
Journal of Software Engineering and Applications, 2016, 9, 399-411
Published Online August 2016 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.98026

How to cite this paper: Hudaib, A., Suleiman, D. and Awajan, A. (2016) A Fast Pattern Matching Algorithm Using Changing
Consecutive Characters. Journal of Software Engineering and Applications, 9, 399-411.
http://dx.doi.org/10.4236/jsea.2016.98026

A Fast Pattern Matching Algorithm Using
Changing Consecutive Characters
Amjad Hudaib1, Dima Suleiman1, Arafat Awajan2
1Department of Computer Information Systems, King Abdullah II for Information Technology, The University of
Jorda, Amman, Jordan
2Department of Computer Science, King Hussein Faculty of Computer Sciences, Princess Sumaya University for
Technology, Amman, Jordan

Received 20 June 2016; accepted 5 August 2016; published 8 August 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Pattern matching is a very important algorithm used in many applications such as search engine
and DNA analysis. They are aiming to find a pattern in a text. This paper proposes a Pattern
Matching Algorithm Using Changing Consecutive Characters (PMCCC) to make the searching pro-
cess of the algorithm faster. PMCCC enhances the shift process that determines how the pattern
moves in case of the occurrence of the mismatch between the pattern and the text. It enhances the
Berry Ravindran (BR) shift function by using m consecutive characters where m is the pattern
length. The formal basis and the algorithms are presented. The experimental results show that
PMCCC made enhancements in searching process by reducing the number of comparisons and the
number of attempts. Comparing the results of PMCCC with other related algorithms has shown
significant enhancements in average number of comparisons and average number of attempts.

Keywords
Pattern, Pattern Matching Algorithms, String Matching, Berry Ravindran, EBR, RS-A, Fast Pattern
Matching Algorithms

1. Introduction
Pattern matching is considered a very important algorithm in various applications such as search engine and
DNA analysis [1]-[4].

The main purpose of pattern matching algorithms is to find a pattern (which is relatively small) in a text
(which is very relatively large). They are aiming to enhance the search process and make it faster. This can be

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.98026
http://dx.doi.org/10.4236/jsea.2016.98026
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

A. Hudaib et al.

400

done either by decreasing the number of comparisons, attempts or both. Some algorithms made enhancements
on searching process and the way comparisons are made between the text and the pattern [1] [5]-[7], others
made enhancements on the preprocessing phase [3] [8]-[15] which used to determine the amount of shift in case
a mismatch happened between the pattern and the text.

In some algorithms, comparisons occur between the text and the pattern from only one side of the text either
the left side [13] or the right one [4] by aligning one pattern with the text. Other algorithms use two sliding
windows to make comparisons by using two patterns, one pattern aligned with the text from left side of the text,
and the second pattern aligned with the text from the right side, comparisons occur in parallel [5] [6] [11] [16].

Another type of enhancements is made on the shift values. The shift value is the amount of shift that the pat-
tern will move in case of a mismatch between the text and the pattern occurs. This enhancement is very impor-
tant since it affects the efficiency of the searching process. Most of algorithms determine the shift value accord-
ing to the number of consecutive characters on the text after aligning the pattern with the text. Some algorithms
take one consecutive character [7] [17] some take two [6] [13] [16] others use three and few use four [8] [9].

This paper proposes a new Pattern Matching algorithm Using Changing Consecutive Characters (PMCCC) to
make the searching process of the algorithm faster. PMCCC made enhancements on the shifting values, which
maximize the amount of shift that the pattern will move once a mismatch between the text and the pattern occurs.
The new algorithm uses only one sliding window so the pattern will be aligned with text from the left side. The
formal basis of the algorithm, algorithm steps and analysis is presented. Comparisons are made with existing
algorithms such as BR [12], EBR [11] and RS-A [4]. The results of the comparisons show that the new algo-
rithm is better than the other algorithms in terms of comparisons and number of attempts.

The reminder of this paper is organized as follows: Section 2 presents the related work. Section 3 describes
PMCCC algorithm and analyzes its performance. Section 4 presents a working example to show how the algo-
rithm works. Section 5 shows the experiment and the comparisons with other algorithms. Finally, Section 6
covers the conclusions and future work.

2. Related Works
Pattern matching is one of the main topics in research since it is very important and can be used in different ap-
plications [1] [18]-[22].

Enhancements have been made to make the searching process faster either by using different technique for the
search process itself or increasing the shift value that the pattern must move in case there is a mismatch between
the pattern and the text [10] [15]. Other enhancements were performed to reduce the memory used to deal with
the shift values in preprocessing phase.

Boyer Moore [17] made enhancement in a searching process, if a mismatch occurs between the text and the
pattern after aligning the pattern with the text the pattern will be shifted, the amount of shift is determined by
aligning the pattern with the text and taking one character in the text immediately to the right of the pattern if the
pattern already aligned with left side of the text.

Berry-Ravindran (BR) [12] made enhancement on Boyer Moore such that instead of taking one character to
determine the shift value, BR takes two consecutive characters which makes the value of the shift greater and
then the searching process faster.

Shift technique used in Berry-Ravindran algorithm (BR) [13] form basis for many algorithms to determine the
amount of shift in case a mismatch occurs between the text and the pattern. Some algorithms used the same shift
technique used in BR by using two consecutive characters but made enhancement in a searching process such as
Two Sliding Windows algorithm [6] and Enhanced Two Sliding Windows algorithm [16]. Others made en-
hancement on number of characters used for shift value, some used three characters as in Enhanced Berry Ra-
vindran [11] and others used four characters such as RS-A [4] and ERS-A [5].

Two Sliding Windows algorithm (TSW) [6] used two sliding windows pattern to scan the text from the left
and right side at the same time. TSW uses two windows the left window aligned with the text from the left and
the right window aligned with the text from the right, the comparisons between the text and the pattern of both
sides occurs at the same time. In case a mismatch occurs, the two windows will be shifted, the right window will
be shifted to left and the left window will be shifted to right. The amount of shift in the two cases was deter-
mined according to BR [13] shift value by taking two consecutive characters.

Enhanced Two Sliding Window algorithm (ETSW) [16] made enhancements on TSW. ETSW used the same

A. Hudaib et al.

401

searching technique used in TSW; it also used two windows to scan the text from both sides at the same time, in
addition it used the same shift function used in BR and TSW by using two consecutive characters. The main
difference between ETSW and TSW is that ETSW made comparisons between the text and the pattern from
both sides of the pattern in parallel in this case number of comparisons between the text and the pattern will be
minimized. The complexity of best case, worst case and preprocessing time are O(m/2), O(((n/2 − m/2 + 1))(m/2,
O(2(m − 1)) respectively.

To determine the amount of shift instead of using two consecutive characters, in case a mismatch occurs be-
tween the text and the pattern as in TSW, Enhanced Berry Ravindran (EBR) [11] used three characters. EBR al-
so used two sliding windows to scan the text from both sides simultaneously.

ERS-A [5] algorithm made enhancements on RS-A [4]. RS-A algorithms used four consecutive characters
immediately after the aligning the text with the pattern to determine the amount of shift that the pattern will
move in case a mismatch occurs between the text and the pattern. RS-A searches the text from the right side on-
ly. On the other hand ERS-A uses four consecutive character and scans the text from the left and right side at the
same time. As in TSW, ERS-A used two sliding windows aligned with the text, the left window aligned with the
text from the left and the right window aligned with the text from right, in case a mismatch occurs the two win-
dows will be shifted to the opposite side.

Enhancing ERS-A algorithm for pattern matching EERS-A [9] used the same technique used in ETSW [16].
Both of them made comparisons between the text and the pattern from both sides of the pattern, they also used
two sliding windows to scan the text. But while ETSW using BR shift function, EERS-A uses RS-A shift to de-
termine the amount of shift which depends on using four consecutive characters.

Four sliding windows pattern matching algorithm (FSW) [8] used four consecutive characters to determine
the shift value as in RS-A, ERS-A and EERS-A. FSW used four sliding windows. The text was partitioned into
two parts, each part scanned by using two windows, one aligned with the left side of the part and the other with
the right side of the part.

A Performance Study of the Running Times of well-known Pattern Matching Algorithms for Signature-based
Intrusion Detection Systems [20] was done and comparisons between different algorithms using multiple sliding
windows approach were made.

PMCCC uses only one pattern window to search for a pattern p in text t from the left side of the text. In case a
mismatch occurs between the pattern and the text the pattern will be shifted to right according to the shift value.
The shift value is determined according to the pattern length m. Instead of taking two consecutive characters to
determine the amount of shift as in TSW, three characters as in EBR or four characters in EERS-A, the new al-
gorithm takes m (pattern length) consecutive characters immediately of the text after aligning the pattern with
the left side of the text. Additional two algorithms shift 5 and shift 6 are developed to make comparisons. These
two algorithms use one window to scan the text from the left side. They use five and six consecutive characters
respectively to determine the amount of shift.

Comparing the results of the proposed algorithm with those of Br, EBR and RS-A has shown significant en-
hancements in average number of attempts and comparisons. The new algorithm makes the searching process
faster and more efficient.

3. Description of the (PMCCC) Algorithm
PMCCC enhanced the searching process by increasing the amount of shift that occurs every time there is a
mismatch between the text and the pattern. PMCCC depends on using m consecutive characters of the text im-
mediately after aligning the text with the pattern, where m is the same as the pattern length. PMCCC algorithm
determines the number of the consecutive characters according to the length of pattern.

The main difference between BR [13], EBR [11], RS-A [4] and PMCCC is that each one of the previous al-
gorithms used a fixed length number of consecutive characters after the text to determine the amount of shift,
BR uses two consecutive characters, EBR uses three and RS-A uses four.

3.1. Pre-Processing Phase
PMCCC calculates the value of the shift using m consecutive text characters 1 2 3, , , , mx x x x , where m is the
pattern length which are aligned immediately to the right of text.

Initially, m consecutive characters in the text have the indexes () () () ()1 , 2 , 3 , , 2m m m m+ + + for

A. Hudaib et al.

402

1 2 3, , , , mx x x x . After a mismatch occurs between the text and the pattern, the pattern will be shifted to the right
according to the shift value, which will be calculated by PMCCC algorithm (see Figure 1).

After shifting m consecutive characters immediately to right of the text will be (leftindex + 1), (leftindex + 2),
(leftindex + 3), …., (leftindex + m) for 1 2 3, , , , mx x x x . Figure 1 shows the code of PMCCC algorithm where
the shifting process is presented.

The main idea of the proposed algorithm is to use shift function used in BR [13], Berry Ravindran used two
consecutive characters in the text that follow the pattern window to determine the shift value. It depends on us-
ing equation (1) to determine the amount of shift, x1 and x2 are the two consecutive characters, p is the pattern,
and m the pattern length.

[]

[]
[] []
[]

1

1 2
1 2

2

1 if 1

if 1
shift value , min

1 if 0
2 otherwise

p m x

m i p i p i x x
x x

m p x
m

 − =

− + ==
+ =

 +

 (1)

Other algorithms also used BR shift function such as EBR [11] and RS-A [4], but instead of using two cha-
racters they used three and four characters respectively. The shifting techniques used in EBR and RS-A de-
pended on equation (2) and equation (3) respectively.

[]

[]
[][]
[][][]
[]
[]

1

1 2

1 2 3
1 2 3

2

3

1 if 1

2 if 2 1

if 1 2
shift value , , min

1 if 0

2 if 0
3 otherwise

p m x

p m m x x

m i p i i i x x x
x x x

m p x

m p x
m

 − =

− − =
 − + + ==

+ =
 + =
 +

 (2)

Figure 1. PMCCC algorithm-shifting process.

A. Hudaib et al.

403

[]

[]
[][]
[][][]
[][][][]
[]
[]
[]

1

1 2

1 2 3

1 2 3 4
1 2 3 4

2

3

4

1 if 1

2 if 2 1

3 if 3 2 1

if 1 2 3
shift value , , , min

1 if 0

2 if 0

3 if 0
4 otherwise

p m x

p m m x x

p m m m x x x

m i p i i i i x x x x
x x x x

m p x

m p x

m p x
m

 − =

− − =
 − − − =
 − + + + ==

+ =
 + =
 + =
 +

 (3)

In order to make a good comparisons, we implemented two new algorithms and called them shift 5 and shift 6.
Shift 5 and shift 6 also used Berry Ravindran shift but they used 5 and 6 characters respectively to determine the
amount of shift. The shifting process of algorithm shift 5 depends on equation (4) and the shifting process of
shift 6 depends on equation (5).

[]

[]
[][]
[][][]
[][][][]
[][][][] []
[]
[]
[]
[]

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5
1 2 3 4 5

2

3

4

5

1 if 1

2 if 2 1

3 if 3 2 1

4 if 4 3 2 1

if 1 2 3 3
Left shift value , , , , min

1 if 0

2 if 0

3 if 0

4 if 0
5 otherwise

p m x

p m m x x

p m m m x x x

p m m m m x x x x

m i p i i i i p i x x x x x
x x x x x

m p x

m p x

m p x

m p x
m

 − =

− − =
 − − − =
 − − − − =

 − + + + + ==

+ =
 + =

+ =

+ =

+

 (4)

[]

[]
[][]
[][][]
[][][][]
[][][][][]
[][][][] [] []
[]
[]
[]

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5 6

1 2 3 4 5 6
1 2 3 4 5 6

2

3

1 if 1

2 if 2 1

3 if 3 2 1

4 if 4 3 2 1

5 if 5 4 3 2 1

if 1 2 3 3 4
shift value , , , , , min

1 if 0

2 if 0

3 if 0

p m x

p m m x x

p m m m x x x

p m m m m x x x x

p m m m m m x x x x x x

m i p i i i i p i p i x x x x x x
x x x x x x

m p x

m p x

m p x

− =

− − =

− − − =

− − − − =

− − − − − =

− + + + + + =
=

+ =

+ =

+ =

[]
[]

4

5

6

4 if 0

5 if 0
6 otherwise

m p x

m p x
m

 + =

+ =
 +

 (5)

PMCCC algorithm used m characters, where m is the pattern length, to determine the amount of shift and de-
pends on equation (6).

Figure 2 presents how PMCCC algorithm calculates the shift value based on equation (6).

A. Hudaib et al.

404

Figure 2. The shifting process of PMCCC algorithm.

A. Hudaib et al.

405

[]
[]
[][]
[][][]

() () [][]
[][][][] [][]
[]
[]
[]

() []
()

1 2 3

1

1 2

1 2 3

1 2 2 1

1 2 3 1

2

3

4

1

shift value , , , ,

1 if 1

2 if 2 1

3 if 3 2 1

1 if 1 2 2 1

if 0 1 2 3 2 1

min 1 if 0

2 if 0

3 if 0

2 if 0

1 i

m

m m

m m

m

x x x x

p m x

p m m x x

p m m m x x x

m p m m m m m m x x x x

m p m m x x x x x

m p x

m p x

m p x

m m p x

m m

− −

−

−

=

− =

− − =

− − − =

− − − − − − − =
− − =

+ =

+ =

+ =

+ − =

+ −

[]f 0
2 otherwise

mp x
m

 =

 (6)

3.2. Searching Phase
PMCCC algorithm starts the searching from the left side of the pattern using one window, in case of a mismatch
between the text and the window; the window will be shifted to the right according to the shift value in equation
(6).

One pointer (leftindex) in the text and one pointer in the pattern (L) will be used to make comparison between
the text and the pattern. The first character of the pattern and the corresponding text character (leftindex) will be
compared. If a match occurs the leftindex and L will be incremented by one and if a mismatch occurs the leftin-
dex will be incremented by the shift value and L index value will be zero.

One pointer (leftindex) in the text and one pointer in the pattern (L) will be used to make comparison between
the text and the pattern. The first character of the pattern and the corresponding text character (leftindex) will be
compared. If a match occurs the leftindex and L will be incremented by one and if a mismatch occurs the leftin-
dex will be incremented by the shift value and L index value will be zero.

3.3. Analysis
Lemma 1: The time complexity in worst case is O(((n − m + 1))(m)).
Proof: The worst case occurs when a match between the pattern and text occurs in all characters (i.e. The

shift value is equal to one), until we reach the last character of the pattern and a mismatch between the pattern
and text occurs. This case is reputed until we reach the index (n − (m + 1)) of the text.

Lemma 2: The time complexity in best case is O(m).
Proof: The best case occurs when a match occurs between the pattern and the text in the leftmost of the text.
Lemma 3: The time complexity in average case is O(n/(2*m)).
Proof: The average case occurs when the m consecutive characters immediately to the right of the text after

aligning it with the pattern are not found in the pattern. In this case, time complexity is O(n/(2∗m)) and the shift
value will be (2∗m).

4. Working Example
In this section, we will give an example to explain the new algorithm.

Given a text T with n = 50.
T = “ABECABACBAFECABAEEBEBEABACBEECABACCCBAEEBABEBEBABA”, with index from 0

to 49.

A. Hudaib et al.

406

And a pattern P with m = 9:
P = “ABACCCBAE”, with index from 0 to 9.
Pre-processing phase
Initially, shift value = 2∗m = 18.
Searching phase
The searching process for the pattern p is explained through the following steps:
First attempt:
In the first attempt (Figure 3(a)), we align the pattern window with the text from the left, a comparison is

made between and first character in the pattern (P [0] = A) and the first character of the text (T [0] = A). Since
the two characters are the same, another comparison is made between the second character in the pattern (P [1] =
B) and the second character of the text (T [1] = B), and again a match occurs. Comparisons continue until either
a complete match occurs or a mismatch occurs. In this example a mismatch occurs between the third character
of the pattern (P [2] = A), and of the text (T [2] = E), therefore we take 9 consecutive characters of the text at
indexes: 9, 10, 11, 12, 13, 14, 15, 16, 17 which are A, F, E, C, A, B, A, E, E respectively.

To determine the shift value we have to make the following comparison according to equation (6) as in Table
1. Then the pattern will be shifted to right 13 steps.

Second attempt:
In the second attempt, after shifting the pattern 13 steps to the right (Figure 3(b)), the first character of the

pattern is found and is aligned with the text character at index 13. After making comparison between the text
and the pattern a mismatch occurs between the text character at index 16 (character E) and the fourth index in
the pattern (character C). To determine the shift value we take 9 consecutive characters at indexes: 22, 23, 24, 25,
26, 27, 28, 29, 30 which are A, B, A, C, B, E, E, C, A respectively. So that the pattern must be shifted using eq-
uation 6 as shown in Table 2. Again to determine amount of shift we apply equation (6) and shown in Table 2.
Then the pattern will be shifted to right 11 steps.

Third attempt:
In the third attempt, a mismatch occurs between text character at index 25 (character C) and the second pat-

tern text (character B), (see Figure 3(c)). The nine consecutive characters at indexes: 33, 34, 35, 36, 37, 38, 39,
40, 41, which are C, C, C, B, A, E, E, B, A, respectively.

Figure 3. Working example.

A. Hudaib et al.

407

Table 1. Determine the shift value for the first attempt.

Shift value Comparisons

1 if p[8] = A?, Yes stop. No, continue

2 if p[7] [8] = AF?, Yes stop. No, continue

3 if p[6] [7] [8] = AFE?, Yes stop. No, continue

4 if p[5] [6] [7][8] = AFEC?, Yes stop. No, continue

5 if p [4] [5] [6] [7] [8] = AFECA?, Yes stop. No, continue

6 if p[3] [4] [5] [6] [7] [8] = AFECAB?, Yes stop. No, continue

7 if p[2] [3] [4] [5] [6] [7] [8] = AFECABA?, Yes stop. No, continue

8 if p[1] [2] [3] [4] [5] [6] [7] [8] = AFECABAE?, Yes stop. No, continue

9 if p[0] [1] [2] [3] [4] [5] [6] [7] [8] = AFECABAEE?, Yes stop. No, continue

10 if p[0] = F?, Yes stop. No, continue

11 if p[0] = E?, Yes stop. No, continue

12 if p[0] = C, Yes stop. No, continue

13 if p[0] = A?, Yes stop the shift value will be 13

Table 2. Determine the shift value for the second attempt.

Shift value Comparisons

1 if p[8] = A?, Yes stop. No, continue

2 if p[7] [8] = AB?, Yes stop. No, continue

3 if p[6] [7] [8] = ABA?, Yes stop. No, continue

4 if p[5] [6] [7] [8] = ABAC?, Yes stop. No, continue

5 if p[4] [5] [6] [7] [8] = ABACB?, Yes stop. No, continue

6 if p[3] [4] [5] [6] [7] [8] = ABACBE?, Yes stop. No, continue

7 if p[2] [3] [4] [5] [6] [7] [8] = ABACBEE?, Yes stop.
 No, continue

8 if p[1] [2] [3] [4] [5] [6] [7] [8] = ABACBEEC?, Yes stop.
 No, continue

9 if p[0] [1] [2] [3] [4] [5] [6] [7] [8] = ABACBEEECA?, Yes stop.
 No, continue

10 if p[0] = B?, Yes stop. No, continue

11 if p[0] = A?, Yes stop the shift value will be 11

Now, to determine amount of shift we apply equation (6) and shown in Table 3, so that, the pattern will be

shifted to the right 6 steps.
Fourth attempt:
We align the first character of the pattern (character A) with text character at index 30 (character A). A com-

plete match between the text and pattern occurs at index 30, (see Figure 3(d)).

5. Experimental Results and Discussion
Multiple experiments have been done to make comparisons between PMCCC and other algorithms. In addition
to implementing the PMCCC, we implemented two other algorithms shift 5 and shift 6 to make good compari-
sons. Shift 5 and shift 6 algorithms used the same shift functions used in BR [13], but instead of taking two
consecutive characters to determine the shift value, shift 5 and shift 6 algorithms used 5 and 6 consecutive cha-
racters respectively. Also we used the well-known algorithms to make comparisons, which are BR [13], EBR
[11], RS-A [4] which uses 2, 3, 4 consecutive characters respectively to determine the shift value. But since
EBR used two sliding windows we implement it using only the left side equations to determine the amount of
shift.

A. Hudaib et al.

408

Table 3. Determine the shift value for the third attempt.

Shift value Comparisons

1 if p[8] = C?, Yes stop. No, continue

2 if p[7] [8] = CC?, Yes stop. No, continue

3 if p[6] [7] [8] = CCC?, Yes stop. No, continue

4 if p[5] [6] [7] [8] = CCCB?, Yes stop. No, continue

5 if p[4] [5] [6] [7] [8] = CCCBA?, Yes stop. No, continue

6 if p[3] [4] [5] [6] [7] [8] = CCCBAE?, Yes stop the shift value will be 6

Table 4. The average number of comparisons for patterns with different lengths.

Pattern length Number of words BR EBR RS-A Shift 5 Shift 6 PMCCC

7 1988 13345 11749 10638 9783 9100 8056

8 1167 14807 13092 11922 11033 10320 9217

9 681 15892 14095 12911 12004 11273 10141

10 382 15799 14070 12927 12064 11362 10289

11 191 14243 12675 11672 10910 10298 9367

12 69 10923 9774 9030 8508 8074 7401

13 55 11370 10191 9422 8895 8466 7786

14 139 21673 19255 17845 16843 16008 14734

15 32 22384 19747 18318 17261 16435 15107

16 10 28644 25452 23531 22163 21080 19381

17 3 28148 25169 23119 21922 20895 19252

Figure 4. The average number of comparisons of BR, EBR, RS-A, Shift 5, Shift 6 and PMCCC Algorithms.

0

5000

10000

15000

20000

25000

30000

7 8 9 10 11 12 13 14 15 16 17

Av
er

ag
e

N
um

be
r o

f c
om

pa
ris

on
s

Pattern Length
BR EBR RS-A Shift5 Shift6 PMCCC

A. Hudaib et al.

409

Table 5. The average number of attempts for patterns with different lengths.

Pattern length Number of words BR EBR RS-A Shift 5 Shift 6 PMCCC

7 1988 11953 10505 9512 8749 8139 7203

8 1167 13256 11704 10660 9866 9226 8241

9 681 14149 12532 11477 10673 10024 9019

10 382 14127 12567 11543 10774 10148 9188

11 191 12808 11378 10480 9798 9252 8410

12 69 9598 8584 7927 7472 7091 6507

13 55 10334 9250 8560 8069 7677 7065

14 139 19548 17356 16086 15172 14423 13273

15 32 19817 17454 16176 15249 14517 13362

16 10 26086 23176 21411 20176 19194 17662

17 3 22554 20138 18551 17570 16747 15458

Figure 5. The average number of attempts of BR, EBR, RS-A, Shift 5, Shift 6 and PMCCC algorithms.

 Dataset:

All the six algorithms used Book1 from the Calgary corpus to be the text [23]. Book1 consists of 141,274
words (752,149 characters). Patterns of different lengths are also taken randomly from Book1.

Table 4 shows the results of comparing the algorithms BR, EBR, RS-A, shift 5, shift 6 and PMCCC based on
the average number of comparisons using different patterns with different lengths. The pattern length is in the
first column and it is from 7 characters to 17 characters. The number of patterns with a certain length is pre-
sented in the second column. The results are represented in Figure 4. Table 4 and Figure 4 show that PMCCC
results are better than all other algorithms results in term of average number of comparisons. For example, Ta-
ble 4 shows that for 191 words of length 11, the average number of comparisons is 9367, which is better than all
other algorithms. Average number of comparisons for the same pattern length are 14243, 12675, 11672, 10910

0

5000

10000

15000

20000

25000

30000

7 8 9 10 11 12 13 14 15 16 17

Av
er

ag
e

N
um

be
r o

f a
tt

em
pt

s

Pattern Length
BR EBR RS-A Shift5 Shift6 PMCCC

A. Hudaib et al.

410

and 10298 in BR, EBR, RS-A, shift 5, shift 6 algorithms respectively. The main reason for that is PMCCC al-
ways use m consecutive characters to determine the shift value. That means the PMCCC algorithm is faster than
the other algorithm in finding pattern.

Table 5 shows the comparison between PMCCC algorithm and the other algorithms in terms of the average
number of attempts using different patterns with different lengths. The results show that PMCCC algorithm
needs less number of attempts than the other algorithm. For example, Table 5 shows for 191 words of length 11,
the average number of attempts of PMCCC algorithm is 8410, which is better than the results of all other algo-
rithms. The average number of attempts for the same pattern length are 12808, 11378, 10480, 9798, and 9252 in
BR, EBR, RS-A, shift 5, shift 6 algorithms respectively. The main reason for that is PMCCC always use m con-
secutive characters to determine the shift value. That means the PMCCC algorithm is faster than the other algo-
rithm in finding pattern. Figure 5 represents the results.

6. Conclusion and Future Work
This paper proposed a new pattern matching algorithm based on Changing Consecutive Characters (PMCCC) to
make the searching process of the algorithm faster. PMCCC algorithm uses m consecutive characters where m is
the pattern length to determine the shift value in case a mismatch occurs between the text and pattern. This
process made the PMCCC faster than many other algorithms that used shift function. Comparisons made be-
tween PMCCC and already existing algorithms BR, EBR, RS-A and also comparisons made with new algo-
rithms implemented for the purpose of comparison, are called Shift 5 and Shift 6, respectively. The experimental
results show that PMCCC is the faster than other algorithms in terms of number of comparison and attempts.

References
[1] Chao, Y. (2012) An Improved BM Pattern Matching Algorithm in Intrusion Detection System. Applied Mechanics and

Materials, 148-149, 1145-1148.
[2] Diwate, R. and Alaspurkar, S. (2013) Study of Different Algorithms for Pattern Matching. International Journal of

Advanced Research in Computer Science and Software Engineering, 3, 615-620.
[3] Bhukya, R. and Somayajulu, D. (2010) An Index Based Forward Backward Multiple Pattern Matching Algorithm.

World Academy of Science, Engineering and Technology, 4, 1513-1521.
[4] Senapati, K.K., Mal, S. and Sahoo, G. (2012) RS-A Fast Pattern Matching Algorithm for Biological Sequences. Inter-

national Journal of Engineering and Innovative Technology (IJEIT), 1, 116-118.
[5] Suleiman, D., Hudaib, A., Al-Anani, A., Al-Khalid, R. and Itriq, M. (2013) ERS-A Algorithm for Pattern Matching.

Middle East Journal of Scientific Research, 15, 1067-1075.
[6] Hudaib, A., Al-Khalid, R., Suleiman, D., Itriq, M. and Al-Anani, A. (2008) A Fast Pattern Matching Algorithm with

Two Sliding Windows (TSW). Journal of Computer Science, 4, 393-401. http://dx.doi.org/10.3844/jcssp.2008.393.401
[7] Pendlimarri, D. and Petlu, P.B.B. (2010) Novel Pattern Matching Algorithm for Single Pattern Matching. International

Journal on Computer Science and Engineering, 2, 2698-2704.
[8] Hudaib, A., Al-Kalid, R., Al-Anani, A., Itriq, M. and Suleiman, D. (2015) Four Sliding Windows Pattern Matching

Algorithm (FSW). Journal of Software Engineering and Applications, 8, 154-165.
http://dx.doi.org/10.4236/jsea.2015.83016

[9] Suleiman, D., Itriq, M., Al-Anani, A., Al-Khalid, R. and Hudaib, A. (2015) Enhancing ERS-A Algorithm for Pattern
Matching (EERS-A). Journal of Software Engineering and Applications, 8, 143-153.
http://dx.doi.org/10.4236/jsea.2015.83015

[10] Salmela, L., Tarhio, J. and Kalsi, P. (2010) Approximate Boyer-Moore String Matching for Small Alphabets. Algo-
rithmica, 58, 591-609. http://dx.doi.org/10.1007/s00453-009-9286-3

[11] Suleiman, D. (2014) Enhanced Berry Ravindran Pattern Matching Algorithm (EBR). Life Science Journal, 11, 395-
402.

[12] Al-Mazroi, A. and Rashid, N. (2011) A Fast Hybrid Algorithm for the Exact String Matching Problem. American
Journal of Engineering and Applied Sciences, 4, 102-107. http://dx.doi.org/10.3844/ajeassp.2011.102.107

[13] Berry, T. and Ravindran, S. (2001) A Fast String Matching Algorithm and Experimental Results. Proceedings of the
Prague Stringology Club Workshop ’99, Collaborative Report DC-99-05, Czech Technical University, Prague, 16-26.

[14] Faro, S. (2009) Efficient Variants of the Backward-Oracle-Matching Algorithm. International Journal of Foundations
of Computer Science, 20, 967-984. http://dx.doi.org/10.1142/S0129054109006991

http://dx.doi.org/10.3844/jcssp.2008.393.401
http://dx.doi.org/10.4236/jsea.2015.83016
http://dx.doi.org/10.4236/jsea.2015.83015
http://dx.doi.org/10.1007/s00453-009-9286-3
http://dx.doi.org/10.3844/ajeassp.2011.102.107
http://dx.doi.org/10.1142/S0129054109006991

A. Hudaib et al.

411

[15] Faro, S. and Külekci, M.O. (2012) Fast Packed String Matching for Short Patterns. arXiv:1209.6449v1 [cs.IR]
[16] Itriq, M., Hudaib, A., Al-Anani, A., Al-Khalid, R. and Suleiman, D. (2012) Enhanced Two Sliding Windows Algo-

rithm for Pattern Matching (ETSW). Journal of American Science, 8, 607-616.
[17] Boyer, R.S. and Moore, J.S. (1977) A Fast String Searching Algorithm. Communications of the Association for Com-

puting Machinery, 20, 762-772. http://dx.doi.org/10.1145/359842.359859
[18] Hlayel, A.A. and Hnaif, A.A. (2014) A New Exact Pattern Matching Algorithm (WEMA). Journal of Applied Science,

14, 193-196. http://dx.doi.org/10.3923/jas.2014.193.196
[19] Hussain, I., Kausar, S., Hussain, L. and Khan, M. (2013) Improved Approach for Exact Pattern Matching (Bidirection-

al Exact Pattern Matching). IJCSI International Journal of Computer Science Issues, 10, 59-65.
[20] Naik, S.M. and Geethanjali, N. (2015) Performance Study of the Running Times of Well Known Pattern Matching

Algorithms for Signature-Based Intrusion Detection Systems. International Journal on Recent and Innovation Trends
in Computing and Communication, 3, 4177-4180.

[21] Vangipuram, R.K., Sandeep, S.J. and Reddy, A. (2011) Text Segmentation Based Pattern Search Algorithm. Interna-
tional Journal of Wisdom Based Computing, 1.

[22] Hussain, I., Kazmi, S., Khan, I. and Mehmood, R. (2013) Improved-Bidirectional Exact Pattern Matching. Internation-
al Journal of Scientific & Engineering Research, 4, 659-663.

[23] Calgary Corpus. ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus

Submit or recommend next manuscript to SCIRP and we will provide best service for you:
Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

http://dx.doi.org/10.1145/359842.359859
http://dx.doi.org/10.3923/jas.2014.193.196
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus
http://papersubmission.scirp.org/

	A Fast Pattern Matching Algorithm Using Changing Consecutive Characters
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Description of the (PMCCC) Algorithm
	3.1. Pre-Processing Phase
	3.2. Searching Phase
	3.3. Analysis

	4. Working Example
	5. Experimental Results and Discussion
	6. Conclusion and Future Work
	References

