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ABSTRACT 

This paper presents an approach for fully automatic 
segmentation of MS lesions in fluid attenuated inver-
sion recovery (FLAIR) Magnetic Resonance (MR) 
images. The proposed method estimates a gaussian 
mixture model with three kernels as cerebrospinal 
fluid (CSF), normal tissue and Multiple Sclerosis le-
sions. To estimate this model, an automatic Entropy 
based EM algorithm is used to find the best estimated 
Model. Then, Markov random field (MRF) model 
and EM algorithm are utilized to obtain and upgrade 
the class conditional probability density function and 
the apriori probability of each class. After estimation 
of Model parameters and apriori probability, brain 
tissues are classified using bayesian classification. To 
evaluate the result of the proposed method, similarity 
criteria of different slices related to 20 MS patients 
are calculated and compared with other methods 
which include manual segmentation. Also, volume of 
segmented lesions are computed and compared with 
gold standard using correlation coefficient. The pro-
posed method has better performance in comparison 
with previous works which are reported here. 
 
Keywords: Gaussian Mixture Model; EM; Entropy; 
Markov Random Field; Multiple Sclerosis 
 
1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) permits the non- 
invasive detailed visualization of internal anatomical 
structures. The segmentation of MR images into ana-
tomical tissues, fluids, and structures is an area of inter-
est in MRI, and is increasingly being used to assess the 
progression of the disease and to evaluate the effect of 
drug therapy, supplementing traditional neurological 
disability scales such as the extended disability status 
scale (EDSS) [1]. Multiple Sclerosis (MS) is a chronic,  

inflammatory, demyelinating disease of the Central 
Nervous System (CNS) that primarily affects the white 
matter (WM) of the central nervous system. MS lesions 
exhibit hypersignals in T2 weighted and hyposignals in 
T1 weighted, with respect to normal white matter inten-
sities. Previous research has shown that the FLAIR 
(Fluid Attenuated Inversion Recovery) sequence con-
tains the most distinctive lesion-healthy tissue differen-
tiation for segmentation of white matter lesions. The 
radiological criteria for MS include the number of lesion 
on the MRI, their locations and their sizes, and these 
quantitative information is also crucial for studying the 
progression of MS lesions and the effect of drug treat-
ments. To make a quantitative analysis of the brain scans 
of the patient, human experts are required to identify the 
multiple sclerosis lesions that are present in those scans 
as manual segmentation which is extremely time con-
suming. So, automatic and semi-automatic methods for 
segmentation of MS lesions are recommended and have 
been investigated extensively. There are many proposed 
approaches, automatic and semi-automatic, for segmen-
tation of brain into different tissues, including MS le-
sions. These approaches include a variety of methods 
such as statistical, fuzzy, neural networks, and fuzzy 
neural networks. In this paper, we develop a fully auto-
matic method for segmentation of MS lesions that re-
quires no training, atlas, or thresholding steps. Our 
method can be divided into two main sections: at first, 
intensities of brain pixels are modeled using a gaussian 
mixture model which consists of three kernels as CSF, 
normal tissue and MS lesions classes. This step starts 
with only one kernel and uses an entropy based EM al-
gorithm to estimate three kernels as three mentioned 
classes in an automatic manner which does not need 
initial values for parameter estimation. After estimation 
of the model, we would be able to classify brain pixels 
by knowing apriori probabilities of the classes. The next 
step is obtaining these apriori probabilities with no 
training and atlas. So, a MRF model and EM algorithm 
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are applied to update and attain apriori probabilities and 
means and variances of each class. 

2. METHODS 

2.1. Patients and MR Imaging 

The proposed method is evaluated on a dataset which is 
obtained and used in [2]. This dataset contains 16 female 
and 4 male with average age of 29 ± 8 years old, this 
dataset is selected according to the revised Mc Donald 
criteria 2005 [3]. All images were acquired according to 
full field MRI criteria of MS [3] in T2-weighted (T2-w), 
T1-weighted (T1-w), Gadolinium enhanced T1-weighted, 
and FLAIR in axial, sagittal and coronal surfaces. We 
selected the FLAIR images, especially axial ones, with 
lesions in deep, priventricular, subcortical, and cortical 
white matters (supratentorial lesions). More lesion load 
and higher accuracy of FLAIR in revealing of these MS 
lesions were the reason for this selection [4]. Each image 
volume (patient data) consisted of averagely 40 slices 
with a 256 × 256 scan matrix. The pixel size was 1mm2, 
and the slice thickness was 3mm without any gap. 

2.2. Manual Segmentation of MS Lesions and 
Brain Segmentation 

The segmentation of MS lesions was performed manu-
ally by neurologist and radiologist in Flair images with 
visual inspection of corresponding T1-w and T2-w im-
ages. These manually segmented images were used as 
Gold standard [5] to evaluate the performance of pro-
posed method. To evaluate the proposed method, differ-
ent types of images which have different lesion volumes 
were applied. Also, the brain segmentation was per-
formed using a fully automatic object-oriented approach 
[6]. This method was based on the regional-spatial char-
acteristics of brain in MR images. At first, original im-
age is converted to a binary image. Then, morphological 
opening on the binary image is performed and tiny re-
gions are eliminated. Three rectangular masks showing 
the cerebral regions are produced and the regions in the 
binary image which have overlap with these rectangles 
are preserved and, the rest are eliminated. Final mask is 
generated by dilation of selected regions and filling tiny 
holes. Finally, an image, which includes only cerebral 
tissues, is obtained by applying the resulted mask on the 
original image. 

3. PROBLEM FORMULATION 

3.1. Gaussian Mixture Model 

A finite mixture model  is the weighted sum of M 
> 1 components in  for  

 xp
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For the Gaussian mixtures model, each component den-
sity  xp m  is a Gaussian probability density given by 
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where T denotes the transpose operation, m  is the 
mean vector and m is the covariance matrix which is 
assumed positive definite. Here we encapsulate these 
parameters into a parameter vector, writing the parame-
ters of each component as m m m to get   , ,
 1 2π ,π , ,π , , .  1 2, ,m   m  Eq.1 can be rewritten as 

  1
x π x m mm

p p
M


                 (3) 

If we knew the component from which x came, then it 
would be simple to determine the parameters  . Simi-
larly, if we knew the parameters , we could determine 
the component that would be most likely to have pro-
duced x. The difficulty is that we know neither. 



3.2. Bayesian Classification 

Bayesian Classification is a probabilistic technique of 
pattern recognition and is based on the principle of 
Bayes decision theory [7], given in Eq.4 below 

     
 

j j
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p x
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
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where, x is a given feature vector, j  denotes a class, 
or state of nature,  jP   is the prior probability of 
class j ,  p x  is prior probability of the feature vec-
tor x,  jp x   is aposteriori probability, which a fea-
ture vector should be classified as belonging to class j , 
 jP x  is the conditional probability that a feature 

vector occurs in a given class j . For the approach here, 
the feature x shall consist of one component, intensity of 
brain pixels. The quantity  is known as the evi-
dence, and serves only as a scale factor, such that the 
quantity in Eq.4 is indeed a true probability, with values 
between zero and one. So, the maximum a posteriori 
(MAP) estimate of Eq.4 is used as below 

 p x

     j j jP x p x P              (5) 

According to Bayesian theory [8], the feature vector x 
is classified to j  of which the aposteriori probability 
given x is the largest between the classes. 

   
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Bayes decision rule is optimal in the sense of minimi-
zation of the probability of error. It is quite obvious that 
such an Ideal Bayesian solution can be used only if dis-
tributions  jp x  , and the apriori probabilitles  jP   
are known. In the context of classification of brain tissue, 
the probability models are not known, and therefore, 
must be approximated. The performance of the Bayesian 
classifier is directly related to how well these distribu-
tions can be modeled. 

3.3. EM Algorithm 

The Expectation-Maximization (EM) algorithm [9] is a 
general-purpose iterative algorithm for maximum likeli-
hood (ML) estimation.The EM algorithm consists of two 
steps, E-step (expectation) and M-step (maximization) 
which are alternately used until the  1

log
n

ii
p x


  

converges to a local optimum. Let  , 1, ,iX x i n    
be a set of n realizations of a random d-dimensional 
vector χ with a pdf . Thus the parameterized pdf 
can be written as a combination of pdfs of the M com-
ponents m  characterizing the finite 
mixture model  
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The likelihood can be expressed as  

    11 1
π

n n M

i mmi i
L p x p x i m 
       (8) 

E-step: the data χ are assumed to be incomplete and 
the complete data set  is determined by es-
timating the set of variables 
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is the posterior probability and  is the parameter 
estimate obtained after t iterations. 

t

M-step: in this step, the parameters  are deter-
mined according to the estimate of the variables . For 
Gaussian mixture models this corresponds to reestimat-
ing the , the 
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4. ENTROPY 

In the information theory, information entropy is a 
measurement of the system uncertain degree. The term 
of entropy in the theory of information was first intro-
duced by Shannon, in 1948, in [10]. 

4.1. Shannon Entropy 

Let  1, , nX x x   be a discrete random variable with 
values in S and probability mass function  p x , the 
information (or uncertainty) of each possible event is 

  logi iI x p  x             (14) 

The mean of  I X  is introduced as Shannon en-
tropy and is denoted by  H X  
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
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 H X  varies from zero to  log S  zero meaning that 
there is no uncertainty, whereas  log S  is reached 
when all elements of X have equal probabilities, in this 
case, the uncertainty is at its maximum [11]. 

4.2. Rényi Entropy 

Rényi further expanded the concept of Sannon entropy, 
and defined the  0, 1q q q   order Rényi [12] en-
tropy of probability density function  as  p x

   1
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q 
 
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Rényi entropy is a non-increasing function of q and It 
can be verified, by applying the 1’Hôpital rule that 
Shannons entropy is the Rényi entropy of order 1. 

5. ENTROPY ESTIMATION 

In this paper, Rényi entropy [12] is selected as entropy 
measure and estimation of this type of entropy which 
will be express, is based on Leonenko and et al. [13]. 

Let nX   be a random vector with probability 
measure μ having the density p. The proposed method 
by Leonenko estimates qH  from a sample of N inde-
pendent and identically distributed (i.i.d.) random vari-
ables 1 2 N  based on the nearest neigh- 
bor distances in the sample. This work is resumption of 
the method which estimates 

, ,X X  ,X N 2

1H  and proposed by Ko-
zachenko and Leonenko [14]. 

Leonenko’s method estimates q , Eq.17, for I 1q   
through the computation of conditional moments of 
nearest-neighbor distances. 

      1 ,
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q q x s
I I p p x p x q


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5.1. Estimators 

Suppose that 1 2 , are i.i.d. with a 
probability measure μ having a density p with respect to 
the Lebesgue measure. Let 

, , , 2NX X X N 

 ,x y  denote the Euclid-
ean distance between two points ,x y  of . For a 
given sample 
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So, qH  in Eq.17 is estimated as below 

    , , , ,
ˆlog 1N K q N k qH I q          (19) 

5.2. Maximum Entropy 

Suppose that we have a group of variables which have 
obtained from different types of distributions and have 
equal variance. According to the second Gibbs theorem 
[15], among all of them, Gaussian variables have maxi-
mum entropy. Therefor, by using this theorem, we 
would be able to understand that if the modeling of the 
variable with a gaussian kernel is acceptable or not. This 
procedure is done through the comparing of the theo-
retical maximum entropy and the real one of the under-
lying data. Let X be a d dimensional variable, the theo-
retical maximum entropy is computed as below 
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1
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2

d
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            (20) 

where,  is covariance of observations. There would 
be no difference between the theoretical maximum en-
tropy and the real one. If the data were truly Gaussian. 
We have used this property to determine the worst esti-
mated kernel in the mixture. 



6. SELECTION AND SPLIT OF THE 
WORST ESTIMATED KERNEL 

For every kernel in the mixture, the theoretical maxi-
mum entropy and the real one of the underlying data is 
computed and evaluated in the normalized weighted 

form [16] to find the worst estimated kernel. The worst 
estimated kernel would be selected through 
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where, k  indicates the worst estimated kernel, 
 realH k  is the real entropy of the data under the kth 

kernel, and  maxH k  is the maximum entropy of the 
kth kernel. Suppose that a special kernel has been se-
lected to split, during the split step, overall dispersion 
and two new covariance matrices have to be constant 
and positive define, respectively. If the kth component 
had to split into the k1th and k2th components, the first 
two moments, the mean vectors and the covariance ma-
trices should satisfy the following split equations which 
are proposed by Richardson and Green [17] 
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Solving the split equations is an ill-posed problem 
because the number of the equations is less than the 
number of the unknowns. To solve this ill-posed prob-
lem, we have used the method which is proposed by 
Dellaportas and Papageorgiou in [18]. They have used 
the spectral decomposition of the current covariance 
matrix, and the original problem is replaced by estimat-
ing the new eigenvalues and eigenvectors of the new 
covariance matrices without the previously cited con-
straint. Let k  the spectral decomposition 
of the covariance matrix 

V VT
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tion matrix with orthonormal unit vectors as columns. D 
is built by generating its lower triangular matrix inde-
pendently from  1 2d d   different uniform U(0,1) 
densities. The proposed split operation is given by 
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where   is a d × 1 vector of ones, and  
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and eigenvalues for the new component in the mixture. 
They are calculated as 
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with , and  and  denoting 
beta and uniform distributions, respectively. The expres-
sions for 1

2, ,j    .,.U  .,.

  and 2  establish that the new means are 
obtained by moving across the axes formed by the ei-
genvectors with sizes 1 1

2 ku   and 2 2
2 ku  . We must 

keep  positive but let  vary in [–1, 1] the interval 
because the moves in both directions across the large 
eigenvector are achieved via expressions for 1

1
2u 2
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  and 

2 , but the moves across the shorter axis require both 
positive and negative . 2

2u

7. ESTIMATION OF PROBABILITY 
DENSITY FUNCTION 

This section describes the proposed method for fitting 
Gaussian mixture models in depth. The algorithm starts 
with only one kernel, whose initial parameters are given 
by the whole samples. As is shown in [19], if we denote 

1 2,  a set of samples of a pdf, the ML 
hypothesis for the mean and covariance matrix are 
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Furthermore, the initial value for the first prior 1  is 
1. EM algorithm computes a fitted model which consists 
only one kernel by these initial values. Whereas the 
model has only one kernel, this kernel should be split 
and replace by two other ones. This work is done by 
Eq.23. The new model with two kernels has to fit on 
samples. EM algorithm with initial values which are 
obtained by previous split, is applied for this reason. 
Now, the fitted model has two kernels as two classes and 
it is less than our interested number of kernels which is 
three, csf, normal tissue and MS lesions. So, the worst 
fitted kernel among these two kernels has to be selected 
and split. As mentioned before, the worst fitted kernel 
has big difference between the theoretical maximum 
entropy and the real one against other kernels. So, we 
could select the worst kernel by means of maximum 
entropy and real one using Eq.21. 

π

The worst fitted kernel is replaced by two new kernels 
through split (Eq.23) and the other kernel is remained 
with no variation. To find the final fitted model which 
has three kernels, another EM algorithm is applied, the 
initial parameters for EM algorithm are obtained by split 
(split of the worst fitted kernel) and from previous EM 
algorithm (for remained kernel). Figure 1 shows the 
Entropy-based EM algorithm to fit the best fitted mix-
ture to barin samples. 

8. MARKOV RANDOM FIELDS 

An advantage of MRF models [20] is the use of 
neighborhood information to improve the apriori prob-
abilities  P   [21]. The intuition behind the MRF 
model is that most pixels belong to the same class as 
their neighbors, and it is a powerful tool to describe the 
class assigning or labeling dependence between adjacent 
pixels. 

Suppose a digital image bases on a M N  lattice, so 
image describes as 

  , 1 ,1S s x y x M y N          (26) 

 

 Fit a mixture with three kernels to brain samples 
 

Brain Image 

Fit a kernel to all brain samples through EM 
algorithm. 

Split the obtained kernel into two new kernels 
and use the obtained result as initial values to 

fit a new model with two kernels to all 
samples through the EM algorithm. 

Find the worst estimated kernel in the mixture 
which has two kernels by comparing the 

maximum entropy and real entropy, and split 
it into two new kernels and use its result as 

initial values for the next level, the other 
kernel has no variation. 

Fit a model with three kernels to samples 
through the EM algorithm, initial values are 

prepared from previous step. 

 

Figure 1. The Entropy-based EM algorithm to find the best 
fitted model to barin samples. 
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Assuming that the unobserved random field  ,x y  
is a Markov random field with the probability density 
function of  , x y  of a segmented image depending 
on its finite neighboring region  then  ,N x y

        
    
, , , , ,

, ,

i i i ip x y x y x y x y

p x y N x y

 



 





 (27) 

where  is a set of all labeled neighbors. So, the 
segmentation problem defined as a pixel classification 
problem using MAP can be estimated using a Gibbs dis-
tribution [22], which is easier to estimate. The Gibbs 
distribution can be expressed as 

 ,N x y

      1
,1

, , exp
U x y

Tp x y N x y
z








   (28) 

where,  
 1

,

,
exp

U x y
T

x y
z 

   is a normalization con 

stant which guarantees that  is always 
smaller or equal to one, and T is a constant which stands 
for the temperature constant which normally supposes to 
be one. And the energy function 

  ,p x y 

         , ,
, ,

i i i ix y C x y
U x y V x y 


     (29) 

where, cliques  are subsets of  or  ,C x y 


 ,N x y
 ,x y  itself and   ,i iV x y


 is an arbitrary func-

tion of  ,x y . The equivalence between MRF and 
Gibbs distribution is expressed by Hammersley-Clifford 
theorem, which states that  , x y  is a MRF with 
neighborhoods  if and only if  ,N x y  ,x y

 ,C x y
 is a 

Gibbs distribution field with the cliques  in-
duced by the neighborhood  y,N x



. This theorem pro-
vides an easy way to construct the MRF in an explicit 
manner, i.e., one can explicitly estimate the conditional 
probability distribution of MRF by choosing specific 
kinds of cliques  and an appropriate energy 
function  that is specific for the practical 
problem. In our model we used the simple equation for 
the 

 ,C x y
  , yU x

U   energy function proposed by Therrien [23], 
and utilized by Nett et al. [24]. This equation is a linear 
combination of products of elements in the cliques: 

         
    

1

2

, , 1, 1,

, 1 , 1

U x y x y x y x y

x y x y

     

  

    

   
 

(30) 

9. COMPUTATION OF THE APRIORI 
PROBABILITY BY MRF MODEL 

At first, the brain image is classified through the Bayes-
ian classification method by using the model which is 
obtained as the result of Entropy Based EM algorithm. 
The gray level values for each tissue class resulted from 

previous step are extracted. Then, the class conditional 
probability density function of each tissue class (i.e., 

 ˆk   and  2ˆk  ) is estimated through the EM algo-
rithm. Also, apriori probabilities   KP   for tissue 
classes are estimated by MRF model stated in Eqs.28-30. 
The parameters of MRF model, i.e.,  , 1  and 2  
have been experimentally set to 0.1, 0.01, and 0.01 for 
the best result. Next, the new value for termination tol-
erance is calculated and evaluated. The new value of 
termination tolerance is calculated from 

     
     
     

1

1

1

ˆ ˆmax ,

ˆ ˆmax max ,

ˆ ˆmax ,

k k

k k

k k

abs P P

tol abs

abs

 

   

   







  
   
 

 
 

     (31) 

in which  k̂P  ,  ˆk   and  ˆk   are the row 
vectors of the apriori probabilities, mean, and variance 
of the tissue classes in kth iteration, respectively. This 
algorithm which computs the apriori probabilities by 
MRF model is shown in Figure 2. 
 

 Computation of the apriori probabilities by MRF model and 
update means and variances of each class 

 

The obtained model 
from Entropy based 

Em algorithm 

Initialization of: 
maximum iteration, 

 and tolerance 

Bayesian classification  

Extraction of the 
gray level values 

for each tissue class

Estimation of apriori 
probabilities by 

MRF model 

Estimation of class conditional
probability density function of 

each class through  
the EM algorithm 

Calculation and evaluation of the new value 
for termination tolerance 

Post processing 

Segmented barin 

 

Figure 2. Computaion of apriori probabilities and update of 
means and variances. 
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10. POSTPROCESSING 

In manual segmentation, the possible lesions with sizes 
as small as one or two pixels are not usually considered 
as MS lesions by experts. However, as the gray level of 
neighboring pixels in an image usually are highly corre-
lated, in our approach, the one-pixel object is considered 
as a possible noise if its gray level is higher than the 
average gray levels of its neighbor pixels (in 3 × 3 
neighborhood) plus a margin of 25 (which is selected by 
trial). This object is recognized as noise and removed in 
the next step. Regarding the two pixel objects, in con-
trast with the manual procedure, these objects may be 
identified as seed points of MS lesions as recommended 
by the neurologist. 

 JBiSE 

11. SIMULATION RESULTS 

The results of proposed method, for two slices which 

contain different lesion loads are shown in Figure 3 and 
Figure 4. Segmented brain of typical original FLAIR 
images are shown in Figure 3(a) and Figure 4(a). Mul-
tiple sclerosis pixels and the resulting segmented slices 
are shown in Figure 3(b) and Figure 4(b). Figure 3(c) 
and Figure 4(c) show the histogram of brain pixels and 
estimated distribution through the proposed method. 
Also, three estimated kernels which constitute gaussian 
mixture model are shown in Figure 3(d) and Figure 
4(d). 

12. EVALUATION 

To evaluate the proposed method, SI [25], OF and EF 
[26] criteria are considered and computed over all 20 
patients. 

2 TP
SI

2 TP FP FN




  
         (32) 

 

 

Figure 3. Result of applying the proposed algorithm to the image of a patient: (a) brain image; (b) result of 
proposed method; (c) histogram of brain, overlaid. 
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Figure 4. Result of applying the proposed algorithm to the image of a patient: (a) brain image; (b) result of proposed method; (c) 
histogram of brain, overlaid. 
 

TP
OF

TP FN



                (33) 

FP
EF

TP FN



                (34) 

where, TP stands for true positive voxels, FP for false 
positive voxels, and FN for false negative voxels. SI and 
OF for a good segmentation should be close to 1 and EF 
should be close to 0. As mentioned before, patients are 
categorized into 3 groups. The proposed method has 
been applied to all patients and SI, OF and EF criteria 
are computed and mean values of each group are illus- 
trated in Table 1. It is noticeable that SI, OF and EF are 
improved with an increase in lesion load. Also, the 
volumetric comparison of lesions between the proposed 
method and gold standard using correlation coefficient 

(CC) for each patient group is shown in Table 1. By 
attention to correlation coefficient values, accuracy of 
the proposed method is increased for patients with large 
lesion load. 

13. CONCLUSIONS 

In this paper, we have described and validated a fully 
automatic method for classification of brain tissues in 
MR FLAIR images of MS patients. A gaussian mixture 
model which has three kernels as brain tissues is ob-
tained through entropy based EM algorithm. This task 
starts with only one kernel and finally finds three kernels 
with no initially supplied training samples. Then, apriori 
probabilities of classes are estimated using MRF. At last, 
brain tissues are classified through Bayesian Classifica-
tion. This framework has been validated on a data set of  
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Table 1. Similarity criteria and volumetric comparison of lesions for each patient group. 

Correlation analysis Similarity criteria 

Correlation CoefficientM ± SD (CC) MGS ± SDGS (CC) EF OF SI 
N Patient category 

0.93 1.87 ± 1.11 1.89 ± 1.13 0.27230.7277 0.7262 7 Small lesion load 

0.95 11.58 ± 3.08 11.59 ± 3.10 0.22010.7395 0.7531 10 Moderate lesion load 

0.98 22.23 ± 3.52 22.21 ± 3.54 0.15410.7857 0.8101 3 Large lesion load 

N: number of patients in each group, M: mean, SD: standard deviation 

 
Table 2. Similarity index (SI) values for the proposed method 
and the other methods. 

Method Similarity index (SI) 

Johnston et al. [3]  0.65 

Boudraa et al. [13]  0.62 

Leemput et al. [14]  0.51 

Zijdenbos et al. [31]  0.68 

Proposed Method  0.75 

 
MR FLAIR images of 20 MS patients via similarity cri-
teria (i.e., SI, OF, and EF). There are other segmentation 
methods which have been evaluated via similar ways 
(i.e., SI), and have used manual segmentation for 
evaluation of them, such as Johnston et al. [27], Boudraa 
et al. [28], Leemput et al. [29], and Zijdenbos et al. [30]. 
Comparison of proposed method with these methods is 
shown in Table 2. Johnston et al. [31] presented a semi- 
automatic segmentation approach based on stochastic 
relaxation method (SRM) and iterated conditional mode. 
Boudraa et al. [28] performed an automatic detection of 
MS lesions by using fuzzy C-means (FCM) algorithm. 
Leemput et al. [29] proposed the use of an intensity- 
based and stochastic model-aided segmentation ap-
proach for fully automatic segmentation of MS lesions. 
Zijdenbos et al. [30] developed an automatic pipeline 
based on a supervised artificial neural network (ANN) 
classifier. As it is seen in Table 2, the proposed method 
has improved the results reported in [26-29]. Also, in 
[31], it is mentioned that a value for SI more than 0.7 
represents a very good segmentation in this field. Future 
work will include improving accuracy and correlation 
value. 
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