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Abstract 
Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional con-
ductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first con-
ductance step in GaAs-based quantum point contacts (QPCs). Despite a tremendous amount of re-
search on this anomalous feature, its origin remains still unclear. Here, a unique model of this 
anomaly is proposed relying on fundamental principles of quantum mechanics. It is noticed that 
just after opening a quasi-1D conducting channel in the QPC a single electron travels the channel 
at a time, and such electron can be—in principle—observed. The act of observation destroys su-
perposition of spin states, in which the electron otherwise exists, and this suppresses their quan-
tum interference. It is shown that then the QPC-conductance is reduced by a factor of 0.74. “Visi-
bility” of electron is enhanced if the electron spends some time in the channel due to resonant 
transmission. Electron’s resonance can also explain an unusual temperature behavior of the ano-
maly as well as its recently discovered feature: oscillatory modulation as a function of the channel 
length and electrostatic potential. A recipe for experimental verification of the model is given. 
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1. Introduction 
Short, narrow constrictions connecting two reservoirs of two-dimensional electron gas (2DEG) in semiconductor 
heterostructures, called quantum point contacts, exhibit at low temperature a quantization of the ballistic con-
ductance in units of G0 = 2e2/h (e and h are the elementary charge and the Planck’s constant, respectively, and 
the factor 2 arises from spin degeneracy). The constriction behaves like a quasi-one-dimensional conducting 
channel. The channel is defined by a voltage applied to a pair of finger-like gates deposited on the top of hetero-
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structure. Upon widening the channel by tuning the gate voltage, one observes a staircase increase in the con-
ductance, displaying distinct plateaus at integer multiples of G0 [1]. The plateaus arise from almost perfect elec-
tron transmission through 1D-energy subbands of the channel, each contributing a quantity G0 to the conduc-
tance, whose number increases with the channel width.  

Surprisingly, in clean channels of GaAs an additional plateau-like feature at about 0.7G0 appears, which is 
commonly known as the 0.7 anomaly [2]-[4]. Upon applying a magnetic field parallel to the channel, the 0.7 
feature evolves into the spin-split plateau at e2/h, which reveals its relation to the electron spin. In contrast to 
other plateaus, the 0.7 feature becomes less pronounced at lower temperatures, evolving from a distinct “plateau” at 
4.2 K to a vague shoulder at 20 mK. At sufficiently low temperature the 0.7 feature is accompanied by the so- 
called zero bias anomaly (ZBA): appearing a maximum in nonlinear conductance while the bias voltage is swept 
through zero. That ZBA is characteristic of the Kondo effect in quantum dots.  

Recently, structures supplied with three pairs of finger-like gates were studied, which allowed tuning the QPC 
length. It has been found in those structures that the 0.7 feature exhibits oscillatory modulation as a function of 
the channel length [5]. Similar modulation has been observed while scanning negatively charged tip above the 
constriction surface [6]. It has been recently demonstrated that the 0.7 anomaly is not disturbed by the presence 
of defects localized in close proximity of the constriction [7]. Statistical study performed on 36 constriction units 
fabricated on the same wafer, and processed in the same way, have found a quantity 0.75G0 as the mean value of 
the conductance anomaly [8]. The 0.7 anomaly is also observed in p-type QPCs [9]. 

It is commonly believed that the anomaly is a many-body effect, and accordingly numerous explanations have 
been proposed [2] [5] [6] [10] [11]. Currently, Kondo-like effects are mostly invoked for those explanations [5] 
[12] [13]. However, more and more studies imply that the Kondo effect is not linked to 0.7 feature [14]-[17]. So, 
two decades after the discovery, origin of this anomaly is still extensively debated. In this paper a unique single- 
electron model of the anomaly is proposed, relying on quantum-mechanical superposition and interference of 
spin states. The merit of this model is its simplicity and generality. It is the only model which predicts a concrete 
value for the fraction of G0 characteristic of the anomaly and can explain all its main features.  

2. Superposition and Interference of the Electron-Spin States 
Any spin state of the electron, iχ , can be represented as a linear combination of two basic states, “spin up” 
↑  and “spin down” ↓ , with coefficients ai and bi that are complex numbers: i i ia bχ = ↑ + ↓ , where  

2 2 1i ia b+ = . In the Riemann (Bloch) sphere representation the state iχ  is depicted as a point on the surface  

of this sphere. In the spherical coordinate system it can be represented as a spinor i
i

i

a
b

χ
 

=  
 

, where  

( ) ( )cos 2 exp i 2i i ia = Θ − Φ , ( ) ( )sin 2 exp i 2i i ib = Θ Φ , and Θ and Φ denote the polar and azimuthal angle, 
respectively. 

Principle of quantum superposition claims that any physical system—such as electron—exists partly in all its 
possible states simultaneously, as long as it is not being observed. The state of linear coherent superposition can 
be here written as ,i iiX c χ=∑  where the coefficients ci define contributions of different spin states to the 
superposition. In the absence of a magnetic field all spin states of the electron are equally probable and then 

iiX C χ= ∑ , where the summation runs over all possible spin states, and C is normalization factor. Probabil-
ity that the electron finds itself in that state is  

2 2

;
.S i i i j

i ij j i
P C X X C χ χ χ χ

≠

 
= = + 

 
∑ ∑                        (1) 

The second sum in parenthesis results from quantum interference between different spin states. Because of in-
finite number of those states, the discrete values Θi and Φi should be replaced by continuous variables, and the 
summations—by integration over the surface of the unit sphere, S, according to a transformation  

( ) ( ) ( ) ( )2

0 0

1 1, , d , sin d d .
4i i

i
f f s f

S
π π

π
Θ Φ → Θ Φ = Θ Φ Θ Φ Θ∑ ∫∫ ∫ ∫

              (2) 

Using the spinor representation of different spin states, we find after the integration  
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( )2 1SP C I= +                                      (3) 

where the calculated interference term is 0.36I ≅ . 
Similar procedure can also be applied in the case of spin polarization. Then, however, the coefficients ci ap-

pearing in the superposition are different, resulting in a definite degree of spin polarization, given by a ratio  

( )2 2 2 2
i i i ii iP c a b c= −∑ ∑ . 

3. Suppression of Interference by Observation 
If an individual electron is being observed (detected), information is extracted that it is no more in the state of 
superposition. After the observation, electron must find itself in a definite spin state although we do not know in 
which one. The act of observation destroys interference, like that in the canonical double-slit experiment. Then, 
to get the probability, one has to sum partial probabilities of individual states instead of their probability ampli-
tudes. The ratio, κ, of the probability of finding electron when it is subject to observation, PO, to that when it ex-
ists in the state of superposition, PS, is 0.74O SP Pκ = ≅ .  

Consider an electron travelling a QPC via the lowest 1D energy subband. The electron can exist there either in 
the state of superposition or—if it is being observed—in one of the possible spin states; the latter excludes the 
interference. Most importantly, it is not necessary to perform any real observation of the electron to suppress the 
interference. As demonstrated in the double-slit experiments, it is enough to create experimental conditions al-
lowing such observation (see e.g. [18]), which is one of mysteries of quantum mechanics. 

Essential condition allowing observation of an individual electron in the QPC is that no more than one elec-
tron travels the constriction region at the same time [19], which occurs just after opening an 1D conducting 
channel. In order to detect the electron one could exploit an electrostatic coupling between the channel and the 
gate electrodes defining constriction. Electron entering the channel induces a positive charge on the gates which 
generates an additional voltage on the gate-channel capacitor. Virtual detection of a voltage pulse in an external 
circuit (supplying the gate voltage) proves that electron has entered the channel. The charging time, given here 
by chτ ε σ= , where ε is the electrical permittivity and σ is the conductivity of gate electrode, is orders of mag-
nitude shorter than the electron’s transit time through the channel. Moreover, detectability of an electron passing 
through the channel can be enhanced if the electron is trapped in the channel for some time.  

4. Resonant Transmission 
In fact, the 1D channel in QPC can behave as a resonant cavity for the electron wave. In the ballistic regime the 
two-probe resistance of QPC stems entirely from ”contact resistance” between 1D conducting channel and 
2DEG reservoirs [20]. Sudden drops in potential at both ends of the channel induce partial reflection of the elec-
tron wave. Due to possibility of multiple reflections at both ends, we expect the transmission resonance, owing 
to which the electron is temporarily trapped inside the channel that behaves like a resonant delay line.  

The width of quasi-1D channel in QPC varies with the position, x, along its length. Energy of the bottom of 
the lowest 1D subband, ( )1 xε , and the wave number of ballistic electron, ( )k x , changes appropriately to the 
width’s variation. Thus ( )1 xε  forms a smooth hill with a maximum at the constriction bottleneck. In the quasi- 
classical approximation, general solution of the Schrödinger equation for electron travelling within the channel 
will be  

( )
( )

( )

( )
( )i d i d1 2e e ,k x x k x xC Cx

k x k x
ψ −∫ ∫= +                            (4) 

where ( ) ( )12k x m E xε= −    , m is the electron effective mass, E is energy, and 2h π= . Condition of  

resonance is met when ( )
0

d
L
k x x nπ=∫ , where L is the channel length, and n is integer. For the sake of simplic-

ity, we neglect further variation of the wave number along the channel by putting ( )1 const xε = . It comes down 
the condition of resonance to the relation: 2n Lλ = , where λ is the wavelength of electron propagating through 
the channel. The wavelength of a ballistic electron coming out of 2DEG reservoir with the electrochemical po-
tential μ is  
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( )1

.
2

h
m

λ
µ ε

=
−

                                    (5) 

The quantity 1FE µ ε= −  represents an effective Fermi energy in the channel. Assuming tentatively the 
channel length to be L = 200 nm, we find in resonance EF = 0.14 meV, and the Fermi velocity vF = 2.7 × 104 m/s 
(this and further numerical calculations concern n-GaAs). In equilibrium this EF would determine the one-   
dimensional density of electrons which, under resonance condition, corresponded to two electrons in the chan-
nel.  

5. Reduction in Conductance 
Current considerations can be summarized as follows. Electron in a 2DEG reservoir, prior to its entry to QPC, 
finds itself in a state of superposition of all possible spin states. Probability of finding that electron, assumed 
further to be unity, contains a contribution originating from interference between different spin states. Individual 
electron entering the 1D-channel can be effectively detected if it is trapped in the channel for some time owing 
to resonant transmission. Detection of the electron suppresses the interference between different spin states. In 
other words: detection of the electron means its interaction with environment (that constitute here the gates con-
nected with an external circuit) which causes decoherence of the state of superposition. The interference term I 
in Equation (3) becomes then equal to zero. Hence, probabilities of finding the electron after and before its entry 
to the channel are different; their ratio is 0.74. Obviously, the probability of finding the electron anywhere in the 
structure must be conserved. Here, this requirement comes down to conserving continuity of the probability 
current at the boundaries between 2DEG reservoirs and 1D channel. It can be met only if the electron wave- 
packet entering the channel is partly scattered back to the reservoir. That back-scattering contributes to an addi-
tional “contact resistance” which reduces the conductance of QPC just by a factor of 0.74. 

6. Modulation of the Anomaly 
Consider now the intriguing effect of modulation of 0.7 anomaly by the electrostatic potential, reported in [6]. 
We attribute this modulation to repeatable occurrence of the electron’s resonance in 1D channel. Resonance in a 
cavity occurs when the wave returning to its starting point—after reflection from the back wall of the cavity— 
meets the wave just starting in the same phase. So, during travelling back and forth the wave has to acquire a 
phase φ = 2π, or multiple of this value. This requirement leads directly to the condition of resonance: nλ = 2L. 

When a negative electrostatic potential, U, is imposed on the QPC, the subband-edge energy, ε1, is lifted up 
shutting the channel. In order to again open the channel, one has to adjust the gate voltage (making it less nega-
tive) to compensate the U-induced shift by widening the channel which lowers ε1. However, by imposing the 
potential U an additional phase eUϕ τ∆ = −   is acquired by the electron wave (like that in the electrostatic 
Aharonov-Bohm effect), where τ is the time of travelling the channel back and forth. We have 2L vτ = , where 
v k m=   stands for the group velocity. The condition of resonance is restored when 22 2emUL kϕ π∆ = =  
(here, an effect of gate voltage on U has been neglected). While tuning electrostatic potential in the channel the 
resonance condition appears repeatedly with a period  

2

2 .
4

hU
emL

∆ =                                       (6) 

This relationship predicts just the period of modulation of the anomaly. For L = 200 nm we find ΔU = 1.1 mV. 
This is a reasonable value to account for the observed modulation of the 0.7 anomaly while scanning negatively 
charged tip above the QPC [6].  

In [5], an oscillatory modulation of the anomaly by tuning the channel length was observed on three-pairs- 
gate devices. Within the present model, origin of this modulation is similar to that discussed above and can be 
described by Equation (6), taking into account that U is now generated by gate voltages. In the cited work the 
channel length was tuned continuously by changing the ratio of the voltage applied to the outer pair of gate elec-
trodes, Vg2, to that applied to the central ones, Vg1. All these gate voltages contribute to the electrostatic potential 
acting on electrons in the channel. Their contribution manifests itself as more and more less negative gate vol-
tage, Vg1, required for opening the channel while the ratio Vg2/Vg1 is being increased. In conclusion, we propose 
that tuning the electrostatic potential in the channel, and not its length, is the primary reason for modulation of 
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0.7 anomaly.  

7. Temperature Dependence 
The 0.7 anomaly appears in the range of electron energies (that translates into a range of gate voltages) in which 
the resonance of single electron in the channel enhances its detectability. Accordingly, an extension of the 0.7 
feature on the gate-voltage scale would be determined by the resonance linewidth. Here, we assume tentatively 
that the dominant mechanism of damping resonance is dephasing of the wave function. The phase-coherence 
length of electron, Lϕ , is a material-related parameter that decreases with temperature (approximately as 

1 3L Tϕ
−∝ ), which causes that the extension of the 0.7 “plateau” becomes less pronounced at lower tempera-

tures. 
Consider this issue in more detail. Uncertainty principle between momentum, p, and position, x, claims that 

2p x∆ ∆ ≥  . Taking into account that 2 2E p m= , and putting x Lϕ∆ = , we find a relationship 

FE LE
Lϕπ

∆ ≥ ,                                      (7) 

where EF is the effective Fermi energy in resonance. This relation determines the spread of electron energies, ΔE, 
within the 0.7 anomaly appears. To have an idea about magnitudes of the quantities considered here, we put into 
Equation (7) the values of Lϕ  obtained for 2DEG in GaAs/GaAlAs heterojunction [21]. The phase-coherence 
length is 3 μmLϕ =  at temperature of 25 mK and falls down to about 0.6 μm at 1.3 K. Using these values one 
finds from Equation (7) for L = 200 nm: ΔE = 3 μeV and ΔE = 15 µeV, respectively.  

8. P-Type Channels 
The case of holes in the valence band of GaAs is much more complex than that of electrons in the conduction 
band mainly because of a strong spin-orbit interaction. Holes passing through p-type QPC just after opening the 
conducting channel are the heavy holes with relatively small wave numbers. Those holes behave as particles 
with effective spin J = 3/2, which have projections on the quantization axis Jz = ±3/2. Due to a size quantization, 
the holes coming out from a 2D reservoir have a quantization axis oriented in the epitaxial-growth direction 
(z-axis). It has been shown by Majorana [22] [23], that a spin-n/2 particle can be represented as a set of n 
spin-1/2 particles. This finding enables us to calculate the spin-interference term for holes being in state of su-
perposition.  

At this aim we can simply use the same spinor representation as for spin-1/2 particle. However, the values of 
coefficients ci in superposition are now diversified to favor the mean spin vector aligned along the quantization 
axis. Let us assume tentatively ( )cos 2i ic = Θ , which causes 17% spin polarization, and apply similar compu-
tational procedure as that in section 2. After the calculations we find a value of the interference term (equivalent 
to I in Equation (3)) equal to 0.32, and hence 0.76κ ≅ . This value is very close to 0.74κ ≅  obtained for elec-
trons as a fraction characteristic of the anomaly. The ratio κ turns out to be not very sensitive to the degree of 
spin polarization within a considerable range of the latter. 

9. Conclusions 
The model proposed here is able to explain all main features of the 0.7 anomaly. In particular, it predicts a con-
crete value of the anomalous conductance, which has never been attempted by previous theories. It has been as-
sumed here, in accord with Ref. [14]-[17], that the 0.7 anomaly and the zero-bias anomaly are correlated but 
separate and distinct effects. Actually, the ZBA disappears above the temperature at which the 0.7 anomaly be-
comes the most distinctive. Recent phase-sensitive measurements on the QPC [24] suggest a connection be-
tween the ZBA and the Kondo effect.  

This model can be verified experimentally. While tuning negative potential of the metallic tip placed above 
the QPC we expect to observe a periodic modulation of the anomaly whose period displays square dependence 
on the inverse channel length, described by Equation (6). 
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