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ABSTRACT 

Frequent item sets mining plays an important role in association rules mining. A variety of algorithms for finding fre-
quent item sets in very large transaction databases have been developed. Although many techniques were proposed for 
maintenance of the discovered rules when new transactions are added, little work is done for maintaining the discov-
ered rules when some transactions are deleted from the database. Updates are fundamental aspect of data management. 
In this paper, a decremental association rules mining algorithm is present for updating the discovered association rules 
when some transactions are removed from the original data set. Extensive experiments were conducted to evaluate the 
performance of the proposed algorithm. The results show that the proposed algorithm is efficient and outperforms other 
well-known algorithms. 
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1. Introduction 

Association rules mining is a data mining technique 
which discovers strong associations or correlation rela-
tionships among data [1]. Recently, it has attracted much 
attention in data mining research because of its wide ap-
plicability in many areas, including decision support, 
market strategy and financial forecast. An association 
rule is a relation between items in a set of transactions. 
This rule must have two measures to express its statisti-
cal significance: the support and the confidence [2]. 

There are many mining algorithms to find out associa-
tion rules in large databases: the Apriori and its varia-
tions, Tree-Projection algorithm, FP-growth and others 
[3-5]. The Apriori algorithm is the first successful algo-
rithm for mining association rules. The main idea of Ap-
riori-based algorithms is to run number of iterations. In 
each iteration, a set of candidate itemsets is generated 
then the database is scanned to count the number of 
transactions that contain each candidate set. The candi-
dates with support counts greater than or equal to the mi- 
nimum support count are the frequent itemsets. These 
mining algorithms differ in the techniques used to create 
the candidate sets. The smaller the number of candidate 
sets is, the faster the algorithm would be. 

The Apriori-based algorithms belong to a generate- 
and-test paradigm. They compute frequent itemsets by 
generating candidates and checking their frequencies a- 

gainst the transaction database. Another paradigm is 
based on a test-only approach. It does not generate can-
didates and only tests for frequency. The FP-growth al-
gorithm belongs to this paradigm. It uses a tree structure 
to represent all the transactions of the database. The fre-
quent itemsets are generated with only two passes over 
the database and without any candidate generation proc-
ess [6]. 

Due to advances in information technology, a large 
amount of data could be collected easily. Databases may 
be frequently or occasionally updated. Such updates may 
change the characteristic of the database and hence in-
validate the existing discovered rules (some of the rules 
may still be valid and new rules may appear). A brute 
force approach to solve the update problem is to re- mine 
the entire updated database to find the new association 
rules. However, this approach is not efficient because it 
ignores the previous computation that has been per-
formed. The present approach to the update problem is to 
use incremental and decremental mining algorithms. In-
cremental mining refers to mining the database when 
new transactions are added to it while decremental min-
ing refers to mining the database when some obsolete 
transactions are deleted from it [7,8]. The main purpose 
of these mining algorithms is to update the previously 
discovered rules by benefiting from the previously dis-
covered information without repeating all the work done 
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previously. Much effort has been devoted to the problem 
of incremental mining and several algorithms have been 
already proposed to update the association rules after 
adding new transactions but decremental mining is not as 
fortunate. 

In this paper, a decremental updating algorithm called 
Decremental Association Rules Mining algorithm (DARM) 
has been introduced which aims to store and maintain the 
itemsets that are not frequent at present but may be fre-
quent after updating the database. Therefore the process-
ing cost of the updated database can be reduced. 

The rest of the paper is organized as follows. In the 
next section, some preliminaries in association rules 
mining are illustrated. Section 3 surveys the related work. 
In Section 4, the DARM algorithm is presented. Section 
5 shows the experimental results. Finally, conclusions are 
presented in Section 6. 

2. Preliminaries 

Let I = {i1, i2, , im} be a set of items and DB be a 
transaction database, where each transaction T is a set of 
items such that T  I. For an itemset A  I, a transaction T 
contains A if and only if A  T. An association rule is 
defined as an implication of the form A  B, where A  I, 
B  I and A  B =. The association rule A  B has 
support s in DB if s is the percentage of transactions in DB 
contains A  B. The association rule A  B holds in DB 
with confidence c if c is the percentage of transactions in 
DB that contain A also contain B. The problem of mining 
association rules is to extract all the association rules 
whose support and confidence are not less than given 
threshold values called min_sup and min_conf. The asso-
ciation rules that satisfy both the minimum support thre-
shold and minimum confidence threshold are called 
strong rules to distinguish them from the weak ones. The 
support of an itemset A is the percentage of transactions in 
DB that contain A. An itemset A is frequent if its support is 
not less than a minimum support threshold min_sup [9- 
12]. 

Let L be the set of frequent itemsets in the database DB, 
D be the number of transactions in DB, s be the minimum 
support and X.support be the support count for an itemset 
X which is the number of transactions in DB containing X. 
Assume that for each X  L, X.support is available. After 
some updates, a set of old transactions db (decrement 
database) is deleted from DB, and d is the number of 
transactions in db. Using the same minimum support s, an 
itemset X is frequent in the updated database (DB – db) if 
the support of X in (DB – db) is not less than or equal to s, 
i.e., X.support  s  (D – d) [9,11]. Therefore, the problem 
of updating association rules can be defined as finding the 
set L` of frequent itemsets in DB – db. 

3. Related Work 

In the literature, the majority of the research in updating 
the discovered association rules is focused on the incre-
mental mining. This is due to updating databases by 
adding new transactions has many applications such as 
web log records, stock market data, grocery sales data, 
transactions in electronic commerce, and daily weather/ 
traffic records, to name a few [9]. Several incremental 
mining algorithms are proposed such as Fast UPdate al-
gorithm (FUP) [10], The Update Large Itemsets algo-
rithm (ULI) [13], Negative Border with Partitioning 
(NBP) [2], Update with Early Pruning algorithm (UWEP) 
[11], New Fast UPdate algorithm (NFUP) [14] and 
Granular Computing Based Incremental Frequent Itemset 
Mining in distorted databases (GrC-IFIM) [15]. Unfor-
tunately, little work has addressed the decremental min-
ing although deletion is one of the most frequently op-
erations in many database systems. In many applications, 
the user may want to remove the out-of-date data from 
the database. 

Cheung et al. proposed the first decremental mining 
algorithm called FUP2 [12]. In fact, it is an extension of 
the incremental algorithm FUP to update the discovered 
association rules when transactions are deleted from the 
database. Mainly, the framework of FUP2 is similar to 
that of Apriori. It contains number of iterations. At each 
iteration, the frequent itemsets of the same size are found. 
However, FUP2 has two main problems; it generates 
large number of candidate itemsets and it requires multi-
ple scans of the database. 

Lee et al. proposed a Sliding-Window Filtering tech-
nique (SWF) for updating the discovered association 
rules [9]. The SWF technique partitions the transaction 
database into a set of partitions and employs the mini-
mum support threshold in each partition to filter unnec-
essary candidate itemsets. The algorithm uses a scan re-
duction technique in which it generates all the candidate 
itemsets of all sizes from the candidate 2-itemsets to re-
duce the number of database scans. However, this leads 
to generating larger number of candidates. In fact, SWF 
does not utilize previously discovered frequent itemsets 
which are used in the other algorithms to improve incre-
mental or decremental mining. Since the SWF is based 
on partitioning the database, it requires the data to be 
uniformly distributed to work well. Chang et al. extended 
the SWF algorithm by incorporating previously discov-
ered information and proposed two algorithms to en-
hance the performance for incremental mining [16]. How- 
ever, they are only suitable for cases in which a whole 
partition of data is deleted from a database at a time. In 
practice, situations requiring the deletion of continuous 
blocks of data from databases are not very common [17]. 
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Lian et al., [18] addressed the relationships between 
old and new maximal frequent itemsets and proposed an 
algorithm called IMFI, which is based on these relation-
ships to reuse previously discovered knowledge. The al- 
gorithm follows a top-down mechanism rather than tradi-
tional bottom-up methods to produce fewer candidates. 
Moreover, they integrated SG-tree into IMFI to improve 
the counting efficiency. 

Zhang et al. proposed the Decrement Updating Algo-
rithm (DUA) [7,8]. The algorithm tries to find those 
itemsets that are most likely to change their frequentness 
in the remaining database by: 1) finding the frequent 
itemsets of the decrement database using a threshold 
value less than the minimum support. 2) finding the fre-
quent itemsets of a random set of transactions from the 
original database. One important drawback of this algo-
rithm is that its accuracy drops when a lower minimum 
support threshold is used because it can not find all the 
frequent itemsets in the updated database. Another draw- 
back is that the DUA algorithm is efficient as long as the 
size of the decrement database is less than 30% of the 
total data in the original database [7]. 

Also, Zhang et al. proposed another algorithm called 
Efficient Dynamic Database Updating Algorithm (EDUA) 
[17]. It is similar to the SWF in adopting the scan reduc-
tion technique. The EDUA consists of two procedures: 
the pre-mining procedure which uses the scan reduction 
technique to calculate all the frequent itemsets of the 
original database and store all the candidate 2-itemsets 
for the following procedure; the dynamic maintaining 
procedure in which all the candidate 2-itemsets in the 
deleted database are calculated with their support counts 
and subtracted from their corresponding 2-itemsets in the 
original database then the scan reduction technique is 
used again to generate all the candidates of all sizes. Fi-
nally, the new candidate itemsets are checked against the 
updated database in order to discover the new frequent 
itemsets. The main advantage of the EDUA over the 
SWF is that it can deal with the case in which transac-
tions are deleted from any part of the database, while the 
SWF can only function when the whole first partition is 
deleted from the database. Like SWF, EDUA does not 
benefit from the previously discovered frequent itemsets. 
A pruning technique was also proposed in [17] to en-
hance the performance of the EDUA that tries to use 
heuristic knowledge of the prior mining results. 

Mengling Feng et al., [19] addressed the maintenance 
of the frequent patterns space of both incremental and 
decremental updates. The author’s conducted an in-depth 
investigation on how the frequent pattern space evolves 
under both incremental and decremental updates. Based 
on the evolution analysis, a new data structure, Genera-
tor-Enumeration Tree (GE-tree), is developed to facilitate 

the maintenance of the frequent pattern space. With the 
concept of GE-tree, Mengling Feng et al., proposed two 
novel algorithms, Pattern Space Maintainer+ (PSM+) 
and Pattern Space Maintainer− (PSM−), for the incre-
mental and decremental maintenance of frequent pat-
terns. 

4. The DARM Algorithm 

The main idea of the proposed algorithm (DARM) is to 
store and maintain the itemsets that are not frequent at 
present but may be frequent after deleting a set of trans-
actions. We will call these itemsets the semi-frequent 
itemsets and denote them by SF. In practice, the decre-
mental algorithm is not invoked every time a transaction is 
deleted from the database. However, it is invoked after a 
non-trivial number of transactions are deleted. Assume 
that the algorithm will be invoked every time d transac-
tions are deleted from the database, so an itemset X is 
semi-frequent if it satisfies the following condition: 

s  D > X.support  s  (D – d) 

This means that the semi-frequent itemsets are those 
itemsets that may be frequent after d transactions are 
deleted from the database where their support counts are 
less than the minimum support count and greater than or 
equal to s  (D – d). 

When deleting a set of transactions from a database, all 
the itemsets in the updated database can be categorized 
into four classes as illustrated in Table 1. The itemsets in 
classes A and D need some processing because they may 
be frequent or infrequent in the updated database. How-
ever, the itemsets in classes B and C are straight forward. 
If an itemset is frequent in the original database and in-
frequent in the decrement database, it will be frequent in 
the updated database. Also, if an itemset is infrequent in 
the original database and frequent in the decrement data-
base, it will be infrequent in the updated database. 

In order to find the new frequent itemsets of the up-
dated database, the DARM algorithm must handle all the 
itemsets in the four classes. The itemsets of class A, B 
and C can be obtained easily by using the frequent item-
sets of the original and the decrement databases. How-  

Table 1. The four classes for an itemset in the updated data- 
base. 

Class
Original Database 

(DB) 
Decrement Database 

(db) 
Updated Database

(DB – db) 

A Frequent Frequent Frequent or Infrequent

B Frequent Infrequent Frequent 

C Infrequent Frequent Infrequent 

D Infrequent Infrequent Frequent or Infrequent
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ever, the itemsets of class D need further consideration 
that is why the semi-frequent itemsets are stored. Table 2 
shows the definitions of symbols used in the pseudo-code 
of the DARM algorithm. The actual steps of the DARM 
algorithm are shown in Figure 1. The first step of the 
algorithm is to find the frequent itemsets of the decre-
ment database with their support counts. Then, it sub-
tracts the support counts of the frequent itemsets of the 
decrement database from their corresponding frequent 
itemsets of the original database. The new support counts 
of these itemsets are then compared to the minimum 
support to determine which itemsets will be still frequent 
and which will not. By this way, the algorithm handles 
those itemsets falling in class A. 

To determine the itemsets of class D, the algorithm 
eliminates each frequent itemset in the decrement data-
base from SF. After this elimination, the remaining item- 
sets in SF are the infrequent itemsets in both the original 
and the decrement database (class D). These itemsets 
require a scan of the decrement database to update their 
support counts then the algorithm verifies them against 
the minimum support. The rest of the itemsets that are 
frequent in the original database and they do not occur in 
the frequent itemsets of the decrement database will be 
frequent in the updated database and do not need to be 
verified (class B).  

However, the DARM algorithm needs a scan to the 
decrement database for these itemsets to update their 
support counts for further runs. Hence, the algorithm 
scans the decrement database only once to handle all the 
itemsets in class B and class D. Also, the rest of frequent 
itemsets of decrement database that do not have a corre-
sponding frequent itemsets in the original database will 
be infrequent so that they do not need any processing at 
all (class C). 

For the subsequent runs of the algorithm, the semi-  

Table 2. The list of symbols used in the DARM Algorithm. 

Symbol Meaning 

DB The original database 
D The number of transactions in DB 
db The decrement database 
d The number of transactions in db 

DB – db The updated database 
D The number of transactions in the updated database
S The minimum support 

SF The set of semi-frequent itemsets 
L The set of frequent itemsets in DB 

Ldec The set of frequent itemsets in db 
L The set of frequent itemsets in DB – db 
X An itemset 

X.support 
The number of transactions containing X in the data-

base 
X.supportDB The number of transactions containing X in DB 
X.supportdb The number of transactions containing X in db 

X.supportDB–db The number of transactions containing X in DB – db

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The DARM algorithm. 

123 
 
 
 
 
 
 
 

Figure 2. The update procedure of SF. 

frequent itemsets need to be updated. Figure 2 shows the 
Update_SF procedure that maintains the itemsets in SF. 
First, the procedure computes the negative border of new 
frequent itemsets of the updated database. Then, it com-
putes the support count of each itemset in the negative 
border in the updated database and checks if the itemset 
satisfies the condition of semi-frequent itemsets. 

Example 4.1 Consider the database DB presented in 
Figure 3(a) with ten transactions indexed from T1 to 
T10. All the frequent and semi-frequent itemsets of DB 
are known in advance and shown in Figure 3(b) with a 

Inputs: 
     DB, db, L, SF and s 
 
Output: 
     L (L is initially set to ) and SF 
 
Algorithm: 

 
1- Find the set Ldec of frequent itemsets in the decrement data-
base db. 
 
2- For all X  L 
      If X  Ldec then 
        X.supportDB-db = X.supportDB – X.supportdb 
        If X.supportDB-db   s  (D – d) then 

              L = L  {X} 
               Remove X from L and Ldec 
 
3- For all X  SF 
         If X  Ldec  then 
               Remove X from SF   
 
4- Scan db and compute X.supportdb for all X  L  SF 
 
5- For all X  L  SF 

 X.supportDB–db = X.supportDB – X.supportdb 
 If X   L then 

L = L  {X} 
  Else 

If X.supportDB–db   s  (D – d) then 
L = L  {X} 

 
6- Update_SF (L)   //a procedure to maintain the itemsets in 
SF 
 
7- Return L 

Function Update_SF (L) 
 
    1- Compute Negative border of L      NBd (L) 
    2- Scan DB – db and compute X.supportDB-db for all X  NBd 
(L)   
    3- For X  NBd (L) 
 If   X.supportDB-db <s  D   &&   X.supportDB-db  s  D 

SF = SF  {X} 
End Function 
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minimum support 30%. After a period of time, four 
transactions are deleted from DB: T1, T7, T9 and T10. 
To find the new frequent itemsets of the updated data-
base, the algorithm computes the frequent itemsets of the 
decrement database and the result is shown in Ldec in 
Figure 3(b). 

After that, it begins to handle the itemsets of class A  
 

Original database (DB)  Decrement database (db) 
TID Transaction  TID Transaction 
T1 A  B  E  F  T1 A  B  E  F 
T2 B  C  F  T7 C  E  F 
T3 A  C  E  F  T9 B  C  E  F 
T4 B  D  E  T10 B  F 
T5 A  B  C  E    
T6 A  B  D  E    
T7 C  E  F    
T8 A  B  F    
T9 B  C  E  F    

T10 B  F    

(a) 

L  Ldec  SF 
Itemset Count  Itemset Count  Itemset Count

A 5  B 3  D 2 
B 8  C 2  AC 2 
C 5  E 3  ABF 2 
E 7  F 4  AEF 2 
F 7  BE 2  BCE 2 

AB 4  BF 3  BCF 2 
AE 4  CE 2  BEF 2 
AF 3  CF 2    
BC 3  EF 3    
BE 5  BEF 2    
BF 5  CEF 2    
CE 4       
CF 4       
EF 4       

ABE 3       
CEF 3       

(b) 

Class A  L 
Itemset Count  Itemset Count

B 5  B 5 
C 3  C 3 
E 4  E 4 
F 3  F 3 

BE 3  BE 3 
BF 2  BF 2 
CE 2  CE 2 
CF 2  CF 2 
EF 1    

CEF 1    

(c) 

Class B  Class C  Class D 
Itemset Count  Itemset Count  Itemset Count

A 5  BEF 2  D 2 
AB 4     AC 2 
AE 4     ABF 2 
AF 3     AEF 2 
BC 3     BCE 2 

ABE 3     BCF 2 

(d) 

Class B  Class D  L 
Itemset Count  Itemset Count  Itemset Count

A 4  D 2  A 4 
AB 3  AC 2  B 5 
AE 3  ABF 1  C 3 
AF 2  AEF 1  D 2 
BC 2  BCE 1  E 4 

ABE 2  BCF 1  F 3 
      AB 3 
      AC 2 
      AE 3 
      AF 2 
      BC 2 
      BE 3 
      BF 2 
      CE 2 
      CF 2 
      ABE 2 

(e) 

Figure 3. An illustrative example. 

which are the common itemsets in L and Ldec. All the 
support counts of the frequent itemsets in Ldec are sub-
tracted from their corresponding frequent itemsets in L 
(the highlighted itemsets in Figure 3(b)) and these item-
sets are removed from the two lists. The results of the 
subtraction are shown in class A in Figure 3(c). The 
itemsets in class A for which the support count is not less 
than (6 × 30% = 1.8 ≈ 2) are moved to L' as shown in 
Figure 3(c). Note that the itemsets EF and CEF have not 
enough support count so they are not moved to L'. The 
remaining itemsets in L and Ldec are shown in class B and 
class C in Figure 3(d) respectively. By default, all the 
itemsets in class B will be frequent in the updated data-
base and there is no need to be verified but their support 
counts need to be updated. Only their support counts in 
DB are known so they need a db scan to determine their 
support counts. The DARM algorithm postpones this 
scan until it determines the itemsets of class D to handle 
both of them in one scan. Using the itemsets in SF and in 
Ldec, the algorithm can determine the itemsets of class D 
by subtracting the itemsets of Ldec from SF. Here, the 
itemset BEF marked by an oval in Figure 3(b) is elimi-
nated from SF because it appears in Ldec and all the re-
maining itemsets in SF will belong to class D as shown 
in Figure 3(d). Then, the algorithm scans db to update 
the support counts of the itemsets of class B and D. Fig-
ure 3(e) shows the itemsets of class B and D with their 
new support counts in the updated database. All the 
itemsets of class B are then moved to L' without any 
verification while the itemsets of class D are verified 
against the minimum support count of the updated data-
base. The itemsets D and AC are the only itemsets from 
class D that are moved to L'. 

5. Experimental Results 

Several experiments are designed to assess the perform-
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ance of the proposed algorithms and compare it with the 
performance of two other decremental algorithms: DUA 
and EDUA. These two algorithms are chosen because 
they are the most recent algorithms for updating associa-
tion rules when some transactions are deleted from the 
database. The comparisons are based on the following 
metrics: run time, minimum support, original database 
size and decrement database size. 

In this section, the experiments of the DARM algo-
rithm are reported. All the programs are implemented 
using C# and run on a PC with 1.8 GHz Intel Core 2 Duo 
processor and 1GB memory running on Windows XP 
Professional. In the experiments of data mining, it is 
common to use the notation [Tx-Iy-Dm-dn] to represent 
a dataset in which x is the mean size of a transaction, y is 
the mean size of maximal frequent itemsets, m is the 
number of transactions in the original database (in thou-
sands) and n is the number of transactions in the decre-
ment database (in thousands).  

The experiments carried out performed using the syn-
thetic data used in the experimental results of the previ-
ously mining algorithms introduced in [7-9,15,16]. 
Readers are referred to these papers for a detailed de-
scription. In general, several different transaction data-
bases are generated from a set of potentially frequent 
itemsets using the parameters mentioned in the notion 
[Tx-Iy-Dm-dn]. These transactions mimic the transac-
tions in the retailing environment. 

The first experiment measures the relative run time of 
the DARM, DUA and EDUA algorithms. The three al-
gorithms are tested against different datasets with mini- 
mum support thresholds varying from 0.1% to 1%. The 
results are shown in Figures 4-6 with original database 
sizes 50 k, 100 k and 150 k respectively. The size of the 
decrement database is equal to 20% of the transactions in 
the original database. It is clear from these figures that 
the DARM algorithm reduces the run time required to  

 

Figure 4. The relative performance of the decremental al-
gorithms and the DARM Algorithm. 

 

Figure 5. The relative performance of the decremental al-
gorithms and the DARM Algorithm. 

 

Figure 6. The relative performance of the decremental al-
gorithms and the DARM Algorithm. 

perform the update operation than other two decremental 
algorithms. 

By examining these figures more carefully, it can be 
noticed that at low support thresholds, the performance 
difference among the three algorithms is significant while 
it decreases as the support thresholds increase. This is 
because at low support thresholds, large numbers of fre-
quent itemsets are produced hence the performance dif-
ferences among different algorithms are prominent. How- 
ever at high support thresholds, there is a restricted num- 
ber of frequent itemsets so the run time curves of differ-
ent algorithms approach each other in this region. Also, if 
we examine these figures more carefully, we can notice 
sharper differences in the run times of EDUA at high 
support thresholds than other two algorithms. To under-
stand this phenomenon, recall that EDUA generates the 
entire candidate itemsets of all sizes from the candidate 
2-itemsets to reduce the number of database scans. How- 
ever, the DUA and the DARM algorithm are based on 
handling the frequent itemsets. 

Figure 7 shows the average speedup ratio achieved by 



DARM: Decremental Association Rules Mining 

Copyright © 2011 SciRes.                                                                               JILSA 

187

the DARM algorithm with respect to DUA and EDUA 
algorithms. It can be seen that the average speed is 1.14 
with the DUA and 1.62 with the EDUA. 

In the second experiment, the frequent itemsets gener-
ated by each algorithm are verified to determine its ac-
curacy. The accuracy is defined as the ratio of the number 
of frequent itemsets found by the algorithm against the 
number of frequent itemsets found by running Apriori on 
the updated database [7,8]. Table 3 shows the number of 
frequent itemsets generated by each algorithm. The ac-
curacy of the DUA algorithm is 89.77%, 99.69% and 
95.95% for the datasets 50 k, 100 k and 150 k respectively 
while the accuracy of the DARM algorithm and EDUA is 
equal to 100% for all datasets. The reason for the accuracy 
difference among these algorithms is in the way they 
handle the itemsets of class D. The DUA tries to find the 
class D itemsets by reducing the minimum support by 
which the mining is performed on the decrement database 
and by finding the frequent itemsets of a random set of 
transactions from the original database. However, this 
does not guarantee to find all itemsets of class D. For the 
EDUA, it depends on storing all candidate 2-itemsets and 
generating all the candidates of all sizes from them so no 
frequent itemset will be missed. For the DARM algorithm, 
only the semi-frequent itemsets are stored and this guar-
antees finding all frequent itemsets without any miss. 

The next experiment is performed to find out how the 
size of decrement database affects the performance of the 
DARM algorithm. In this experiment, the size of original 
database is fixed while the size of the decrement database 
is changing. As shown in Figure 8, the results are very 

 

Figure 7. The speedup ratio. 

Table 3. Accuracy comparsion of the decremental algori- 
thms. 

Number of frequent itemsets generated 
Datasets 

DUA EDUA DARM Apriori 
T10-I4-D50-d10 13,404 14,931 14,931 14,931 

T10-I4-D100-d20 27,377 27,461 27,461 27,461 
T10-I4-D150-d30 22,470 23,419 23,419 23,419 

Accuracy 
89.77% to 

99.69% 
100% 100%  

encouraging. It shows that the DARM algorithm not only 
can work with small decrement, but also can work very 
well in case of large decrement. In general, the larger the 
decrement is, the longer it would take to do the update. 

Another similar experiment is done to know the influ-
ence of changing the size of the original database. Figure 
9 shows the scalability of the DARM algorithm with re-
spect to changing the size of the original database. It 
shows that the proposed algorithm is adaptive to size 
increase and can be applied to very large databases. 

The last experiment evaluates the reduction in the total 
number of candidates generated by the DARM algorithm. 
In this experiment, the number of candidates generated 
by the DARM algorithm is counted and compared with 
the number of candidates generated by the other algo-
rithms. The results are shown in Table 4. Note the sig-
nificant reduction in total number of candidate itemsets 
compared to the other algorithms. The DARM algorithm 
achieves a reduction rate equal to 34.98% relative to the 
DUA and 47.73% relative to the EDUA. Figure 10 shows 
the candidate reduction rates of the DARM algorithm 
with respect to the DUA and EDUA algorithms. 

6. Conclusions 

The maintenance of the frequent pattern is a challenging 
task in data mining and machine learning. In this paper, a  

 

Figure 8. Scalability with the number of transactions in db. 

 

Figure 9. Scalability with the number of transactions in db. 
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Table 4. Comparing the number of candidates. 

Number of candidates generated 
Itemsets 

DUA EDUA DARM 
1 2,427 2,000 1,611 
2 33,459 37,801 20,530 
3 24,433 30,852 15,877 
4 19,147 23,341 12,667 
5 11,431 15,203 7,890 
6 5,335 9,612 3,838 
7 1,965 2,757 1,409 
8 543 1,002 377 
9 100 359 67 

10 9 36 6 
Total 98,849 122,963 64,272 

 

Figure 10. Candidate reduction. 

decremental association rules mining algorithm (DARM) 
is presented. The proposed algorithm studied the prob-
lems of pattern maintenance when some transactions are 
removed from a large database. 

The main idea of the DARM algorithm is to store and 
maintain the itemsets that are not frequent at present but 
may be frequent after deleting a set of transactions. There- 
fore the processing cost of the original database can be 
reduced. The DARM algorithm does not require rescan-
ning the original database and can determine the new 
frequent itemsets by scanning the decrement database 
only. Experiments have shown that the DARM algorithm 
not only attain highly accurate mining results, but also 
run significant faster than existing algorithms for updat-
ing the frequent itemsets. The DARM algorithm outper-
forms the DUA in terms of both run time and in the ac-
curacy. 
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