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Abstract 
We demonstrate in this paper that periodic variations of the J2 gravity coefficient of a planet in-
duce small cumulative perturbations on a given family of circular equatorial orbits, and that these 
perturbations could be measurable with current radiosciences technology. For this purpose, we 
first consider a Poincaré expansion of the Newtonian equations of motion. Then, by using Flo-
quet’s theory, we demonstrate that, unlike the excitation mechanism, the perturbations are non- 
periodic, and that the orbit is not “stable” in the long-term, with perturbations growing exponen-
tially. We give the full theory and an application to the case of planet Mars. 
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1. Rationale 
Chao and Rubincam [1] demonstrated that the J2 harmonic moment of Mars is subject to large annual variation 
as about one quarter of the CO2 atmosphere condenses during winters at the poles, and sublimes during summers 
(see Figure 1), with 

( ) ( )2 2 cosoJ t J tω ϖ= + ∆ +  
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Figure 1. The hourglass model of the sublimation/condensation 
mechanism on Mars. No terrestrial phenomenon is known to pro-
duce a mass redistribution of such a magnitude over a year. 
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; ϖ  is an arbitrary phase; σ is the annual length-of-day variation; C0 is the Mars  

mean polar inertial moment; Ω0 is the mean Mars angular rotation velocity; ω is the mean Mars angular orbital 
velocity; R is the Mars radius; and M is the planet’s mass. Similar variations, but of a lesser amplitude, are also 
observed on the Earth. In this paper, we show that these small variations can end up in cumulative perturbations 
on selected families of orbits. This work can be easily extended to semi-annual perturbations and larger degree 
and order gravity coefficients [2]. The only restriction is that these perturbations must have commensurate pe-
riods. 

2. Orbital Mechanics 
With respect to a given inertial cartesian coordinate frame, the Newtonian equations of motion of a space probe 
orbiting a planet are 
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where ( )1 22 2 2r x y z= + + , µ  is the gravitational constant of Mars, 2
2

3
2

J R Jµ= , Uε∇  represents the re-  

maining part of the gravity field (without the J2 term), and the η f  term summarizes all the other forces like 
atmospheric drag (the main contributor for low orbits), sun tidal acceleration, solar pressure, relativistic correc-
tions, etc. We use the notation Uε∇ , where ε  is a global scaling factor [3], to emphasize the fact that these 
forces are of small amplitudes with respect to the central and J2 terms. The aims of the notation η f  is similar. 

We now consider a probe orbiting the planet on a high altitude (i.e. with 0ε ≈ ) near equatorial orbit (i.e. 
with 0z ≈ ) in order to avoid the atmospheric drag (i.e. with 0η ≈ ). Up to the first order in z, this leads to 
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where ( )1 22 2d x y= + , z d . 
It is clear that the last equation is decoupled from the first two ones. The solution of the third one corresponds 

to an oscillation with respect to the mean orbital plane, of no interest for the following discussion. 
If we switch to cylindrical coordinates , ,d zϕ , where cosx d ϕ=  and siny d ϕ= , we obtain 

( )

2
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The constant h0 can be identified as an angular momentum. 

Jezewski [4] [5] demonstrated that if 0∆ = , i.e. if 0 2 0
2

3
2

J J R Jµ= = , then Equation (1’) admits a solution in 

terms of ellipsoidal functions as 
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where 1u
d

= , and ( )sn x  is the Jacobi ellipsoidal sine function. The two constants b and c are determined by 

the initial conditions, and have a direct physical meaning as the inverses 1

p

b
d

=  of the periapsis and apoapsis 

1
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=  of the orbit. The other two constants are given by cϕ  and tc. One can demonstrate that  
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 is the modulus of the Jacobian sn function, 

and 0 0
3
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γ = , 2g

a c
=

−
. The functions u and ϕ , viewed as a function of t are periodic, but with differ-  

ent periods, and define an “ellipsis” with an apse line slowly rotating in the equatorial plane, with a period 
( )2;F kπ  (complete elliptic integral of the first kind). A close value of the angular velocity of the apse line 

can be deduced from the usual Laplace equations by summing the 0
2J  secular drifts Ω  of the line of node and 

of the line of apsides ω  for a non equatorial orbit of inclination i and semi-major axis a as  
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The Hamiltonian of the unperturbed motion is given by  
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If 0∆ ≠ , Poincaré’s theorem [6] asserts that the equations of motion can be developed with 0J J φ= + ∆  as 
2
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where 1 1 1 2 2 2, , , , ,d z d zϕ ϕ   satisfy differential equations with null initial conditions. These differential equa-
tions are determined by plugging Equation (3) into Equation (1’), and equating the powers of ∆ .  

For the first order, after some uninteresting algebra, we arrive at 
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This system can be rewritten as a first order system by using the usual trick p u=  , q v=  . This gives 
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s N s w⇔ = + , with ( )0 0s t = . 
Similar equations can be obtained from the formalisms of Hill or Lagrange. The approach that we retained is 

the simplest one. Considering an equatorial circular orbit is a fundamental assumption, as it allows us to write a 
very simple analytical solution. 

3. Floquet’s Theory 
System (5) is of Floquet’s type [7], i.e. the coefficient matrix N is periodic, here with a period of half an orbit. 
More precisely, system (5) is a two-dimensional generalization of the Mathieu’s equation [8]. 

The solution of the system with the second member w is given, as ( )0 0s t = , by 

( ) ( ) ( )
0

, d
t

t

s t t wξ ξ ξ= Π∫                                 (6) 

where Π  is the solution of the homogeneous matrix system 

( ) ( )0 0, ,t t N t tΠ = Π                                   (7) 

with ( )0 0,t t IΠ =  being the identity matrix. Because of uniqueness properties, we have  
( ) ( ) ( )2 1 1 0 2 0, , ,t t t t t tΠ Π =Π , and therefore ( ) ( )1

0 0, ,t t t t−Π = Π . As N is periodic with period T, i.e. 
( ) ( )N t kT N t+ = , Floquet’s theorem asserts that the solutions ( )0,t tΠ  are pseudo-periodic, i.e. that they can 

be written as ( ) ( ) ( ) ( )( )0 0 0 0, , expt t P t t t t Q tΠ = − , where ( ) ( )0 0, ,P t T t P t t+ =  is periodic with ( )0 0,P t t I= , 
and ( )0Q t  is a constant characteristic of the system, with ( ) ( )0 0Q t T Q t+ = . The boundedness of the solu-
tions of systems (5) and (7) is governed by the constant matrix ( ) ( )( )0 0 0, expC t T t TQ t= Π + = , more precisely 
by its spectral radius ρ  (the largest eigenvalue [9]). In particular, if 1ρ > , the solution of the homogeneous 
system (7) is unbounded, as well as the solution of the inhomogeneous system, unless ad’hoc (and unphysical) 
initial conditions are imposed [10]. 

4. Long-Term Behaviour of the Orbit 
If ( )w ξ  is periodic with the same period T, one can go a little farther and it can be shown (see Appendix A) 
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that we have the geometrical series behavior [11] 

( ) ( ) ( ) ( ) ( )0 0, ks t kT s t t t U s t T+ = + Π +                           (8) 

with 0 0t t t T≤ < + , 0k ≥ , ( ) ( ) ( )1 1k k kU I C C I CU− −= + + + = + , ( )0 0,C t T t= Π +  and ( )0 0U = , ( )1U I= . 
This relation shows that the behavior of this system in the “long” term is governed by ( )kU , as ( )0,t tΠ  is 

bounded for 0 0t t t T≤ < + . It is clear that if ( )kU  diverges, i.e. if 1ρ > , then ( )s t kT+  diverges too, unless
( )0 0s t T+ =  (and then ( )s t  is periodic of period T). This does not mean that the physically perturbed motion 

is unbounded, but that the Poincaré’s expansion (3) will break down at some stage. Physical bounds for the mo-
tion could probably be obtained by extending the works of Mioc and Stavinschi [12]-[14] to a variable J2. To 
obtain a common period for N and w, we just have to slightly adjust the altitude of the spacecraft, in order to 
have an entire number of orbital periods during a Martian year that is then becoming the common period T. 

5. Numerical Results and Conclusions 
Let us consider the solution for the particular case of the planet Mars and for a circular equatorial orbit. The pe-

riod T of a circular equatorial orbit of radius d is given from (1’) by 
2

2 0
23 5

2 3 .
2e e

R J
T d d
π µ µ  = + 

 
 

We take the numerical values from [15] [16]. 
3 242828.376383 km /sµ = , 0 3

2 1.95869919367 10J −= ×  (unnormalized),  
2

0 0.3662C MR = , 3394.2 kmR = , 5
0 7.088218111 10 rad/s−Ω = × , 

71.05857641382 10 rad/sω −= × , 7.85 mRσ =  (corresponding to 477 milliarcseconds). 

From these values, we derive 91.8971 10−∆ = − × , i.e. a 10−6 relative variation with respect to the 0
2J  term. 

We now consider a circular orbit well beyond the atmosphere, at an altitude of 1000.629961 km (semi-major 
axis 4394.829961 km), in order to have exactly 6716 orbits/Martian year, corresponding to an orbital period of 
147.266 min.  

This leads to 1.002627ρ =  for the spectral radius ρ  over one Martian year, from the Jordan form of the 
matrix C. 

For the first year, the perturbations (norm of the differences between the perturbed and unperturbed motion) 
range up to 172.58 m in position, most of it in the along-track direction, and 122.69 mm/s in velocity. They are 
measurable with state-of-the-art technology, both for laser and Doppler tracking [17], and they are slowly 
building up with time (see Figure 2 and Figure 3), as the spectral radius ρ  is larger than one and ( )0s t T+  
is non zero (we have ( )0 1.12 cmr t Tδ + =  and ( ) 3

0 4.9 10 mm/sv t Tδ −+ = × ). A strategy to look at these pertur- 
bations would be to put a LAGEOS-like satellite with laser cubes [18] in such an orbit, and to observe it during  
 

 
Figure 2. Building up of the position perturbations δr 
over the Martian years in meters. The building up of 
the perturbations is not strictly periodic (with a shift 
of about 14 minutes/year), albeit the excitation me-
chanism is by itself periodic. 
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Figure 3. Building up of the velocity perturbations δv 
over the years in mm/second. 

 
a sufficient amount of time, from other Mars satellites, or even from the Earth, if it is equipped with “active” la-
ser receptors [19] instead of passive retroreflectors. 

We believe that this phenomenon is general, and that the theory described in this paper deserves to be genera-
lized to any type of orbit, including polar orbits dedicated to mapping. The analysis will be then complicated by 
the presence of the secular perturbations caused by the even zonal coefficients of the gravity field, and other 
long period perturbations. The effect of the perturbations that originate from the triaxiality of Mars is investi-
gated in Appendix B. We plan also to study semiannual variations of the J2 gravity coefficient, and to under-
stand how the excitation mechanism described in this paper acts on the orbits of Phobos and Deimos that are 
near circular equatorial orbits. 
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Appendix A 
We have, with 0t t T≤ < , by using Floquet’s theory, 
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Therefore, ( ) ( ) ( ) ( ) ( )0 0, ks t kT s t t t U s t T+ = + Π +  with 0 0t t t T≤ < + , 0k ≥ ,  
( ) ( ) ( ) ( )1 1k kkU I C I C I CU− −= − − = + , and ( )0 0U = , ( )1U I= . In particular, if 0t t= , we have  

( ) ( ) ( )0 0
ks t kT U s t T+ = + . 

Let us verify that this formula defines a continuous mapping of ( )s t . 
For 0 , 0, 0t t T ε ε ε= + − → >  we have  

( ) ( ) ( ) ( ) ( )
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0 0 0 0

1
0 0
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For 0 , 0, 0t t T ε ε ε= + + → >  we have  
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1
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,

,

k
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+

+
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thus proving the continuity. 

Appendix B 
The above analysis supposes that the equatorial moments of Mars are equal. Unfortunately, because of the Thar-
sis uplift, Mars is the terrestrial planet for which this assumption is the least accurate. If we take into account 
this triaxiality, the equations of motion (1) become, in an ad’hoc reference frame and up to degree and order two 
[20] 

( ) ( )

( ) ( )

2 2 2 2 2
3 5 7 7

2 2 2 2 2
3 5 7 7

3 7 3 cos 2 2 4 sin 2

3 2 4 sin 2 7 3 cos 2

x x yx x J R y x y x
d d d d

y x yy y J R x y x y
d d d d

µ µ κ

µ µ κ

 = − − + − Θ+ − Θ 
 
 = − − + − Θ− − Θ 
 





            (9) 

where 56.3173 10κ −= − ×  in the system of constants of paragraph 5 and  

( )
2

0
0 0

0

2 sin
3

MRt t
C

ω ϖ
ω
Ω

Θ = Ω − ∆ + +Θ . The Equations (9) can be then developed in Poincaré’s series (see Eq-  
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uation (3)), with respect to both ∆  and κ . Up to the second order, and remembering that 91.8971 10−∆ = − × , 
we obtain 2 94 10κ −= × , 2 183.6 10−∆ = × , and 131.2 10κ −∆ = × . This show that the excitation mechanism de-
scribed in this paper is superimposed on the motion described by Equation (9) with ( ) 0

2 2J t J=  and 
0 0tΘ = Ω +Θ  up to degree one in ∆  and degree two in κ . To be complete, all the other harmonic coefficients 

of the gravity field could be treated in the same way, provided that the circular equilibrium orbit is computed 
with respect to all even zonal coefficients. 
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