ ]{ }sup 0,1 : .E X x x E Xαα= ∈ ∈  

Note that [ ]E X  is always convex when ( ), ,µΩ   is nonatomic. 

3. Main Results 
In this section, we will give the limit theorems for fuzzy set-valued random variables in Gα  space. I will firstly 
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introduce the definition of Gα  space. The following Definition 3.1 and Lemma 3.2 are from Taylor’s book [8], 
which will be used later. 

Definition 3.1. A Banach space X  is said to satisfy the condition Gα  for some ( ]0,1α ∈ . If there exists a 
mapping :G ∗→X X , such that 

1) ( )G x x α= ; 

2) ( ) 1 G x x x α+= ; 

3) ( ) ( )G x G y A x y α− = − , for all ,x y∈X  and some positive constant A. 

Note that Hilbert spaces are 1G  with constant 1A =  and identity mapping G. 
Lemma 3.2. Let X  be a Banach space which satisfies the condition of Gα , { }1 2, , , nV V V  be independent  

random elements in X , such that [ ] 0kE V =  and 1
kE V α+  < +∞   for each 1, 2, ,k n=  . Then 

1 1
1

1

n

n k
k

E V V A E Vα α+ +

=

   + + ≤   ∑  

where A is the positive constant in 3) of definition 3.1. 
In order to obtain the main results, we firstly need to prove Lemma 3.5. The following lemma are from [14] 

(cf. p89, Lemma 3.1.4), which will be used to prove Lemma 3.5. 
Lemma 3.3. Let { }:nC n N∈  be a sequence in ( )k XK . If 

1

1lim , 0,
n

H kn k
d coC C

n→∞ =

  = 
 
∑  

for some ( )kcC∈ XK , then 

1

1lim , 0.
n

H kn k
d C C

n→∞ =

  = 
 
∑  

Lemma 3.4. (cf. [13]) For any ( )kν ∈ XF , there exists a finite 0 10 1Mt t t= < < < = , such that 

( )
1

, , for all 1, , .
k k

H t t
d k Mν ν ε+

−
≤ =   

Now we prove that the result of Lemma 3.3 is also true for fuzzy sets. 
Lemma 3.5. Let { }:n nν ∈  be a sequence in ( )k XF . If 

1

1lim , 0,
n

k
Hn k

d co
n

ν ν∞

→∞ =

  = 
 
∑                                (3.1) 

for some ( )kcν ∈ XF , then 

1

1lim , 0.
n

k
Hn k

d
n

ν ν∞

→∞ =

  = 
 
∑  

Proof. By (3.1), we can have 

1

1lim , 0,
n

k
Hn k

d co
n α αν ν

→∞ =

  = 
 
∑  

and 

1

1lim , 0,
n

k
Hn k

d co
n α αν ν+ +→∞ =

  = 
 
∑  

for ( ]0,1α ∈ . Then by Lemma 3.3, for ( ]0,1α ∈ , we have 
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1

1lim , 0,
n

k
Hn k

d
n α αν ν

→∞ =

  = 
 
∑  

and 

1

1lim , 0.
n

k
Hn k

d
n α αν ν+ +→∞ =

  = 
 
∑  

By Lemma 3.4, take an 0ε > , there exists a finite 0 10 1Mα α α= < < < = , such that 

( )1
, , for all 1, , .

j jHd Mα αν ν ε
− + ≤   

Then for 1j jα α α− < < , 

( )
1 1

1 1 1

1 1 1

1 1

1 1 1, , ,

1 1, , 2 ,

j j j j

j j j j j j

n n n
k k k

H H H
k k k

n n
k k

H H H
k k

d d d
n n n

d d d
n n

α α α α α α

α α α α α α

ν ν ν ν ν ν

ν ν ν ν ν ν

− −

− − −

+ +
= = =

+ + +
= =

     ≤ +     
     

   ≤ + +   
   

∑ ∑ ∑

∑ ∑
 

Consequently, 

( ] 1 11 10,1 1 1 1

1 1 1sup , max , max , 2 .
j j j j

n n n
k k k

H H Hj M j Mk k k
d d d

n n nα α α α α α
α

ν ν ν ν ν ν ε
− −+ +≤ ≤ ≤ ≤∈ = = =

     ≤ + +     
     
∑ ∑ ∑  

Since the first two terms on the right hand converge to 0 in probability one, we have 

( ]0,1 1

1sup , 2 ,lim sup
n

k
H

n k
d

n α α
α

ν ν ε
∈→∞ =

  ≤ 
 
∑  

but ε  is arbitrary and the result follows.                                                        
Theorem 3.6. Let X  be a Banach space which satisfies the condition of Gα , let { }: 1nX n ≥  be indepen-

dent fuzzy set-valued random variables in ( )kF X , such that 0
nE X I  =   for any n. If 

( )0
1

,j

j
E Xφ

∞

=

  < +∞
 ∑ F

 

where ( ) 1
0 t t αφ +=  for 0 ≤ t ≤ 1 and ( )0 t tφ =  for t ≥ 1, then 

1

j

j
X

∞

=
∑  converges with probability 1 in the sense 

of Hd∞ . 
Proof. Define 

{ } { }1 1
, .

j j
j j j j

X X
U X I W X I

≤ >
= =

F F

 

Note that j j jX W U= +  for each j, and both { }: 1jW j ≥  and { }: 1jU j ≥  are independent sequence of  
fuzzy set-valued random variables. When 1jX >

F
, we have j jW X=

F F
, and ( )0

j jX Xφ =
F F

. Then, 

for any ,m n  

( )0 .
m m m

j j j

j n j n j n
E W E W E Xφ

= = =

    ≤ =       
∑ ∑ ∑F F

F

 

And from 0
1

j

j
E Xφ

∞

=

  < ∞ ∑ F
, we know that 

1
: 1

m
j

j
E W m

=

   ≥  
    
∑

F

 is a Cauchy sequence. So, we have 
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1
 converges as .

m
j

j
E W m

=

 
→ ∞ 

  
∑

F

 

Since convergence in the mean implied convergence in probability, Ito and Nisios result in [9] for independent 
random elements (cf. Section 4.5) provides that 

1
 converges in probability 1 .

m
j

j
W

=
∑

F

 

So, for any n, m ≥ 1, m > n, by triangle inequality we have 

1 1 1 1 1

0
1 1 1

0
1

1

, ,

,

,

0, . . as , .

n m n n m
j j j j j

H H
j j j j j n

n n m
j j j

H H
j j j n

m
j

H
j n

m
j

j n

d W W d W W W

d W W d I W

d I W

W a e n m

∞ ∞

= = = = = +

∞ ∞

= = = +

∞

= +

= +

   
= +   

   
   

≤ +   
   
 

=  
 

= → →∞

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑

∑
F

 

It means 
1

: 1
n

j
j

W n
=

 
≥ 

 
∑  is a Cauchy sequence in the sense of Hd∞ . By the completeness of ( )( ),k Hd∞XF , 

we have 
1

n

j
j

W
=
∑  converges almost everywhere in the sense of Hd∞ . 

Next we shall prove that 
1

n
j

j
U

=
∑  converges in the sense of Hd∞ . Firstly, we assume that { }jU  are all convex 

fuzzy set-valued random variables. Then by the equivalent definition of Hausdorff metric, we have 

( ]

( ]
{ }

( ]

1 1

0,1

1

0,1

1

0,1

sup

sup , 0

sup ,sup

m m
j j

j n j n

m
j

H
j n

m
j

j nx S

E U E U

E d U

E s x U

α α

β
β

α
β

β

α

β
β

+ +

∈= =

+

∈ =

+

∗

∗ ∗∈ =∈

   
   =
      

  
=   

   
   =  
   

∑ ∑

∑

∑

F K

 

For any fixed n, m, there exists a sequence kx S∗ ∗∈ , such that 

lim , sup , .
m m

j j
kk x Sj n j n

s x U s x Uβ β
∗ ∗

∗ ∗

→∞ ∈= =

   
=   

   
∑ ∑  

That means there exist a sequence kx S∗ ∗∈ , such that 

( ]

11

0,1
sup lim , .

m m
j j

kkj n j n
E U E s x U

αα

β
β

++

∗

→∞∈= =

       =  
       

∑ ∑
F

 

Then by Cr inequality, dominated convergence theorem and Lemma 3.2, we have 



L. M. Shen, L. Guan 
 

 
589 

( ]

( ]
( )

( ]
( )

( ]
( ) ( ) ( )

11

0,1

1

0,1

1

0,1

0,1

sup lim ,

sup lim ,

lim sup ,

lim sup , , ,

m m
j j

kkj n j n

m
j

kk j n

m
j

kk j n

m
j j j

k k kk j n

E U E s x U

E s x U

E s x U

E s x U E s x U E s x U

αα

β
β

α

β
β

α

β
β

β β β
β

++

∗

→∞∈= =

+

∗

→∞∈ =

+

∗

→∞ ∈ =

∗ ∗ ∗

→∞ ∈ =

    
  =   
      

 
≤  

 

 
≤  

 

    ≤ − +   

∑ ∑

∑

∑

∑

F

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1

1

lim lim , , ,

lim lim , , ,

lim lim , , ,

i i i

i i i

i i i

m
j j j

k k kk i j n

m
j j j

k k kk i j n

m m
j j

k k kk i j n j n

E s x U E s x U E s x U

E s x U E s x U E s x U

E s x U E s x U E s x U

α

α

β β β

α

β β β

β β β

+

+

∗ ∗ ∗

→∞ →∞ =

+

∗ ∗ ∗

→∞ →∞ =

∗ ∗ ∗

→∞ →∞ = =


 
 

    = − +     

    = − +     

 ≤ − + 

∑

∑

∑ ∑ ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1
1

1
1

1

lim lim 2 , , ,

lim lim 2 , , ,

i i

i i i

j

m m
j j j

k k kk i j n j n

m m
j j j

k k kk i j n j n

E s x U E s x U E s x U

A E s x U E s x U E s x U

α

α α
α

β β β

α
α

α
β β β

+

+ +

+ ∗ ∗ ∗

→∞ →∞ = =

+
+

+ ∗ ∗ ∗

→∞ →∞ = =

     

       ≤ − +            

       ≤ − +         

∑ ∑

∑ ∑

( ) ( ) ( )

( ) ( )

1
111 1 1

1 11 1 1

lim lim 2 2 , 2 , ,

lim lim 2 2 , 2 ,

i i i

i i

m m m
j j j

k k kk i j n j n j n

m m m
j j

k kk i j n j n j n

A E s x U A E s x U E s x W

A E s x U A E s x U E

α
αα

α α α
β β β

α α
α α α

β β

+
++

+ + ∗ + ∗ ∗

→∞ →∞ = = =

+ +
+ + ∗ + ∗

→∞ →∞ = = =





       ≤ + +            

   ≤ + +      

∑ ∑ ∑

∑ ∑ ∑ ( )

( ) ( )

( ) ( )
* * * *

1

1
11 2

1
11 2

,

lim lim 2 2 , ,

lim 2 2 sup , sup ,

i

i i

i i

j
k

m m
j j

k kk i j n j n

m m
j j

i j n j nx S x S

s x W

A E s x U E s x W

A E s x U E s x W

α

β

α
α

α α
β β

α
α α

β β

+

∗

+
+

+ + ∗ ∗

→∞ →∞ = =

+
+ + ∗ ∗

→∞ = =∈ ∈

          

      = +          

    ≤ +         

∑ ∑

∑ ∑

( ) ( )

1
11 2

1
11 2

1
1 2

0 0

lim 2 2

2 2

2 2

i i

m m
j j

i j n j n

m m
j j

j n j n

m m
j j

j n j n

A E U E W

A E U E W

A E X E X

α

α
αα α

β β

α
αα α

α
α α φ φ

+

+
++ +

→∞ = =

+
++ +

= =

+

+ +

= =

  
 
  

      = +          

      = +          

      ≤ +      

∑ ∑

∑ ∑

∑ ∑

K K

F F

F F





 

for each n and m. 
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Then, we know 
1

1

m
j

j
E U

α+

=

     
    
∑

F

 is a Cauchy sequence. Hence, { }1
m j
jE U
=

 
  ∑

F
 is a Cauchy sequence. 

Thus by the similar way as above to prove 
1

j

j
W

∞

=
∑  converges with probability 1 in the sense of Hd∞ . We also 

can prove that 

1
convergesj

j
U

∞

=
∑  

with probability 1 in the sense of Hd∞ . In fact, for each n m≤ , 

1 1 1 1 1

1

, ,

0, . .  as , .

n m n n m
j j j j j

H H
j j j j j n

m
j

j n

d U U d U U U

U

a e n m

∞ ∞

= = = = = +

= +

   
= +   

   

≤

→ →∞

∑ ∑ ∑ ∑ ∑

∑
F

 

So, we can prove that 

1
 j

j
X converges

∞

=
∑  

with probability 1 in the sense of Hd∞ . If { }jU  are not convex, we can prove 
1

n
j

j
coU

=
∑  converges with proba-

bility 1 in the sense of Hd∞  as above, and by the Lemma 3.5, we can prove that 
1

n
j

j
U

=
∑  converges with proba-  

bility 1 in the sense of Hd∞ . Then the result was proved.                                            
From Theorem 3.6, we can easily obtain the following corollary. 
Corollary 3.7. Let X  be a separable Banach space which is Gα  for some 0 1α< ≤ . Let { }: 1nX n ≥  be  

a sequence of independent fuzzy set-valued random variables in ( )k XF , such that 0
nE X I  =   for each n. If  

: , 1, 2, ,n nφ + +→ =    are continuous and such that 
( )n t
t

φ
 and 

( )
1

n

t
t

α

φ

+

 are non-decreasing, then for each  

nα
+⊂   the convergence of 

( )
( )1

n
n F

n n n

E Xφ

φ α

∞

=

 
 ∑  

implies that 

1

n

n n

X
α

∞

=
∑  

converges with probability one in the sense of Hd∞ . 
Proof. Let 

{ } { }and .
j j

j j

j j
j j

X X
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That is 
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n n n

XX φ

α φ α
≤ FF                                  (4.1) 

If n
nX α≤

F
, by the non-decreasing property of 

( )
1

n
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t

α

φ

+

, we have 
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1
1

.
n

n
n

n nn

X

X

α
αα

φ αφ

+
+
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That is 

( )
( )

1

1 .
nn

n

n nn

XX
α

α

φ

φ αα

+

+ ≤ FF                                 (4.2) 

Then as the similar proof of Theorem 3.6, we can prove both 
1

j

j
U

∞

=
∑  and 

1

j

j
W

∞

=
∑  converges with probability  

one in the sense of Hd∞ , and the result was obtained.                                               
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