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Abstract

A symmetric hybrid linear multistep method for direct solution of general third order ordinary
differential equations is considered in this paper. The method is developed by interpolation and
collocation approach using a combination of power series and exponential function as basis func-
tion. The consistency, stability, order and error constant of the method were determined. The re-
sults showed that the method is consistent, zero stable and of order five with low error constant.
The accuracy compared favorably over existing methods with higher order of accuracy.
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1. Introduction

We consider the direct numerical solution of the general third order initial value problem of the form
y' = (YY) y(u) =Y V(#)=Yu ¥ (4)=Y, @

where u,y, f eR.

It is worth noting that this problem (1) can be modeled from the physical problems such as the thin film flow
of a liquid in fluid dynamics, electromagnetic waves and gravity driven flow. Therefore, this type of problem is
conventionally solved by reducing it to system of first order ordinary differential equations. [1] and some other
authors pointed out that this type of problem can be solved directly to circumvent the inherent setbacks posed by
the conventional method, [2]-[7]. These scholars proposed different methods of various degrees of accuracies
using no other approximate basis functions other than power series.
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[8]-[10] independently showed that the direct solution of the general second order initial value problems can
be implemented without the need for predictors or starting values from other methods. In their work, they used
power series as approximate solution to derive three-step LMM implemented in block modes. [11] investigated
and developed a two-point block method in the form of Adams-Moulton type for solving general second order
odes directly using variable step size while [5] and [12] proposed a linear multistep method for the direct solu-
tion of initial value problems of ordinary differential equations for special third order initial value problem and a
hybrid multistep method to solve third order 1\VVPs of ODEs respectively with constant step size. However, [11]
developed a two-point four-step block method with variable step-size. In his work, the method was implemented
at two points simultaneously in a block using four backward steps. Moreover, these constant and variable step
sizes add little or nothing to the accuracy of the results due to the restriction of interpolation points to the order
of the problems.

Recently, [13] and [14] figured out that in search for a method that gives better stability condition, the use of
approximate solution which combines power series with exponential function is imperative. Therefore, in this
work combination of power series and exponential function was used as basic function in determining a symme-
tric hybrid linear multistep method for the solution of problem (1) directly.

2. Materials and Methods

In this work, we considered using a combination of power series and exponential function in the form
CHi CHi Gf-Xj
j!

y(x)=2ax + Y —— )
j=0 =0 J:

as the basic function for the development of the method, where ¢ and i represent the number of collocation and
interpolation points respectively.
The differential system of (2) is given as
c+i-3 cHi a-Xj73

(=5 10002 ¥

j=0

The basis function (2) is interpolated at all selected points x,,;, i =0, % 1,% and the differential system (3)

c¢=0,1,2 which gave rise to a system of equation of the form

Ax=b 4)

is collocated at only the grid points, x

n+c?

where

A:[aO’ al' aZ’ aS’ a4’ aS’ aG]T‘ b= yn’ ymy yn+1! yn+§’ fn’ fn+1’ fn+2 and

2 2
2 2x, X le ix;‘ ixﬁ ixr?
3 12 60 360
2 2x , X, 1x3 ) ix4 L ix5 L ix6 .
ﬂ+5 n+= 3 n+§ 12 ”‘*‘E 60 ”‘*‘E 360 n+§
1 1 1 1
2 2Xn+1 X§+l g Xr?:+1 E X:+1 E Xr?+1 % Xr?+l
x=[2 2x , X, 1x33 ix“3 ix53 ix63 .
n+3 n+> 3 n+> 12 n+s 60 n+s 360 s
0 0 0 2 2x, x? %xﬁ
0 0 0 2 2X X2 1x3
n+1 n+1 3 n+1
0 0 0 2 2X X2 1x3
n+2 n+2 3 n+2

OALibJ | DOI:10.4236/0alib.1102583 2 April 2016 | Volume 3 | e2583


http://dx.doi.org/10.4236/oalib.1102583

F. O. Obarhua, S. J. Kayode

Solving (4) for a;’s, j= 0(1)6 using Gaussian elimination method and substituting it back into (2) gives a
continuous hybrid method of the form

k-1

y(x)= > | 2 (X) Ve +r1(x)yn+1 +7,(X) yn+3}+ h{Zﬁj (x) fnﬂ} (5)

j=0 2

. . X=X . . . s
Using the transformation, t = hM' the continuous coefficients «;, B;, 7;, 7, and their first and second

derivatives are obtained as,

a, =i(—16t6 +80t* —19t2) z :i(let6 —80t* + 49t? —15t)
045 1715

T :i(let6—80t4+109t2+45t) a :i(—16t6+80t4—79t2+15)
245 T

h3
= —16t° +16t° + 40t* — 9t —t
P 1920< )
h3
= —112t® — 48t° + 560t* + 480t° — 133t —117t 6
A, 2880( ) (6)
h3 6 5 4 2
= 16t° + 48t +40t" —11t° — 3t
% 5760( )

a) = i(—96t5 +320t" - 38t)
45h

7] = i(96t5 —320t" +98t ~15)
15h

)= i(%tf’ —320t" + 218t + 45)
45h

al = %(—9&5 +320t" ~158t) @)

—96t° +80t* +160t° —18t —1)

—672t° — 240t* + 2240t° +1440t* — 266t —117)

(96t5 +240t* +160t° — 22t — 3)

a0=45h2( —480t" +1280t° - 38)

(480t —1280t° +98)

(480t —1280t% + 218)

a = L (—480t* +1280t° ~158) 8)
( —480t* +320t° + 480t° ~18)
Bl= (—3360t* —960t° + 6720t" + 2880t — 266)

480t* + 960t> + 480t> —22)
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Evaluating Equations (6), (7) and (8) at the last end grid point where t=1 gives the discrete methods
3

h
yn+2_2y 3+2y 1~ Yn =a(fn+2+14fn+l+ fn) (9)
n+E n+E

y! ! 13y 4 +66y,, 141y | +62y _ (157f,,, +1590f, , +125f,) (10)

n+2 15h et g n+1 ; n 920 n+2 n+l nj:

1 h

' ———| —262 +966y , —1146 +442y | =——(949f , +5014f , +453f ). 11
yn+2 45h2 [ yn+§ yn+1 ym% ynj 2880 ( n+2 n+l n) ( )

The order p and error constants of Equations (9), (10) and (11) are p=5, Cp+3:—9.1146><10‘4,
-3.9267x107%,and -1.0032x107 respectively.

3. Implementation of the Method

The starting values of the discrete method (9) obtained from (5) for third order problem of ordinary differential
equations are generated in predictor-corrector mode of the same order of accuracy. The predictor methods and
its derivatives of the same order with the corrector method are obtained using the same outlines discussed above

to give
h3
Yoo =3Y 3 +3Ypu— y 1 foat T 5] (12)
n+E 2 16 nJrE
hZ
! 61 -113 +63 -11 157f ,+5f ,—-8f |. 13
yn+2 10h( y 3 yn+1 ynJ% ynj 480( e § n+l nj ( )
" _ h
Y, — 15 [229y 3 -627y,,, +567yn% —169yn] =220 [949 fng 1119f,,, -124 fnJ. (14)

The order p and error constants of equations (12), (13) and (14) are p=5, C ;= 3.2552x107°, 1.0136x102,

and 9.8763x107 respectively.
Other explicit schemes were developed to evaluate other starting values. Taylor series expansion is adopted

for y,,.,as i :%,l and their first and second derivatives up to order p=5.

_ . PPN (1) SV (1) MPRR (L) NP () S
yn+i—y(xn+|h)_y(xn)+|hy(xn)+Ty(xn)+ 3 f + 2 fi+ 5 fr (15)
N L (ihy . (iny,, (in)*,,
Vi = (6 +i) =y (6, )+ iy (x,) + S50 6, + S £+ 0 £ (19)
and
Y = Y (% +ih) = y"(x,) +ihf, +('2) £/ ('2? fr 17
4. Analysis of the Method
4.1. Order and Error Constant of the Method
In this paper we adopt the method proposed in [16], with the linear operator
k Kk
Zaj yn+j = hSZﬂj fn+j (18)
j=0 j=0

and the linear operator L is defined as:
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L[y(x);h]= é[ajy(x+ i)+ {7 (x)+ 7, (X)} = h*B;y" (x+ jh)] (19)

where o, and S, are both non-zero and assuming that y(x) is continuous and differentiable. We can ex-
pand (13) by Taylor series expansion about the point x to obtain the expression

L[ y(x),h]=coy(x)+chy’(x)+c, (hZ/Z!) y'(X)+: ¢, (hq/q !) Yy (X)+-- (20)
Therefore, we say that the method has order p if,
Cp=C=Cy=-=C, :CM:O, Cpiz #0.
In this paper, it reveals that the methods (9), (10) and (11) have order p=5, and error constants

Cps =—9.1146x107, -3.9267x10° and -1.0032x107 respectively.

4.2. Zero Stability

A linear multistep method (LMM) is said to be zero-stable, if no root of the first characteristic polynomial
p(r) satisfies |r|<1 and is simple for |r|=1.
For our method

p(r)=

3 1
r? —2r2 +2r2 —L‘:O
r=0,1.
Hence our method is zero stable.

4.3. Region of Absolute Stability of the Method

Let us consider the stability polynomial of the linear multistep method defined by o and o as

H(r,ﬁ)=p(r)—ﬁa(r)=0,where h=4%? and /1:% are constants.

The boundary locus curve is obtained by substituting h(r)=2=—, where r=e" =cos@+ising

Q
=

0<f<m.

5 Region of absolute stability of our method

Im (z)
(=]
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4.4. Convergence of the Method

For a linear multistep method (LMM) to be convergent, the necessary and sufficient conditions are that the me-
thod must be consistent and zero-stable, therefore from the analysis, our method is convergent.

5. Numerical Experiments

To test the effectiveness and the accuracy of the new method, the method is used to solve three test problems
below and the results are shown in Tables 1-3.
Problem 1.

y"+4y'=x y(0)=0, y'(0)=0, y"(0)=1, h=0.1.

Theoretical solution: y(x)= %(l— €0S 2X) + % X2
Problem 2.
y"=¢", y(0)=3, y'(0)=1, y"(0)=5, h=0.1.
Theoretical solution: y(X)=2+2x*+e".
Problem 3.
y"+y"+3y' =5y =2+6x-5x*, y(0)=-1, y'(0)=1 y"(0)=-3, h=0.1.

Theoretical solution: y(X)=x*—e* +e*sin(2x).

Problem 4.

y” =3cosx, y(0)=1 y'(0)=0, y"(0)=2, h=0.05.

Theoretical solution: y(X)=x*+3x—3sinx+1.

6. Discussion of Result

A new two-step symmetric hybrid method of order 5 is proposed for the direct solution of third order differential
equations. The maim method and the predictors of same order were derived from the same procedure of colloca-
tion and interpolation method. The methods are then applied to on some existing problems and the results were
displayed on the Tables 1-4. The errors were compared with those of [5] [7] [12] [15] [17] [18]. It was observed
from the tables that the new method displayed better accuracy over the existing methods.

Table 1. In this example, the numerical solution of our methods of order 5 was compared with the method of [15] and [7],
both are of order 7. This is shown in Table 1 below.

X Yoxact Y eomputed Errorin [15], p=7 Errorin[7], p=7 Error in new scheme, p=>5
0.1 0.00498751665 0.00498751611 1.189947e-11 1.1899e-11 5.435179e-10
0.2 0.01980106362 0.01980105884 3.042207e-09 3.0422e—09 4.782887e—09
0.3 0.04399957220 0.04399955584 7.779556e—-08 7.7796e—08 1.636583e—08
0.4 0.07686749200 0.07686745364 7.746693e-07 1.5559e-07 3.835626e—-08
0.5 0.11744331765 0.11744324468 4.599021e—06 3.0541e-07 7.297179e-08
0.6 0.16455792104 0.16455779966 6.478349e—-06 4.6102e—07 1.213719e-07
0.7 0.21688116071 0.21688097720 5.783963e—-06 3.1380e—07 1.835106e—07
0.8 0.27297491043 0.27297465236 2.354715e—06 7.0374e-07 2.580628e—07
0.9 0.33135039275 0.33135005032 3.766592e—06 1.0177e—06 3.424319e-07
1.0 0.39052753185 0.39052709902 1.233120e—05 1.6528e—06 4.328374e-07
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Table 2. The absolute errors of predictor-corrector method of order five is compared with those of Block methods [12] and

[5].

X Yoot Yeomped Errorin [12], p=5k=3 Errorin[5], p=5k=3 Errorpin:n;vl\(/ s:cr21eme,
0.1 3.12517091807 3.12517091802 7.56479e-11 0.000000000e+00 4.65668e—11
0.2 3.30140275816 3.30140275774 1.83983e-09 0.000000000e+00 4.22858e—-10
0.3 3.52985880758 3.52985880606 4.42400e—09 1.000000083e—09 1.51196e-09
0.4 3.81182469764 3.81182469390 1.03587e-08 1.000000083e—09 3.73730e—09
0.5 4.14872127070 4.14872126313 1.12999e-08 1.000000083e—09 1.35178e-08
0.6 4.54211880039 4.54211878687 1.46095e-08 1.000000083e—09 1.35178e-08
0.7 4.99375270747 4.99375268531 2.05295e—08 9.999999194e-10 2.21617e—08
0.8 5.50554092849 5.50554089436 1.95075e-08 1.000000083e—09 3.41303e—08
0.9 6.07960311116 6.07960306104 1.08431e-08 2.000000165e—09 5.01217e—08
1.0 6.71828182846 6.71828175755 1.54095e-08 1.000000083e—09 7.09074e—08

Table 3. The absolute errors of predictor-corrector method of order five is compared with that of Block method, [16] and [7]
both are of order seven.

X Yorat Y computed Errorin [16], p=7 Errorin [7], p=7 Error in new scheme, p=5
0.1 0.9154074738 0.9154074720 6.408641e—07 8.547820e-11 1.793572e—-09
0.2 0.8625739855 0.8625739726 1.511330e—-05 2.232510e-09 1.293977e—08
0.3 0.8415613751 0.8415613394 6.364443e—-05 5.824412¢-08 3.562427e-08
0.4 0.8509665298 0.8509664646 1.675667e—04 1.226405e—06 6.511243e—-08
0.5 0.8883433192 0.8883432272 3.507709e-04 2.811820e-06 9.192517e-08
0.6 0.9506049047 0.9506048008 6.410825e-04 6.295841e-06 1.039027e-07
0.7 1.0343928539 1.0343927659 1.071642e-03 1.695782e-05 8.802953e-08
0.8 1.1364035569 1.1364035249 1.682213e-03 4.765221e-05 3.193929¢-08
0.9 1.2536662112 1.2536662862 2.520603e—-03 1.316541e-04 7.494632e—08
1.0 1.3837699992 1.3837702399 3.644014e—-03 3.417856e-04 2.406539e—07

Table 4. The absolute errors of predictor-corrector method of order five is compared with that of [17], where they developed
modified Runge-Kutta methods and [18] both are of order seven.

X Yeract L —— Error in [17], Error in [18] Error in new scheme
0.1 1.010499750060 1.010499750045 6.400e—08 1.040e—-06 1.375e-11
0.2 1.043992007615 1.043992005727 1.260e—07 5.060e—06 1.887e—09
0.3 1.103439380016 1.103439362951 1.520e—-07 1.210e—-05 1.707e—08
0.4 1.191744973074 1.191744903951 2.130e-07 2.220e—05 6.912e—08
0.5 1.311723384187 1.31172319043 2.730e-07 3.530e-05 1.938e—07

OALibJ | DOI:10.4236/0alib.1102583

April 2016 | Volume 3 | e2583


http://dx.doi.org/10.4236/oalib.1102583

F. O. Obarhua, S. J. Kayode

7. Conclusion

The combination of power series and exponential function collocation method was used to produce a two-step
continuous-hybrid method. The method obtained was used to solve some mildly-stiff third order ordinary diffe-
rential equations. The new method compared favorably in terms of accuracy with the existing methods of higher
order and step number. Our future research will be focused on more introductions of grid and off-grid points to
enhance global error estimations.
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