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Abstract

In this paper, we define expectation of f eF, ie. E(f)= f(J), accordingto Wiener-Ito-Segal

isomorphic relation between Guichardet-Fock space F and Wienerspace W. Meanwhile, we prove a
moment identity for the Skorohod integrals aboutvacuum state.
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1. Introduction

The quantum stochastic calculus [1] [2] developed by Hudson and Parthasarathy is essentially a noncommuta-
tive extension of classical Ito stochastic calculus. In this theory, annihilation, creation, and number operator
processes in boson Fock space play the role of “quantum noises”, [3] which are in continuous time. In 2002, At-
tal [4] discussed and extended quantum stochastic calculus by means of the Skorohod integral of anticipation
processes and the related gradient operator on Guichardet-Fock spaces. Usually, Fock spaces as the models of
the Particle Systems are widely used in quantumphysics. Meanwhile, vacuum states described by empty set on
Guichardet-Fockspaces play very important role at quantum physics.

Recently Privault [5] [6] developed a Malliavin-type theory of stochastic calculus on Wiener spaces and
showed its several interesting applications. In his article, Privault surveyed the moment identities for Skorohod
integral on Wiener spaces. It is well known that Guichardet-Fock space F and Wiener space W are Wiener-
Ito-Segal isomorphic. Motivated by the above, we would like to study the momentidentities for Skorohod inte-
graon Guichardet-Fock spaces.

This paper is organized as follows. Section 2, we fix some necessarynotations and recall main notions and
facts about Skorohod integralin Guichardet-Fock spaces. Section 3 states our main results.

2. Notations

In this section, we fix some necessary notations and recall mainnotions in Guichardet-Fock spaces. For detail
formulation of Skorohod integrals, we refer reader to [4].
Let R, be the set of all nonnegative real numbersand T" the finite power set of R, , namely
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IF={c|occR,, #<x},

where & denotes the cardinality of o as a set. Particularly, let @ eT'® be an atom of measure 1. We de-
note by L*(I") the usual space of square integral real-valued functionson T .

Fixing a complex separable Hilbert space 7, Guichardet-Fock space tensor product 7 ® L?(I") , which we
identify with the space of square-integrable functions L*(I";#) , and is denoted by F.

For a Hilbert space-valued map x:I'xR, — 77, let

5(x):o*»—>ZXS(O'\S)

Seoc

denotes the Skorohod integral operator. For a vector space-valued map f:I'—>V, let Vf and Df be the
maps I'xR, -V given by

Vi (@,s) = f(wl Js), Df (w,5) =1, f (@ Js)

respectively denote the stochastic gradient operator of f and the adapted gradient operator of f. Moreover, we
write. DomV for the domain of the stochastic gradient as an unbounded Hilbert apace operator:

DomV :={f e F:Vf e L*(T'xR,;7)}.

Definition 2.1 For the map x:T'xR,_ — 77, the value of Skorohod integral &(x) at empty set is called the
expectation of &(x) on Guichardet-Fock space and is denoted by E(5(x)) i.e. E(d(x)) =0(x)(D).

Lemma 2.1 Letxbeamap I'xR, — 7, if xissquare integrable and the function
(@,5,1) > (X, (@ Jt), x (@] Js)) s integrable, then x e Doms and

I SOIP = [l xIPds + [ [ [¢x, @ Jt), % (| Js))deoditds, (2.1)
we denote
trace(Dx)* = (Vx,V'X)
= [ [ (Vx,, Vo dtds
= [ |7 (x (@), x (@Us))dtds.
Lemma22Llet feF andlet x:I'xR,_ — 7 be Skorohod integrable, if the map
(@,8) = (X (@), F(@U5s))

is integrable, then

(8(x), £y =[[<x,,V, f (@))deds. (2.2)
Lemma2.3Let x:I'xR, —> 7 be measurable. For a.at,we have
D,5(x) = 8 (Dx) + R, (2.3)

where Bx =1, %, I\ ={wel':0c[0t[}.
Proof In view of the identity

Loy o(X)(ocut)= Z Lo Lo ()X ((o/s)ut) + Lo X (o),

we have
D,3(x)(0) = 6(L (VDX )(2) + Px (o).

3. Moment Identities for Skorohod Integrals

Theorem 3.1 Forany n>1 and xe F,we have

E(5(x)"™) = Zn: nt E[S(X)" ™ (((VX)* X, x) + trace(Vx)*™ + i%{(Vx)k" X, Vtrace(Vx)' )], (3.1)

ka (n—k)!
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where
k+1 ® R
trace(VxX)“" = [ [ (Vi X Vi X Vi X,V % ety

For n=1 the above identity coincides with (2.1).
We will need the following lemma.
Lemma3.l1Llet n>1 and xeF.Thenforall 1<k <n we have

E(S()" " ((VX) %, VE(x)N(D) - (n—Kk)(S ()" VX)X, VS(X)))
= E[6(X)" ™ (((VX)* "X, x) + trace(Vx)* ™ + i%{(Vx)k’i X, Vtrace(Vx)'))].

Proof Using relation (2.2), (2.3), we obtain
SO)" VX)X, V(X)) = S(X)" (VX)X x+ (VX))
=500 (VX) %, x)) + (6 ()" (VX)X (VX))
= 500" (VX% ) + (V) V(S ()" (VX) X))
= S00)" UV %)) + ()" (VX V((VX) X)) +(V X, (VX)) @ V(5(X)"))
=S5)" UV X X) + (VX VIV X)) + (n=K)S(X)"™* VX, (VX) 7 X) @ V(X))
= 00" (VX)X )+ (VX VIV 3))) + (= K)S ()" (X)X, VS (X)),

and
<V*X’ V((Vx)k& X)> = J:C o .I:(V;fkil XTk ’V‘k (Vtk—z th—l N 'vto XTl X‘o )>dt0 o dtk
= I: ' J.: <V:k71 th ’Vtk—z X1k—1 ’ ”V‘o Xllvtk X‘o >dt0 ; .dtk

k-2 - -
= trace(Vx)“"! + Zjo jo (Vi % Vi X VX V%t - dty
i=0

i+2

k=2 © o
= trace(Vx)k*l + Z .[0 ' ”.[0 <V:k—1 ka ’Vtk Xfm o Vtm it (Vti Vtk X1i+1 )Vtifl Xti N 'Vto XTl X‘o >dt0 o dtk
i=0
. k-2 1 © o
= trace(VX)k ' + ;EJ‘O N 'J‘O <Vti <Vzk71 th ’Vtk th+1 ’ ”Vtm Xti+2 Vtk X'[i+1 >’ Vtifl X'fi : “Vto th th >dt0 o dtk
k-2 ) .
= trace(VX)*™ + Z%((Vx)' X, Vtrace(Vx)“™),
i-0 K—1

Proof of Theorem 3.1, We decompose
E(5(x)™) = E(x, V(5(x)"™) = E(N(5(x))"(x, V(X))
5ol
“ & (n-k)!
then we apply lemma 3.1, which yields (3.1).

E[S(x)"™ (V)7 %, VE(X)) = (n = k) (S ()" (V%) %, VE())],
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