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Abstract 
 
The Pertek granitoid consisting dominantly of diorite, quartz diorite, quartz monzodiorite, tonalite and lesser 
granite, adamellite and syenite, is considered to form the easternmost continuation of the Central Anatolian 
Crystalline Complex. Diorite and monzonites of this granitoid complex are cut by the granitic dykes. The 
Pertek granitoid, in the study area, is found in the Permo-Triassic Keban metamorphic sequence along intru- 
sive and tectonic contacts. Along the intrusive contacts metasomatic mineralizations are common. Granitoids 
are, depending on the mineralogical composition, low-, middle- high-K subalkaline features. Major oxide- 
SiO2 variation diagrams show that fractionation (particularly plagioclase, hornblend, pyroxene and olivine 
fractionation) played an important role on the granitoid formation during a continuous crystallization process. 
Distribution of the samples from the Pertek granitoid in the tectonic setting diagrams, and their chondrite- 
and primordial mantle-normalized trace element patterns resemble to the of arc-type granitoids. Trace 
element and rare earth element compositions indicate that the magma, from which the Pertek granitoid 
crystallized, derived from a mantle that was enriched by the fluids derived from the subducted slab, however 
this magma was contaminated by the crust during its intrusion. These geochemical characteristics are also 
supported by the field observations. The field and geochemical characteristics of the Pertek Granitiod 
suggest that they are similar to the other granitoids cropping out in the central and eastern Anatolia and they 
form the lateral continuation of the same magmatic belt. 
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1. Introduction 
 
E-SE Anatolia Orogenic Belt was formed along the colli- 
sion zone between Afro-Arabic and Aurasian plates during 
the Middle Miocene [1,2]. Palaeozoic-Mesozoic platform- 
type carbonates, supra-subduction zone ophiolites and 
granitoids are found together and form the tectono- 
magmatic unites of this belt. Isotopically dated granitoids 
of this belt yield a Cretaceous-Eocene age [3,4,2]. These 
granitoids are considered to be formed along the south- 
ern Neo-Tethyan subduction in the larger-scale Neo- 
Tethyan Conversion System and expose in three different 
areas. From west to east, in the collision zone, Afşin- 
Elbistan (Kahramanmaraş), Doğanşehir (Malatya) and  

Baskil-Keban (Elazığ) granitoids have been studied in 
detail and results have been published [5-17,3,18].  

The Pertek granitoid, in a similar fashion to the other 
granitoids along this belt, show intrusive contacts with 
the Palaeozoic-Mesozoic Keban metamorphics (Keban 
platform-type carbonates). Platform-type carbonates were 
thrust onto the granitoids by the Eocene aged and younger 
tectonic activity to form the tectonic contact observed 
between the granitoids and the older metamorphic se- 
quence [19]. Both the basement units and the Pertek 
Granitoid, in the study area, are overlain by the Teriary 
marine sediments, terrestrial volcanic rocks and equiva- 
lent terrestrial sediments [20] (Figure 1).  

In this study, field occurences, petrographical and geo- 
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Figure 1. Location map of the study area and Geological map of the Pertek granitoid (simplified) [21]. 
 
chemical characteristics of the Pertek granitoid are 
documented for the first time. Results of this study will 
discuss the tectonic setting and source of the magmatic 
rocks in the area and contribute to the understanding of 
the geological evolution of the region. This contribution 
would also explain to the future researchers that using 
only geochemical data in order to evaluate the geological 
evolution of the region may result in erroneous inter- 
pretations. 
 
2. Analytical Techniques 
 
The geological maps [21] covering the area where Pertek 
granitoid crops out were used in this study and they were 
revised whenever needed. Samples were taken from 
different rock units in relatively fresh parts of the units. 
Of those, 45 samples were examined under polirizan 
microscope. Totally 34 samples were geochemically an- 
alysed 29 of them in ACME Laboratories (Canada) and 5 
of them in ACTLAB (Canada) and their major element 
oxide, trace element and rare earth element contents were 
determined. 
 
3. Regional Geology 
 
SE Anatolian Orogenic Belt was controlled by the opening 
of southern branch of the Neo-Tethys Ocean from Late 
Triassic to Early Cretaceous between the Keban Paltform 
and Pütürge metamorphics [22] and following northward 
subduction under the Keban Plate during Senomanian- 
Turonian. Yazgan and Chessex [8] suggested that Eastern 
Tauride tectonism developed as an arc-continent collision 

between Keban and Arabic microcontinents that started 
in Late Cretaceous-Early Mastrichtian and continued 
until Early Eocene. Magmatic rocks observed in this 
orogenic belt formed along an arc that developed on 
oceanic and continental crust in Malatya Province and 
westward [22,6]. A number of researchers [8,1,9,12,4,14] 
documented that this magmatic belt consists of calc- 
alkaline volcanic and plutonic rocks. 

Palaeozoic-Mesozoic Keban metamorphics form the 
oldest units in the study area. The Keban metamrophics 
consist of marble, chalk schist and amphibolites and 
bound the magmatic rocks along their northern side 
(Figure 1) in the studey area. Kipman [23], suggested 
that the Keban metamorphics are Jurassic-Early Creta- 
ceous in age and metamorphosed under low P-T con- 
ditions. Yazgan [22] on the other hand suggested that the 
platform-type carbonates in this metamorphic sequence 
metamorphosed under gren schist methamorphism con- 
ditions during Senomanian along the subducion zone. 
Özgül and Turşucu [24] also suggested green schist 
conditions for the metamrophism of the Keban meta- 
morphics supporting Yazgan’s view [22]. Some resear- 
chers [6,9] on the other hand proposed that the arc 
magmatism caused the metamorphism. Intrusive contact 
between the arc magmatics and metamorphics and mine- 
ralizations along this intrusive contact has been pre- 
viously documented by various researchers. [22,10,18, 
25]. 

The Pertek granitoid crops widely crop out in the 
northern and southern part of the Keban Dam to the 
north of Elazığ. The Pertek granitoid is overlain by the 
Eocene-Oligocene marine sediments and Miyo-Pliocene 
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terrestrial volcanic and sedimentary sequences. 
 
4. Field Characteristics 
 
The Pertek pluton crops out widely along two opposite 
sides of the Keban Dam Lake situated to the North of 
Elazığ, therefore appears like two different plutons in the 
field. In this study is focused on the northern side of the 
dam lake (Figure 1) where the magmatic rocks consist of 
diorite-gabbro, quartz diorite, tonalite, monzonites and 
cross-cutting dykes of acidic composition. These diffe- 
rent units are not indicated in geological map, however 
diorites crop out widely along the study area, whreas 
tonalites have wide outcrops in western parts of the study 
area. Monzonites, on the other hand, volumetrically do- 
minates the outcrops to the south of Pertek. 

In the field, diorites are weathered, medium-grained, 
competent, dark gray-black in appearence and form a 
smooth topography.  Tonalites consist of large quartz 
crystals, less amount of mafic minerals and more mafic 
microgranular enclaves (MME). To the west of Pertek, 
close to the carbonates of the surrounding metamorphic 
association, strong hydrothermal alteration and oxidi- 
zation in mafic minerals are common. Prolonged amphi- 
boles which are found along the intrusive contacts may 
indicate a skarn zone. Presence of skarn metamorphism 
in the region has previously been noted by Altunbey and 
Çelebi [25]. Mafic microgranular enclaves, preserved in 
the main pluton, are generally rounded and ellipsoidal in 
shape and reach up to 50 cm in diameter. Dioritic main 
body is cross cut by the harder, felsic, fine grained, 
acidic and strongly altered porphyres that are exhumed 
widely in the north of Pertek and its thickness vary from 
a few meters to few hundreds meters. In the southeastern 
part of Pertek, close to the Keban Dam Lake, monzonites 
are less altered then the other magmatic lithologies. 
Monzonites are easily distinguished in the field because 
of containing pink K-feldspar crystals which display 
lengths from a few milimeter to a few centimeters. Mon- 
zonites are not mappable in scale and generally found as 
small stocks cutting diorites and tonalites in the lower 
parts and a few tens of meter-thick dykes, in the upper 
parts. At the 30th km of Pertek-Tunceli highway, in a 
valley, up to 3 m-thick, hard, NW-SE-trending, almost 
vertical aplite dykes are also found in the upper part of 
the magmatic body. In the uppermost part of these dykes 
cataclastic enclaves are commonly found.  

The Kırkgeçit formation cropping out in the study area 
is represented by sandstone-mudstone alternation and 
channel-fill conglomerates [19]. The Late Miocene-Plio- 
cene aged Karabakır formation which is dominated by 
the pyroclastic rocks and lava flows in the study area, 
forms the youngest unit and crops out in the N-NW part 

of the study area.  
The thrust fault along which the Keban metamorphics 

are found tectonically overlying the Pertek magmatics, 
form the main tectonic structure in the study area 
(Figure 1). [19] suggested that this approximetely 10° 
north dipping fault is Late Cretaceous - Late Palaeocene 
in age. NW-SE trending strike-slip fault which is observed 
in the west of Pertek, is another significant tectonic 
structure in the area (Figure 1). 
 
5. Petrography 
 
Petrographically the Pertek granitoid consists of quartz 
diorite, tonalite-granite/granodiorite, monzonite, diorite/ 
gabbro. Samples are dominantly plotted in quartz diorite, 
diorite quartz monzodiorite and tonalite areas in nomen- 
clature diagram [26] and only one sample is found in 
granite, ademellite and syenite areas respectively (Figure 
2). Places of the samples in the geochemical nomen- 
clature diagrams are in accordance with the petrographic 
nomenclature. Sample PR-20 is plotted in the geoche- 
mical nomenclature diagram in granite area, PR-31 in 
syenite area and PR-26 in ademellite area and they are 
found in Streckeisen [27] triangle diagram in monzo- 
granite area. 

Diorites and quartz diorites are fine to medium grained 
granular and poikilitic in texture and are dominated by 
plagioclase and hornblende crystals. In some of the 
samples hornblends are greater in amount than the pla- 
gioclases. Plagioclases in diorites commonly show une- 
quilibrium textures of oscillatory zoning and polysyn- 
thetic twinning indicating open system processes like 
magma mixing [28]. Subhedral or skeleton shaped horn- 
blends with green pleocroism are commonly chloritized. 
Poikilitic texture is characterized in hornblends by pla- 
gioclase and opaque mineral inclusions. In some horn- 
blende crystals relic pyroxenes are observed indicating 
that hornblends were formed by uralitization in pyro- 
xenes. 

Tonalite, granite and granodiorites are coarse grained 
hypidiomorphic granuler in texture. Plagioclase, quartz, 
amphibole, K-feldspar, apatite, zircon, sphene and opaque 
minerals form the mineral association. Plagioclases are 
the dominant felsic minerals and show albite twinning, 
zoneing and overgrowth texture. Quartz crystals are vary- 
ing in size, unhedral and show wavy extinction. Amphi- 
boles show green pleochroism. Chloritization and opaci- 
tation in amphiboles and argillic alteration in K-feldspars 
are the common alteration types. Sphenes are found as 
coarse idiomorph cystals and apatites as acicular crystals 
in accessory phase. Zircon is rarely observed.  

In monzonites plagioclase, amphibole, quartz and K- 
feldspar form the main mineral phase. Amphiboles with  
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Figure 2. QP plot [26] for samples from the Pertek granitoid. 
 
slight, pale gren pleochroism are rarely found as coarse 
crystals but commonly as pseudomorphic acicular crystals. 
Chloritization is the common alteration type. 

Sample PR-31 is distinguishable from the remaining 
sample even as hand specimen. Large amount of perthitic 
K-feldspar crystals give a pink color to the syenites in 
hand specimen. The main minerals forming the rock are 
perthitic K-feldspars. Quartz content of the Syenites is 
low. 
 
6. Geochemistry  
 
Whole rock geochemical composition of 34 samples 
from the Pertek granitoid is given in Table 1 and results 
are plotted in total alkalies-Silica (Figure 3(a)) and AFM 
(Figure 3(b)) diagrams. All samples, except for syenite 
(PR 31), are gathered in subalkaline area in total alkalies- 
silica diagram. Diorite/gabbro and quartz diorite samples 
are mostly tholeiitic-high Mg and other samples are 
calk-alkaline in nature. In AFM diagram quartz monzo- 
diorites and granites are found in high K area and other 
samples are found in low K area. According to Shand 
index samples are metaluminous in character (A/CNK= 
–0.5 - 1; A/NK < 1) and I-type in nature (A/CNK < 1.1) 
[29]. The I-type nature of the samples is in accordance 
with the mafic mineral assemblage.  

In Harker-type variation diagrams, it is distinguished 
that the Pertek granitoid evolved from a single magma 
phase during continuous normal fractional crystallization 
stage. During this crystallization stage mineral fractio- 
nation did not develope in diorites, less developed in 

quartz diorites and well developed in tonalites. Addi- 
tionally, while, depending on the mafic composition, 
enrichment in FeO*, MgO, CaO2 and Ti2O ratios is 
observed in diorites (Figure 4(b), (c), (d), (g)); enrich- 
ment in Na2O ratio are observed depending on the K- 
feldspar (Figure 4(e)) in tonalites and quartz monzo- 
granites.  

In the chondrite-normalized spider diagams (Figure 
5(a), (c), (e)), diorites and quartz diorites show similar 
patterns (Figure 5(a), (c)). In both groups, some of the 
samples are depleted in LREEs and others are enriched. 
In these diagrams, in some of the diorite and quartz 
diorite samples, depletion in LREEs is more significant 
than the others. In these samples depletion in HREEs is 
also more distinguishable compared to the others. In de- 
pleted LREEs samples a significant enrichment of Eu is 
observed. In addition to the similar REE patterns of 
diorite and quartz diorite samples, a concave pattern 
from the enriched LREEs to depleted HREEs is observed 
(Figure 5(a), (c), (e)). The REE composition of samples 
indicate a fractionation processes in these rocks [30]. 

In the Primordial mantle-normalized spider diagrams 
(Figure 5(b), (d), (f)) diorites and quartz diorites show 
two different patterns in LILEs (K, Rb, Ba, Th) (Figure 
5(b), (d)). An enrichment in LILEs in the other rock 
groups, on the other hand, is clear (Figure 5(f)). Signi- 
ficant enrichment in LILEs may indicate an E-MORB or 
within plate setting for the basic rocks [31]. In the acidic 
rocks, however, enrichment in LILEs may indicate either 
crustal contamination [32] or enrichment by fluids derived 
from the oceanic crust [33]. In these diagrams, Nb show  
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Table 1. Major (%) and trace element (ppm) contents of the Pertek granitoides. 

Sample 
Symbol 

PR1 
♦ 

PR29 
♦ 

PR32 
♦ 

PR2 
■ 

PR3 
■ 

PR5
■ 

PR8
■ 

PR9
■ 

PR10
■ 

PR13
■ 

PR15
■ 

PR16
■ 

PR19 
■ 

PR25 
■ 

PR27 
■ 

PR28
■ 

PR30
■ 

SiO2 56.11 63.14 62.94 48.26 44.40 46.22 46.43 46.80 46.34 44.95 46.60 48.12 47.65 54.89 49.98 50.85 56.68

Al2O3 13.73 17.84 17.69 17.36 16.44 16.50 21.78 17.93 14.73 17.29 14.24 15.53 14.70 17.86 18.05 20.33 17.69

Fe2O3 7.09 4.13 4.58 11.44 11.24 8.66 5.64 5.80 12.87 7.54 8.82 7.54 7.46 7.24 10.10 7.09 6.85

MgO 3.52 1.16 1.25 6.24 7.45 8.86 6.67 10.84 7.84 11.51 12.27 9.99 11.46 4.31 5.60 4.50 3.14

CaO 7.79 4.36 4.70 11.08 12.6 15.73 15.59 15.13 14.19 12.69 13.31 13.88 14.80 7.99 9.66 10.95 7.07

Na2O 2.86 4.85 4.47 2.18 2.21 1.39 1.49 1.24 1.36 1.45 1.41 1.73 1.25 4.10 2.64 2.97 4.12

K2O 2.67 3.18 3.10 0.49 0.52 0.12 0.07 0.05 0.10 0.10 0.19 0.11 0.07 1.42 1.22 0.90 2.40

TiO2 0.32 0.28 0.30 0.84 0.58 0.42 0.16 0.18 1.42 0.36 0.43 0.34 0.36 0.52 0.72 0.47 0.48

P2O5 0.10 0.09 0.09 0.06 0.06 0.02 <0.01 <0.01 0.03 0.01 0.02 <0.01 0.01 0.08 0.09 0.06 0.11

MnO 0.16 0.09 0.007 0.18 0.19 0.16 0.11 0.10 0.16 0.12 0.18 0.14 0.13 0.13 0.15 0.12 0.13

LOI 5.5 0.7 0.6 1.6 4.6 1.7 1.9 1.7 1.2 3.7 2.2 2.3 1.7 1.3 1.5 1.5 1.1 

Total 99.84 99.80 99.78 99.74 99.78 99.79 99.84 99.79 99.71 99.78 99.75 99.78 99.73 99.78 99.70 99.79 99.76

K2O/P2O5 26.70 35.33 34.44 8.17 8.67 6.00 7.00 5.00 3.33 10.00 9.50 11.00 1.00 17.75 13.56 15.00 21.82

A/CNK 0.51 0.59 0.59 0.56 1.07 0.49 1.27 1.09 0.94 1.21 0.96 0.99 0.91 1.32 1.34 1.37 1.30

A/NK 2.48 2.22 2.34 6.50 6.02 10.93 13.96 13.90 10.09 11.15 8.90 8.44 11.14 3.24 4.68 5.25 2.71

Ni (ppm) <20 21 <20 22 <20 62 41 78 41 148 133 109 196 22 78 <20 <20

Sc 7 5 4 35 26 52 41 40 57 27 37 58 51 16 31 26 10 

Cs 2.1 2.8 1.2 0.1 0.8 0.1 <0.1 <0.1 0.2 0.1 0.2 0.2 0.3 2.0 3.2 5.9 1.0 

Ga 14.8 16.8 16.6 16.4 14.5 12.8 13.9 10.3 15.3 11.8 10.0 12.1 10.5 17.3 17.1 16.3 16.8

Hf 3.5 4.6 4.1 1.7 0.9 0.7 0.3 0.3 0.6 0.5 0.6 0.3 0.3 2.7 2.2 1.7 3.0 

Sn 1 1 <1 <1 <1 1 <1 <1 <1 <1 <1 4 <1 1 <1 1 1 

Ba 361 835 1019 137 98 23 14 8 9 12 20 13 7 471 512 288 713

Rb 77.8 88.2 79.8 6.0 16.1 2.4 1.0 1.0 1.1 1.4 6.4 1.2 1.1 48.3 24.8 19.6 65.0

Sr 243 464 548 257 289 193 222 174 226 150 179 156 145 487 467 677 631

Nb 9.9 17.6 11.6 3.1 3.2 0.8 0.2 0.2 0.2 0.5 0.5 0.2 <0.1 7.8 8.6 8.8 10.6

Zr 124.6 190.0 184.9 60.9 32.4 15.6 8.5 3.6 19.1 14.8 17.8 7.9 8.5 112.0 76.2 59.3 130.4

Ta 0.5 1.4 1.1 0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 0.8 0.8 0.6 

Th 4.5 19.6 11.3 1.8 0.7 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 10.2 3.7 6.8 9.0 

U 1.9 3.9 3.4 0.8 0.4 0.1 0.1 <0.1 <0.1 0.1 0.2 <0.1 <0.1 3.1 1.8 2.8 3.9 

V 44 38 51 374 247 239 150 115 715 115 160 185 197 151 317 151 116

W 50.5 3.3 2.0 <0.5 37.1 5.1 1.8 1.1 <0.5 6.1 1.7 3.3 <0.5 1.5 <0.5 3.3 1.1 

Y 21.5 16.0 11.7 14.1 14.8 12.0 4.7 4.4 12.1 7.6 9.1 7.6 9.7 11.9 17.1 11.6 12.9

La 14.5 28.0 17.6 5.8 6.1 1.4 0.6 0.5 0.8 1.0 2.3 0.6 0.5 17.2 12.8 10.6 20.4

Ce 27.9 47.1 31.9 12.5 12.9 3.7 1.2 0.9 2.4 2.7 3.9 1.4 1.5 25.8 25.2 18.7 31.3

Pr 3.42 5.00 3.54 1.61 1.78 0.63 0.18 0.16 0.44 0.45 0.53 0.27 0.28 2.75 3.06 2.27 3.35

Nd 12.9 16.9 12.4 7.0 7.3 3.6 1.1 0.8 2.9 2.4 2.7 1.7 2.0 10.6 12.0 8.7 11.0

Sm 2.73 2.74 2.14 1.75 1.73 1.09 0.36 0.36 1.08 0.74 0.88 0.62 0.85 1.91 2.61 1.86 2.11

Eu 0.98 0.72 0.68 0.62 0.68 0.44 0.22 0.25 0.57 0.37 0.39 0.35 0.47 0.61 0.82 0.58 0.78

Gd 3.05 2.42 1.88 2.17 2.19 1.57 0.57 0.63 1.77 1.02 1.22 1.04 1.36 2.01 2.73 1.88 2.25

Tb 053 0.44 0.36 0.40 0.40 0.30 0.12 0.13 0.33 0.21 0.26 0.22 0.27 0.35 0.47 0.37 0.40

Dy 3.39 2.59 1.96 2.38 2.51 1.89 0.85 0.78 2.16 1.24 1.47 1.36 1.71 1.97 2.83 2.11 2.31

Ho 0.72 0.51 0.41 0.51 0.52 0.44 0.18 0.16 0.46 0.28 0.34 0.30 0.36 0.41 0.58 0.41 0.46

Er 2.05 1.73 1.34 1.48 1.53 1.27 0.50 0.46 1.34 0.74 0.99 0.83 0.99 1.32 1.66 1.23 1.45

Tm 0.35 0.33 0.26 0.23 0.24 0.19 0.08 0.07 0.20 0.14 0.18 0.14 0.15 0.23 0.25 0.22 0.26

Yb 2.29 2.10 1.54 1.55 1.52 1.21 0.50 0.46 1.24 0.75 0.91 0.78 0.93 1.43 1.66 1.25 1.59

Lu 0.34 0.36 0.26 0.23 0.23 0.19 0.07 0.06 0.18 0.12 0.15 0.12 0.13 0.24 0.25 0.21 0.26

Ba/Nb 36.46 47.44 87.84 44.19 30.63 28.75 70.00 40.00 45.00 24.00 40.00 65.00 77.78 60.38 59.53 32.73 67.26

La/Nb 1.46 1.59 1.52 1.87 1.91 1.75 3.00 2.50 4.00 2.00 4.60 3.00 5.56 2.21 1.49 1.20 1.92

La/Ta 29.0 20.0 16.0 29.0 30.5 14.0 6.7 6.3 11.4 11.1 25.6 7.5 5.0 57.3 16.0 13.3 34.0

Zr/Nb 12.59 10.80 15.94 19.65 10.13 19.50 42.50 18.00 95.5 29.60 35.60 39.50 94.44 14.36 8.86 6.74 12.30

Nb/U 5.21 4.51 3.41 3.88 8.00 8.00 2.00 2.00 2.00 5.00 2.50 2.00 4.00 2.52 4.78 3.14 2.72

Rb/Sr 0.32 0.19 0.15 0.02 0.06 0.01 0.00 0.01 0.01 0.01 0.04 0.01 0.01 0.10 0.05 0.03 0.10

♦;quartz monzodiorite, ■,diorite, ▼;quartz diorite, ●; tonalite, ○;granite, □;adamellite, ▲;syenite 
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Figure 3. Major element geochemical discrimination diagrams of the Pertek granitoid. (a) Total alkalis vs silica [47]; dividing 
line between alkaline and subalkaline fields [48] (b) AFM triangular diagram [47]. 
 

 

Figure 4. Major oxides vs. SiO2 variation diagrams for rock samples from the Pertek granitoid. 
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Figure 5. (a) Chondrite (b-c) PRIM normalized spider diagrams for the Pertek granitoid. (PRIM and Chondrite normalizing 
values after [49]). 
 

7. Petrogenesis a significant negative anomaly whereas Sr show, parti- 
cularly in diorites and quartz diorites, a strong positive 
anomaly. Ti, in all different lithologies but parti- cularly 
in tonalites, show a strong negative anomaly (Figure 
5(f)). Medium and heavy REEs (Sm-Lu) are depleted in 
all rock types. When all the geochemical characteristics 
of the geographically close and minera- logically similar 
diorites are taken into consideration, this significant 
difference observed in spider diagrams do not seem to be 
caused by fractionation or fractional crystallization from 
a single magma source. Mixing of two different magma 
sources may explain these geoche- mical chracteristics 
[30].  

 
Fractional crystallization processes during crystallization 
of the Pertek granitoid is defined in Harker type major 
oxides-silica diagrams (Figure 4). In these diagrams a 
negative correlation in FeO*, MgO, CaO, Ti2O ve MnO 
ratios and a positive correlation in Na2O and K2O ratios 
with the increasing SiO2 indicate the fractional crystalli- 
zation. Particularly MgO ratios of 3% - 14 % in diorites 
and quartz diorites indicate that olivine and pyroxene 
played important role during the fractionation phase. In 
the other rock groups amphiboles accompanied olivine 
and pyroxene during fractionation. This fractionation 
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could be defined also in LILE and HFSE vs silica dia- 
grams (Figure 6). For example, in quartz and quartz 
diorites Rb and Ba contents increase with the increasing 
silica (Figure 6(a) and (b)) indicating assimilation- 
fractional crystallization processes. Similarly in Sr-SiO2, 
Y-Rb variation diagrams (Figure 6(c) and (d)), amphi- 
bole and bio- tite effect in diorites, quartz diorites and 
tonalites is clear. 

Samples from the Pertek granitoid are plotted in che- 
mical affinity diagram of Debon Le Fort [26] (Figure 7) 
(I, II, III are peraluminous, IV, V, VI are metaluminous 
in character), our samples in this diagram are plotted in 
areas of IV and V indicating metaliminous-cafemic cha- 
racter. However some samples including diorites, are 
found in leucogranites area. Autochthonous or intrusive 
granitoids of peraluminous character are related to the 
crustal source in collisional or post collisional tectonic 
setting. Metaluminous more basic rocks, on the other 
hand, are related to crust-mantle (hybrid) source in 
collisional or post collisional tectonic setting. Debon Le 
Fort [26] noted that aluminous magma suites generally 
were formed by the partial melting of sialic material and 
cafemic suites may evolve from mantle or, more com- 

monly, a hybrid magma of mantle-sialic material mixing. 
Debon Le Fort [26] suggests cafemic character of magma 
suites indicate depletion in mantle source.  

Ni composition is an important indicator in plutonic 
rocks in order to determine if the source was primitive or 
originated from depleted mantle. In tonalites and quartz 
monzodiorites of the Pertek granitoid, Ni composition 
varies from 15 to 24 ppm indicating that their source was 
not primitive mantle but may be a fractionally crysta- 
llized depleted mantle [34]. However, in diorites Ni ratio 
varies from 18 to 178 ppm and in quartz diorites from 17 
to112 ppm (Table 1) indicating that the more basic rocks 
might have evolved from primitive mantle. In addition to 
that, most of the acidic and basic samples are gathered in 
an area between MORB and subduction melt areas in 
La/Nb-Ti variation diagram (Figure 8(a)). In Th/Yb- 
Ta/Yb variation diagram they are found in subduction 
zone and N-type MORB areas and effect of fractional 
crystallization could be defined in diagram (Figure 8b). 
In the Zr/Yb-Nb/Yb diagram (Figure 8c) diorites are 
found in an area between depleted mantle (DM) or 
Oceanic Island Basalt (OIB) areas. Quartz diorites, in the 
same diagram, are gathered in Enrich-Ocean Ridge Basalt 

 

 

Figure 6. (a-c) Rb, Ba and Sr vs. silica semi-logarithmic variation diagrams of Pertek granitoid. (d) Y vs Rb. AFC; 
assimilation-fractional crystallisation, opx; orthopyroxene, cpx; clinopyroxene, amp; amphibole, plg; plagioclase, bio; biotite, 
K-feld; K-feldspar, hb; hornblende, gt; garnet, zr; zircon, ol; olivine. 
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Figure 7. Chemical trends representing the main magma 
associations of the Pertek granitoid in the A-B characteri- 
stic minerals diagram [26]. I, II, III and IV, V, VI regions 
represent the peraluminous and metaluminous domains. Bi; 
biotite, mu; muscovite, hb; hornblende, opx; orthopyroxene, 
cpx; clinopyroxene, ol; olivine, ALUM; aluminous, ALCAF; 
aluminocafemic, CAFEM; cafemic association. 

 
(E-MORB) area, and tonalites are found between DM 
and E-MORB areas. All samples are plotted in volcanic 
arc granitoid area in Nb-Y and Rb-Y/Nb variation dia- 
grams (Figure 9). In Sm/Yb-Ce/Sm diagram, diorites are 
found in MORB area, and the others are in between 
MORB-OIB areas. Pearce et al. [35] noted that gathering 
in these areas might be caused by subduction zone en- 
richments of crustal contamination. Distribution of sam- 
ples from the Pertek granitoid in Rb/Y-Nb/Y and Ba/Nb- 
La/Nb diagrams (Figure 10(a)-(c)) also show a crustal 
contributions into the magma.  

As mentioned above, increasing in Rb/Sr and K2O/ 
P2O5 ratios with increasing SiO2 is a clear indicator of 
crustal contamination (Table 1) [36]. However, this con- 
tamination should be considered with the assimi- 
lation-fractional crystallization (AFC) and partial melting 
[37]. Low La/Ta ratio also indicates crustal contami- 
nation [31]. When these interpretations are taken into 
consideration, these La/Ta ratios in diorites (La/Ta = 
19.1), quartz diorite ((La/Ta = 20.7) and quartz monzo- 
diorite (La/Ta = 21.7) indicate effects of crustal contami- 
nation for these groups but tonalites (La/Ta = 38.7). 

In some diagrams, given above, Pertek granitoid show 
similar geochemical composition to the mantle wedge. 
Considerably high Ba/Nb (11-139) and Zr/Nb (6-79) 
ratios (Table 1) indicate that these rocks were subjected 
to a mantle-sourced depletion [38]. Similarly, except for 
syenite (PR-31) and one quartz diorite sample, La/Nb 
ratios are higher than 1 and this also indicates that these 
groups evolved from a lithospheric mantle source [39]. It 

 

Figure 8. (a) La/Nb vs. Ti (ppm) [35]. (b) Th/Yb vs. Ta/Yb, 
[35] and (c) Zr/Yb vs. Nb/Yb plots of the rock samples from 
the Pertek granitoides. SMZ; subduction zone magmatites, 
MORB; Ocean Ridge Basalt, OIB; Ocean Island Basalt, FC; 
Fractional Crystallisation, DM; Depleted Mantle, N, E- 
MORB; Normal - Enrich Ocean Ridge Basalt. 

 
is widely accepted that in subcontinental lithospheric 
mantle-sourced magma La/Nb is higher (La/Nb > 1) than 
asthenospheric mantle-sourced ones (La/Nb < 1) [39]. In 
Pertek granitoid samples La/Nb ratio varies from 1, 2 to 
4, 6 indicating a lithospheric melt. However, some re- 
searchers also suggest that relative depletion in Nb and 
Ta might be caused by interaction between subconti- 
nental litfospheric and astenospheric melts [40].  
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Figure 9. (a) Nb – Y and (b) Rb - Y+Nb [50] geotectonic discrimination diagrams for the Pertek granitoid. Syn COLG; 
Syn-Collisional Granitoid, WPG; Within-Plate Granitoid, VAG; Volcanic-Arc Granitoid, ORG; Ocean-Ridge Granitoid. 
 

 

Figure 10. (a) Sm/Yb vs. Ce/Sm, (b) Rb/Y vs. Nb/Y [35], (c) Ba/Nb vs. La/Nb [51] plots of the rock samples from the Pertek 
granitoid. 
 
8. Discussion and Conclusions 
 
The NW-SE-trending Pertek granitoid consists of dio- 
rites, quartz diorites, quartz monzodiorites, tonalites and 
crosscutting aplites and monzonitic dykes that were all 
formed in similar tectonic setting. Large amount of mafic 
microgranuler enclaves are found in quartz diorites, 
tonalites and monzonites. All these rocks, except for a 

sample (PR-31) taken from syenites, are sub-alkaline; 
diorites and quartz diorites are tholeiitic and others are 
calc-alkaline in nature and all of them are evolved from a 
single phase magma during a normal crystallization 
process. Major element-silica variation characteristics 
show that fractionation particularly plagioclase, horn- 
blend, pyroxene and olivine played an important role on 
their formation during a continuous crystalliation period.  
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Table 2. The general features of the granitoides in the E-SE Anatolia. 

 Rocks Magma type Tectonic setting Age 

Göksun-Afşin Granodiorite and granitic [4] Calc-alkaline [4] Volcanic Arc [4] 85.76±3.17-77.49±1.91 [4] 

Doğanşehir 
Amphibole gabbro, diorite, quartz diorite, 
tonalite, granodiorite [43, 44] 

I-type, peralüminus, 
calc-alkaline [43, 44] 

Volcanic arc [43,44] 
Compatible with the Baskil, 
Göksun-Afşin and Keban [4] 

Baskil 

Granite, granodiorite, tonalite, quartz 
monzonite, diorite, gabbro, aplite, diabase 
[2,16], granophyric, granite porphyre, 
granodiorite  porphyre, microdiorite, 
quartz microdiorite, quartz 
diorite-porphyre, orbicular gabbro [2] 

I-type [13], metalüminus, 
peralüminus [2,16], 
calc-alkaline [2] ± 
tholeiitic 

Magmatic arc [14,45] 

Ensimatic ısland arc 

[3, 14]  
Volcanic arc granitoid 

[2] 

Granitoid=81.5±1.1 [2] 

 Diabase=78 my [16] 
Granite=76 ±2.5 – 78.5±2.5 my 
[8] 

Keban 
Tonalite, quartz diorite, gabbro, dacite, 
andesite, basalt [9,6,17] 

Tonalites;calc-alkaline, 
I-type, metalüminus, 
peralüminus  
Diorite-gabbros; tholeiitic, 
M-type, metalüminus [17]

Volcanic Arc [17] 
Tonalite=59.77 ± 1.2 -75.65 ± 
1.5 
Diorite= 84.76 + 1.8 [17] 

Pertek 
Diorite, quartz diorite, Q.monzodiorite, 
tonalite, granite, syenite 

I-type, metalüminus, 
Q.monzodiorite and 
tonalite; calc-alkaline,  
Diorite and Q.diorite; 
calc-alkaline and tholeiitic

Volcanic Arc 
Granitoid 

68.6±5.6 

 
Chontrite and pimordial mantle-normalized patterns of 
diorite and quartz diorites show two different path 
indicating that mantle-sourced magma that later formed 
the Pertek granitoid was enriched by fluids derived from 
the oceanic crust in an arc setting, and contaminated by 
continental crust. This result is supported by both the 
petrographic and geochemical evidences that magma 
formed in an arc setting, enriched by magmatic fluids 
derived from a subducted oceanic crust, injected into the 
crust and contaminetd in this crustal environment.  

The repeated modifications in subcontinental litho- 
spheric mantle by dehidration in subduction zones and 
accretionary prism sediments included by subcontinental 
lithospheric mantle [41] caused a relative depletion in Ti, 
Nb and Ta and an enrichment in Ba. The fact that the 
rocks are concentrated in classical sedimentary and 
granulite areas may indicate the same thing as well. 
Significant negative Nb and Ti anomalies in Pertek gra- 
nitoid are probably caused by its subduction sediment 
content. Negative Ti anomaly may also indicate apatite 
and Fe-Ti oxides played important role on petrogenesis 
[42].  

In the geological map of MTA [21], the Cretaceous 
magmatic rocks cropping out to the N and NE of Elazığ 
are defined as “ophiolites” and “unclassified magmatic 
rocks”. The Pertek granitoid crops out in a part of this 
region and when our conclusions are compared with the 
other granitoids cropping out in the region, it is seen that 
they display similar characteristics (Table 2). Thus, it 
might be concluded that the Pertek granitoid is the east- 
ern continuation of Elbistan (Kahramanmaraş), Doğan- 
şehir (Malatya), Baskil and Keban (Elazığ) granitoids.  

The future petrographic and geochemical studies on 
the cross-cutting acidic dayks would contribute in under- 

standing if the magmatism was bimodal in nature or not. 
In order to clarify the problems, related to the place and 
importance of the Pertek granitoid within the context of 
geotectonic evolution of the region, additional studies are 
needed along with the detailed geochemical studies we 
presented in this article. We continue studying isotop 
geochronology and isotop geochemistry of the Pertek 
granitoid in accordance with our purpose. 
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