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Abstract 
A symmetric hybrid linear multistep method for direct solution of general third order ordinary 
differential equations is considered in this paper. The method is developed by interpolation and 
collocation approach using a combination of power series and exponential function as basis func-
tion. The consistency, stability, order and error constant of the method were determined. The re-
sults showed that the method is consistent, zero stable and of order five with low error constant. 
The accuracy compared favorably over existing methods with higher order of accuracy. 
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1. Introduction 
We consider the direct numerical solution of the general third order initial value problem of the form 

( ) ( ) ( ) ( )0 1 2, , , , ,y f x y y y y y y y y yµ µ µ′′′ ′ ′′ ′ ′′= = = =                      (1) 

where , , .y f Rµ ∈  
It is worth noting that this problem (1) can be modeled from the physical problems such as the thin film flow 

of a liquid in fluid dynamics, electromagnetic waves and gravity driven flow. Therefore, this type of problem is 
conventionally solved by reducing it to system of first order ordinary differential equations. [1] and some other 
authors pointed out that this type of problem can be solved directly to circumvent the inherent setbacks posed by 
the conventional method, [2]-[7]. These scholars proposed different methods of various degrees of accuracies 
using no other approximate basis functions other than power series. 
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[8]-[10] independently showed that the direct solution of the general second order initial value problems can 
be implemented without the need for predictors or starting values from other methods. In their work, they used 
power series as approximate solution to derive three-step LMM implemented in block modes. [11] investigated 
and developed a two-point block method in the form of Adams-Moulton type for solving general second order 
odes directly using variable step size while [5] and [12] proposed a linear multistep method for the direct solu-
tion of initial value problems of ordinary differential equations for special third order initial value problem and a 
hybrid multistep method to solve third order IVPs of ODEs respectively with constant step size. However, [11] 
developed a two-point four-step block method with variable step-size. In his work, the method was implemented 
at two points simultaneously in a block using four backward steps. Moreover, these constant and variable step 
sizes add little or nothing to the accuracy of the results due to the restriction of interpolation points to the order 
of the problems. 

Recently, [13] and [14] figured out that in search for a method that gives better stability condition, the use of 
approximate solution which combines power series with exponential function is imperative. Therefore, in this 
work combination of power series and exponential function was used as basic function in determining a symme-
tric hybrid linear multistep method for the solution of problem (1) directly. 

2. Materials and Methods 
In this work, we considered using a combination of power series and exponential function in the form 

( )
0 0 !

jc i c i
jj

j
j j

x
y x x

j
α

α
+ +

= =

= +∑ ∑                                      (2) 

as the basic function for the development of the method, where c and i represent the number of collocation and 
interpolation points respectively. 

The differential system of (2) is given as 
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The basis function (2) is interpolated at all selected points 
1 3, 0, , 1,
2 2n ix i+ =  and the differential system (3) 

is collocated at only the grid points, , 0, 1, 2n cx c+ =  which gave rise to a system of equation of the form 

Ax b=                                            (4) 
where 
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Solving (4) for ja ’s, ( )0 1 6j = , using Gaussian elimination method and substituting it back into (2) gives a 
continuous hybrid method of the form 

( ) ( ) ( ) ( ) ( )
1

3
1 1 2 3

0 02 2

.
k k

j n j j n jn nj j
y x x y x y x y h x fα τ τ β

−

+ +
+ += =

   
= + + +   

  
∑ ∑               (5) 

Using the transformation, 2 ,nx xt
h

+−
=  the continuous coefficients 1 2, , ,j jα β τ τ  and their first and second 

derivatives are obtained as, 
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Evaluating Equations (6), (7) and (8) at the last end grid point where 1t =  gives the discrete methods 

( )
3

2 3 1 2 1
2 2

2 2 14 .
64n n n n nn n

hy y y y f f f+ + +
+ +

− + − = + +                     (9) 

( )
2

2 3 1 1 2 1
2 2

1 13 66 141 62 157 1590 125 .
15 1920n n n n n nn n

hy y y y y f f f
h+ + + +

+ +

 
′ − + − + = + +  

 
     (10) 

( )2 3 1 1 2 12
2 2

1 262 966 1146 442 949 5014 453 .
288045n n n n n nn n

hy y y y y f f f
h+ + + +

+ +

 
′′ − − + − + = + +  

 
   (11) 

The order p and error constants of Equations (9), (10) and (11) are 5p = , 4
3 9.1146 10pc −

+ = − × , 
33.9267 10−− × , and 21.0032 10−− ×  respectively. 

3. Implementation of the Method 
The starting values of the discrete method (9) obtained from (5) for third order problem of ordinary differential 
equations are generated in predictor-corrector mode of the same order of accuracy. The predictor methods and 
its derivatives of the same order with the corrector method are obtained using the same outlines discussed above 
to give 
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The order p and error constants of equations (12), (13) and (14) are 5p = , 5
3 3.2552 10pc −

+ = × , 31.0136 10−× , 

and 39.8763 10−×  respectively. 
Other explicit schemes were developed to evaluate other starting values. Taylor series expansion is adopted 

for n iy + , as 
1 ,1
2

i =  and their first and second derivatives up to order 5p = . 
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4. Analysis of the Method 
4.1. Order and Error Constant of the Method 
In this paper we adopt the method proposed in [16], with the linear operator 
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and the linear operator L is defined as: 
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where 0α  and 0β  are both non-zero and assuming that ( )y x  is continuous and differentiable. We can ex-
pand (13) by Taylor series expansion about the point x to obtain the expression 

( ) ( ) ( ) ( ) ( ) ( ) ( )2
0 1 2, 2! !q q

qL y x h c y x c hy x c h y x c h q y x′ ′′= + + + + +               (20) 

Therefore, we say that the method has order p if, 

0 1 2 1 20, 0.p p pc c c c c c+ += = = = = = ≠  

In this paper, it reveals that the methods (9), (10) and (11) have order 5p = , and error constants 
4

3 9.1146 10pc −
+ = − × , 33.9267 10−− ×  and 21.0032 10−− ×  respectively. 

4.2. Zero Stability 
A linear multistep method (LMM) is said to be zero-stable, if no root of the first characteristic polynomial 
( )rρ  satisfies 1r ≤  and is simple for 1r = . 
For our method 

( )
3 1

2 2 22 2 1 0r r r rρ = − + − =  

0,1.r =  
Hence our method is zero stable. 

4.3. Region of Absolute Stability of the Method 
Let us consider the stability polynomial of the linear multistep method defined by ρ  and σ  as 

( ) ( ) ( ), 0r h r h rρ σΠ = − = , where 2 2h hλ=  and d
d
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4.4. Convergence of the Method 
For a linear multistep method (LMM) to be convergent, the necessary and sufficient conditions are that the me-
thod must be consistent and zero-stable, therefore from the analysis, our method is convergent. 

5. Numerical Experiments 
To test the effectiveness and the accuracy of the new method, the method is used to solve three test problems 
below and the results are shown in Tables 1-3. 

Problem 1. 

( ) ( ) ( )4 , 0 0, 0 0, 0 1, 0.1.y y x y y y h′′′ ′ ′ ′′+ = = = = =  

Theoretical solution: ( ) ( ) 23 11 cos 2 .
16 8

y x x x= − +  

Problem 2. 

( ) ( ) ( )e , 0 3, 0 1, 0 5, 0.1.xy y y y h′′′ ′ ′′= = = = =   

Theoretical solution: ( ) 22 2 e .xy x x= + +  
Problem 3. 

( ) ( ) ( )23 5 2 6 5 , 0 1, 0 1, 0 3, 0.1.y y y y x x y y y h′′′ ′′ ′ ′ ′′+ + − = + − = − = = − =  

Theoretical solution: ( ) ( )2 e e sin 2 .x xy x x x−= − +  
Problem 4. 

( ) ( ) ( )3cos , 0 1, 0 0, 0 2, 0.05.y x y y y h′′′ ′ ′′= = = = =  

Theoretical solution: ( ) 2 3 3sin 1.y x x x x= + − +  

6. Discussion of Result 
A new two-step symmetric hybrid method of order 5 is proposed for the direct solution of third order differential 
equations. The maim method and the predictors of same order were derived from the same procedure of colloca-
tion and interpolation method. The methods are then applied to on some existing problems and the results were 
displayed on the Tables 1-4. The errors were compared with those of [5] [7] [12] [15] [17] [18]. It was observed 
from the tables that the new method displayed better accuracy over the existing methods. 

 
Table 1. In this example, the numerical solution of our methods of order 5 was compared with the method of [15] and [7], 
both are of order 7. This is shown in Table 1 below.                                                                   

x  exacty  computedy  Error in [15], 7p =  Error in [7], 7p =  Error in new scheme, 5p =  

0.1 0.00498751665 0.00498751611 1.189947e−11 1.1899e−11 5.435179e−10 

0.2 0.01980106362 0.01980105884 3.042207e−09 3.0422e−09 4.782887e−09 

0.3 0.04399957220 0.04399955584 7.779556e−08 7.7796e−08 1.636583e−08 

0.4 0.07686749200 0.07686745364 7.746693e−07 1.5559e−07 3.835626e−08 

0.5 0.11744331765 0.11744324468 4.599021e−06 3.0541e−07 7.297179e−08 

0.6 0.16455792104 0.16455779966 6.478349e−06 4.6102e−07 1.213719e−07 

0.7 0.21688116071 0.21688097720 5.783963e−06 3.1380e−07 1.835106e−07 

0.8 0.27297491043 0.27297465236 2.354715e−06 7.0374e−07 2.580628e−07 

0.9 0.33135039275 0.33135005032 3.766592e−06 1.0177e−06 3.424319e−07 

1.0 0.39052753185 0.39052709902 1.233120e−05 1.6528e−06 4.328374e−07 
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Table 2. The absolute errors of predictor-corrector method of order five is compared with those of Block methods [12] and 
[5].                                                                                                          

x  exacty  computedy  Error in [12], 5, 3p k= =  Error in [5], 5, 3p k= =  
Error in new scheme, 

5, 2p k= =  

0.1 3.12517091807 3.12517091802 7.56479e−11 0.000000000e+00 4.65668e−11 

0.2 3.30140275816 3.30140275774 1.83983e−09 0.000000000e+00 4.22858e−10 

0.3 3.52985880758 3.52985880606 4.42400e−09 1.000000083e−09 1.51196e−09 

0.4 3.81182469764 3.81182469390 1.03587e−08 1.000000083e−09 3.73730e−09 

0.5 4.14872127070 4.14872126313 1.12999e−08 1.000000083e−09 1.35178e−08 

0.6 4.54211880039 4.54211878687 1.46095e−08 1.000000083e−09 1.35178e−08 

0.7 4.99375270747 4.99375268531 2.05295e−08 9.999999194e−10 2.21617e−08 

0.8 5.50554092849 5.50554089436 1.95075e−08 1.000000083e−09 3.41303e−08 

0.9 6.07960311116 6.07960306104 1.08431e−08 2.000000165e−09 5.01217e−08 

1.0 6.71828182846 6.71828175755 1.54095e−08 1.000000083e−09 7.09074e−08 

 
Table 3. The absolute errors of predictor-corrector method of order five is compared with that of Block method, [16] and [7] 
both are of order seven.                                                                                           

x  exacty  computedy  Error in [16], 7p =  Error in [7], 7p =  Error in new scheme, 5p =  

0.1 0.9154074738 0.9154074720 6.408641e−07 8.547820e−11 1.793572e−09 

0.2 0.8625739855 0.8625739726 1.511330e−05 2.232510e−09 1.293977e−08 

0.3 0.8415613751 0.8415613394 6.364443e−05 5.824412e−08 3.562427e−08 

0.4 0.8509665298 0.8509664646 1.675667e−04 1.226405e−06 6.511243e−08 

0.5 0.8883433192 0.8883432272 3.507709e−04 2.811820e−06 9.192517e−08 

0.6 0.9506049047 0.9506048008 6.410825e−04 6.295841e−06 1.039027e−07 

0.7 1.0343928539 1.0343927659 1.071642e−03 1.695782e−05 8.802953e−08 

0.8 1.1364035569 1.1364035249 1.682213e−03 4.765221e−05 3.193929e−08 

0.9 1.2536662112 1.2536662862 2.520603e−03 1.316541e−04 7.494632e−08 

1.0 1.3837699992 1.3837702399 3.644014e−03 3.417856e−04 2.406539e−07 

 
Table 4. The absolute errors of predictor-corrector method of order five is compared with that of [17], where they developed 
modified Runge-Kutta methods and [18] both are of order seven.                                                            

x  exacty  computedy  Error in [17], Error in [18] Error in new scheme 

0.1 1.010499750060 1.010499750045 6.400e−08 1.040e−06 1.375e−11 

0.2 1.043992007615 1.043992005727 1.260e−07 5.060e−06 1.887e−09 

0.3 1.103439380016 1.103439362951 1.520e−07 1.210e−05 1.707e−08 

0.4 1.191744973074 1.191744903951 2.130e−07 2.220e−05 6.912e−08 

0.5 1.311723384187 1.31172319043 2.730e−07 3.530e−05 1.938e−07 
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7. Conclusion 
The combination of power series and exponential function collocation method was used to produce a two-step 
continuous-hybrid method. The method obtained was used to solve some mildly-stiff third order ordinary diffe-
rential equations. The new method compared favorably in terms of accuracy with the existing methods of higher 
order and step number. Our future research will be focused on more introductions of grid and off-grid points to 
enhance global error estimations. 
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