
Advances in Pure Mathematics, 2016, 6, 564-570 
Published Online July 2016 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2016.68045  

How to cite this paper: Mahmood, M.K. and Anwar, L. (2016) Loops in Digraphs of Lambert Mapping Modulo Prime Powers: 
Enumerations and Applications. Advances in Pure Mathematics, 6, 564-570. http://dx.doi.org/10.4236/apm.2016.68045 

 
 

Loops in Digraphs of Lambert  
Mapping Modulo Prime Powers:  
Enumerations and Applications  
M. Khalid Mahmood, Lubna Anwar 
Department of Mathematics, University of the Punjab, Lahore, Pakistan  

 
 
Received 5 February 2016; accepted 25 July 2016; published 28 July 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 

For an odd prime number p, and positive integers k and ( )kg p /
∗

∈ , we denote ( )kG g p, , a 

digraph for which { }kp0,1, 2, , 1−  is the set of vertices and there is a directed edge from u to v 

if ( ) ( )kf u v mod p≡ , where ( ) xf x xg= . In this work, we study isolated and non-isolated fixed 
points (or loops) in digraphs arising from Discrete Lambert Mapping. It is shown that if  

( )  k ig mod p i k1 ,1 1−≡ ≤ ≤ − , then all fixed points in ( )kG g p,  are isolated. It is proved that the di-

graph ( )kG g p,  has kp 1−  isolated fixed points only if kg tp t p 11, 1 1−= + ≤ ≤ − . It has been cha-

racterized that ( )kG g p,  has no cycles except fixed points if and only if either g is of order 2 or g 
is divisible by p. As an application of these loops, the solvability of the exponential congruence 

( )x kxg x mod p≡  has been discussed. 
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1. Introduction 
The Lambert W functions are used to find solutions of such equations in which the unknown also appears in  
exponential (or logarithmic) terms. It is defined as ( ) ( )eW cc W c= , where c is a complex number. Equivalently, 
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it can be defined as ( ) ewf w w= . Lambert solved a Diophantine equation kx x t= +  in 1758 (see [1]). Later,  
the solution is expressed in term of series. In 1980, the Lambert function was stored in MCAS (Maple Computer 
Algebra System) as a function for the solution of algebraic equations involving exponential (or logarithmic) 
functions (see [2]). In this work, we discussed solutions of such functions by means of their digraphs using 
residue theory from number theory. 

Let   be the ring of residue classes modulo kp . Define :f    by ( ) xf x xg= , the discrete Lambert 

mapping, where ( )*/ kg p∈   . We investigate this mapping using directed graphs whose vertices are residues 

modulo kp  with edges from u  to v  if and only if ( ) ( ) kf u v mod p≡ . This digraph is denoted by ( ), kG g p .  

We investigate self loops (fixed points) of these digraphs and also lift up the investigations of such digraphs by 
Jingjing Chen and Mark Lotts in [3] from modulo a prime p to modulo kp . Results regarding fixed points, 
isolated points followed by astute proofs have been presented. It is important to note that all solutions of 
congruences of Lambert functions are difficult to find since such mappings are hard to invert and need enormous 
inversions in any computer algorithm. To understand the terminology and symbols, we follow [3]-[6]. 

Definition 1. (see [7]). Let p be prime and a be any integer not divisible by p. A least positive integer r such 
that ( )1 r ka mod p≡  is called order of a modulo kp . It is denoted as Ord kp

a r= . 

Theorem 0. (see [3]). Let q be any prime and ( ) tf t tg= . Then, 

1. Let g be a quadratic residue of q, then ( )1 1  
2 2

q qf mod q− −  ≡ 
 

. 

2. A point t is fixed ⇔ ( )1  tg mod q≡ . 
3. Fixed points of f are multiples of the order of g.  
4. Let 1g q= − . If t is odd, then ( )f t q t= − , and if t is even, then ( )f t t=  is a fixed point. 
Let’s draw a digraph of the Lambert map. Take 13g =  and chose a composite modulus m as 15 3 5m = = × . 

We see that the digraph (see Figure 1) has six loops (fixed points) of which three are non-isolated. The digraph 
has two non-isomorphic components. 

 

 
Figure 1. ( )13,15G .                                                                    
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2. Fixed Points of the Map  
Recall that a vertex u is said to have a loop ( fixed point) on it if ( ) u kug u mod p≡  and it referred to as an 
isolated fixed point of the graph ( ), kG g p  if ( ) u kug u mod p≡  and there does not exist any vertex v such 
that ( ) u kug v mod p≡ . In this section, we present some results to find fixed points (or loops) and isolated 
points of the graph ( ), kG g p .  

Lemma 1. Let p be any prime. Then, ord 2kp
g =  if and only if 1kg p= −  for any integer g.  

Proof. Let Ord 2kp
g = . Then 2 is the least positive integer such that ( )2 1 kg mod p≡ . This means that either 

( )  1 kg mod p≡  or ( ) 1 kg mod p≡ − . But the first implies that, Ord 1kp
g = . Hence ( ) 1  1 k kg p mod p≡ − ≡ − . 

Since ( )*/ kg p∈   . Thus 1kg p= − . Conversely, it is easy to see that ( ) ( )2 21 2 1 1 k k k kp p p mod p− = − + ≡ .  

 
The proof of the following theorem is simple and can be established similar to Theorem 0 (4). 
Theorem 1. Let 1kg p= −  and f be Discrete Lambert Map. If a is any odd residue of kp  then a a−

 
and if a is an even residue of kp  then a a

 under f.  
In the following theorem, we find the values of g for which the fixed points of the digraph are necessarily 

isolated. Before proving the assertion, we give the following important lemmas.  
Lemma 2. If ( )1g mod p≡  then 1 1, 0 1, 1k ktp t p k− −≤ ≤ − >  are the fixed points of the graph ( ), kG g p . In 

particular, the vertices, 
1

2 2 2 2, 2 , , 1
k k k k

p p p p
       +              

 
 ⋅ −
 
 

  when k is odd and 2 2 2 2, 2 , , 1
k k k k

p p p p
       
              

 
 ⋅ −
 
 

  

when k is even are always fixed points.  
Proof. Let ( )1g mod p≡ , then 1g sp= +  for some integer s. But then  

( ) ( ) ( )
111 1 1 11 1 terms involving

kk tpk tp k k k k k ktp g tp sp tp stp p tp mod p
−−− − − −= + = + + ≡          (1) 

For the rest of the proof, we note that 11
2 2
k k +  + =  

 when k is odd and 
2 2
k k  =  

 when k is even. 

Therefore,  

( )

( ) ( )

222 2 2 2

1 22 2

1 1
kkk k k k

pp

kk k
k k k

p g p sp p sp p

p sp p mod p p mod p

        

 
 +  

 
= + = + +  

 

= + + ≡ ≡





 

The case when k is odd can be dealt in a similar technique.                                        
The following Lemma is of crucial importance. However, its proof is simple and can be viewed as a direct 

consequence of the Definition 1.  
Lemma 3. Let g be a residue of kp . Then ord k

i
p

g p=  if and only if ( )1 , 1 1.k ig mod p i k−≡ ≤ ≤ −   
Proof. Let ord kp

g l= . Then l is the least positive integer such that ( )1 lg mod p≡ . Suppose ( )1 k ig mod p −≡ , 

then 1 k ig sp −= +  for some integer s such that ( ), 1s p =  and 1, 2, , 1i k= − . Now  

( )1 1 terms involving higher powers of 
ll k i k i k ig sp slp p− − −= + = + +  

Thus ( )1l kg mod p≡  if and only if ( )0k i kslp mod p− ≡ . But ( ), 1s p = . Hence, we conclude that 

( ) ( )1 0l k k i k ig mod p lp mod p l p−≡ ⇔ ≡ ⇔ =  for 1, 2, , 1i k= − .                                  

Lemma 4. Let ord kp
g α= . If α  divides v then v is a fixed point of the digraph ( ), kG g p .  

Proof. Let ord kp
g α= . Then α  is the least positive integer such that ( )1 kg mod pα ≡ . Now for any vertex 
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v, if α  divides v then v αβ=  for some integer β . But then ( ) ( ) ( )  mod v kf v vg g g v p
βαβ ααβ αβ= = = ≡ .  

Theorem 2. If ( )1 , 1 1k ig mod p i k−≡ ≤ ≤ − , then all fixed points of ( ), kG g p  are isolated.  

Proof. Let ( )1  , 1 1k ig mod p i k−≡ ≤ ≤ − . Then by Lemma 3, ord k
i

p
g p=  for 1, 2, , 1i k= − . This means 

that possible orders of g modulo kp  are 2 3 1, , , , kp p p p −
 . Hence by Lemma 4, , 1 1ip i kλ ≤ ≤ − , for any 

integer λ , are the fixed points. We need only to show that these are the possible fixed points and are isolated. 
Since | 1k ip g− − , so, 1 k ig tp −= + , where 1 1t p≤ ≤ −  and 1 1i k≤ ≤ − . Let x be any fixed point in ( ), kG g p , 
then ( ) ( ) ( ) ( ) ( ) ( ) 1  1  

xx k k i k k i kx f x xg mod p x tp mod p x tp x mod p− −= ≡ ≡ + ≡ + + . Or  

( ) ( )1 1 0 k i kx tp x mod p−+ + − ≡ . This means that either |kp x  or |k k ip tp x− + . But kx p< . Hence  

|k k ip tp x− + . This clearly shows that x is ip  or multiple of ip . Finally, we show that these are isolated. Let 
jpλ  for some 1, 2, , 1j k= − , is adjacent to some jx pλ≠ . Then ( ) 

jj p kp g x mod pλλ ≡ . But  

( ) ( ) j j kf p p mod pλ λ≡ , so ( )jj p j kp g p mod pλλ λ≡  implies that ( ) j kp x mod pλ ≡ . That is, |k jp p xλ − ,  

which is not possible since 0 , .j kp x p< <                                                        
Figure 2 depicts Theorems 2 and 3. In Figure 2, we note that 25ord 11 5= . By Theorem 2, the vertices 5, 10, 

15, 20 are the fixed points and are isolated. Also 11g =  is not a multiple of 5, so by Theorem 3, 0 is also an 
isolated fixed point. Thus all fixed points are isolated. 

Theorem 3. Let ( ), kG g p  be a discrete Lambert digraph. Then, 
i) If 1, 1 1kg tp t p −= ≤ ≤ −  then 0 is the only fixed point of G. 
ii) 0 is an isolated fixed point of G if and only if 1, 1 1.kg tp t p −≠ ≤ ≤ −  
iii) If ( )kpφ  is a fixed point then 1, 1 1.kg tp t p −≠ ≤ ≤ −  

Proof. i) Let 1, 1 1kg tp t p −= ≤ ≤ −  and x be any fixed point of G. Then, 
 

 
Figure 2. ( )11,25G .                                                                    
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( ) ( ) ( ) ( )( ) ( ) or 1 0 x xx k kx f x xg x tp mod p x tp mod p= = ≡ − ≡               (2) 

This means that either |kp x  or ( )|1 xkp tp− . But kx p< , so kp x . Hence (2) yields that,  

( ) ( )1 x ktp mod p≡ . This is possible only if 0x = . 

ii) Let 1, 0,1, 2, , 1.kg tp t p −≠ = −  On contrary we suppose that there exist a vertex 0x ≡/  such that x is 

adjacent to 0. That is, ( ) ( )0 x kf x xg mod p= ≡ . This means that |k xp xg . But ( )0 kx mod p≡/ . Hence,  

|k xp g . This certainly implies that |p g . Hence, g kp=  for some integer k, a contradiction to supposition 
that 1, 0,1, 2, , 1kg tp t p −≠ = − . Hence 0 is isolated. 

Conversely, suppose 0 is isolated. Let there be any integer k such that g kp=  and there exist some x such 

that ( )| xkp kp . Then there must exist some integer 0t ≡/  such that ( ) ( )0 t kt kp mod p≡ . This shows that 0 is 

not isolated, a contradiction. Therefore 1, 0,1, 2, , 1kg tp t p −≠ = − . 
iii) Let ( )kpφ  be a fixed point together with 1, 1 1.kg tp t p −≠ ≤ ≤ −  Then,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )mod 
k kp pk k k kp g p tp p pφ φφ φ φ= ≡  

( ) ( ) ( ) ( )( )so,  1 ,  since , 1
Kp k k ktp mod p p pφ φ≡ =  

This shows that tp  is a primitive root of kp . But ( ), ktp p p≥ . Thus the word primitive root arrive at a 
contradiction.                                                                              

The following corollaries are the simple consequences of above theorem. 
Corollary 1. Let { }1, 2, , 1kV p= −  be the set of vertices in ( ), kG g p . If ( ){ }1, 2 , , 1kg p p p p−∈ −  

then the digraph ( ), kG g p  has no fixed point.  

Corollary 2. If ( ){ }1, 2 , , 1kg p p p p−∈ −  then ( )kpφ  is not a fixed point.  

Theorem 4. The digraph ( ), kG g p  contains no cycles except fixed points if and only if either g is of order 2 
or g is divisible by p.  

Proof. By Lemma 1, ord 2kp
g =  if and only if 1kg p= −  for any integer g. Also by Theorem 1, if 

1kg p= −  and x is odd then ( ) kf x p x= −  otherwise ( )f x x= . We claim that there exist no cycle of length 
2. For otherwise, an odd vertex a must mapped onto kp a b− ≡  (say), which is of course even and hence b can 
never adjacent to a since ( )f b b≡ , being even, a contradiction. Thus there does not exist any cycle of length > 
1. Now if g is a multiple of p then it is trivial that all vertices constitute one component. Also by Theorem 3(i), if 
g is a multiple of p then 0 is the only fixed point. Thus the digraph must be a tree with root at 0. Consequently 
( ), kG g p  contains no cycle of length > 1.                                                       
In Figure 3, 15 3 5g = = × . By Theorem 4, 0 is the only isolated fixed points. 

3. Applications  
In recent years, studying graphs through different structural environments like groups, rings, congruences has 
become much captivating and dominant field of discrete mathematics. These assignments are easy to handle 
most of the mathematics which is integral based. A variety of graphs have been introduced and characterized 
regarding their structures through this dynamism. By means of congruences one can inspect numerous 
enthralling topographies of graphs and digraphs. Thus it becomes interesting to demonstrate that every 
congruence can generate a graph and hence under certain conditions on these graphs, the nature and solutions of 
congruences can be discussed. In this section, we discuss the solvability of the congruence and enumerate their 
solutions using the results given in previous section. The non-trivial ( other than 0x = ) solution of the 
congruence modulo a single prime p is easy to discuss since every x p<  is prime to p. So the congruence 

( ) xxg x mod p≡  is solvable if and only if ( )1 xg mod p≡  as given in Theorem 0 (4). Hence by Fermat's Little 
Theorem, the number 1p −  becomes a solution of ( )1 xg mod p≡ . Now if we lift up the modulo from p to its 
higher powers , 1kp k > , then the vertices which are not prime to p must not follow the fashion as for 1k = .  
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Figure 3. ( )15,25G .                                                                                     

 
The following result tackle this case and enumerate the solutions as well. Note that the vertex 0x =  is the 
trivial solution in either case. The proof of the following theorem is simple and can be established using results 
given in Section 2. 

Theorem 5. Let p be an odd prime and 1k > . Then the following hold: 
1. If ( )1 g mod p≡  then the congruence ( ) x kxg x mod p≡  is solvable. 
2. Let 0b ≠  be any integer. If ord kp

g b=  then the congruence ( ) x kxg x mod p≡  is solvable. 

In particular, , 2 ,3 , ,
kpb b b b

b
 
 
 

  all are its 
kp

b
 
 
 

 solutions. 

3. If g is a primitive root of kp  then congruence ( ) x kxg x mod p≡  has a unique non-trivial solution. 
Thus, 0 and ( )1 1kp p− −  are the only solutions of ( ) x kxg x mod p≡ . 

4. If ( ){ }1, 2 , , 1kg p p p p−∈ − , then the congruence ( ) x kxg x mod p≡  has no non-trivial solution. 
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