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Abstract 
In this paper, we consider two interpolations of Birkhoff-type with integer-order derivative. The 
Birkhoff interpolation is related with collocation method for the corresponding initial or boun-
dary value problems of differential equations. The solvability of the interpolation problems is 
proved. For Gauss-type interpolating points, error of interpolation approximation is deduced. Also, 
we give efficient algorithms to implement the concerned interpolations. 
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1. Introduction 
Back to 1906, an extension of polynomial interpolation which involves the values of derivatives of the interpo-
lated function is studied by G. D. Birkhoff in [1]. The Birkhoff interpolation (named after G. D. Birkhoff) may 
be defined as follow. Given a set of distinct interpolating points 0{ }j jx =

  and 1K +  data 0{ } ( )m
j jy K N= ≥ , to 

find a polynomial ( )p x  of degree K  such that 
( ) ( ) .m m

j jp x y=                                      (1) 

If for each j , the orders of derivatives in (1) form a unbroken sequence, 0,1,..., jm m= . The interpolation 
problem above refers to Hermite interpolation. But in general, we say the Birkhoff interpolation which means 
the other case. It turns out that the Birkhoff interpolation problem is difficult and causes many literatures [2]-[7]. 
In contrast to Lagrange interpolation and Hermite interpolation, a Birkhoff interpolation problem does not al-
ways have a unique solution. For instance, there is no quadratic polynomial p  such that ( 1) (1) 0p p− = =  an

'(0) 1p = . For solvability of Birkhoff interpolation problems, Pòlya condition is suggested in [8] and developed 
in [9]. To construct the Birkhoff interpolation formulation, an algorithmic approach is presented in [10] for 
Hermite-Birkhoff interpolation. There are also many results for (0, 2) interpolation [11] and others.  

In any way, the approximation theory of interpolation is in foundational importance of numerical analysis 
even of algorithm method for various scientific computing problems. In [12], authors suggested a well-condi- 
tioned collocation method based on a Birkhoff interpolation which achieved efficiency in computation. It is ne-
cessary to contemplate the Birkhoff interpolation appeared in [12]. 
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This paper is organized as follow. In Section 2, we present the interpolation problems. In Section 3, we give 
solvability and representation of the problems. In Section 4, we present the interpolation errors. In Section 5, ef-
ficient algorithms for computing the interpolation polynomials are given. In Section 6, some conclusive remarks 
are given. 

2. Interpolation Problems 
Let 0{ }j jx =

  be a set of 1N +  distinct interpolating points posed on [ 1,1]− , which are arranged in increasing-
ly order, namely 

0 11 ... 1.x x x− = < < < =


 

Denote by 


  the set of all polynomials of degree at most N  defined on [ 1,1]− . First of all, we give two 
definitions of the concerned Birkhoff problems.  

Problem 1. For any [ 1,1]u C∈ −  and ( 1,1]u C′∈ − , the Birkhoff interpolation of u , denoted by (1)
NI u , is a 

polynomial of degree N , which satisfies that 
(1)( ) ( ) ( )N j jI u x u x′ ′= , 1 j N≤ ≤ , and (1)( )( 1) ( 1).NI u u− = −                    (2) 

Remark. A similar interpolation for endpoint 1x =  can be defined by conditions as 
(1)( ) ( ) ( )N j jI u x u x′ ′= , 0 1j N≤ ≤ − , and (1)( )(1) (1).NI u u=  

The corresponding results is parallel to theirs for Problem 1. 
Problem 2. For any [ 1,1]u C∈ −  and ( 1,1)u C′′∈ − , the Birkhoff interpolation of u , denoted by (2)

NI u , is a 
polynomial of degree N , which satisfies that 

(2)( ) ( ) ( )N j jI u x u x′′ ′′= , 1 1j N≤ ≤ − , and (2)( )( 1) ( 1)NI u u± = ± .                 (3) 

We will verify that the two interpolation problems above are all solvable latterly. In common, it is unexpected 
that the interpolation (1)

NI u  or (2)
NI u  gives a good approximation to u  for arbitrary interpolating points. In 

order to achieve good approximation, we will consider the Gauss-type quadrature nodes as the interpolating 
points. However, solvability of the problems above has nothing to do with the interpolating points. 

3. Solvability and Representations 
3.1. Solvability of the Problems 
For Problem 1, the solvability is equivalent to invertibility of the following matrix 

2 2 1
0 0 0 0 0

3 2 1
1 1 1 1

3 2 1
2 2 2 2

3 2 1
1 1 1 1

3 2 1

1
0 1 2 ( 2) ( 1)
0 1 2 ( 2) ( 1)

0 1 2 ( 2) ( 1)
0 1 2 ( 2) ( 1)

N N N

N N N

N N N

N N N
N N N N

N N N
N N N N

x x x x x
x N x N x Nx
x N x N x Nx

x N x N x Nx
x N x N x Nx

− −

− − −

− − −

− − −
− − − −

− − −

 
 − − 
 − −
 
 
 − −
 ∈ − − 







      





                    (4) 

We now check the matrix (4). The determinant of the matrix (4) is 
0

! ( )i j
i j

N x x
< < ≤

−∏


. We claim that the  

Problem 1 is solvable from the invertibility of the matrix (4). 
For Problem 2, the solvability is equivalent to invertibility of the following matrix 

2 2 1
0 0 0 0 0

2 2 1

3 2
1 2 2

3 2
1 1 1

3 2

1
1
0 0 2 1 3 2 ( 1)( 2) ( 1)

0 0 2 1 3 2 ( 1)( 2) ( 1)
0 0 2 1 3 2 ( 1)( 2) ( 1)

N N

N N
N N N N N

N N

N N
N N N

N N
N N N

x x x x x
x x x x x

x N N x N N x

x N N x N N x
x N N x N N x

−

−

− −

− −
− − −

− −

 
 
 
 ⋅ ⋅ − − −
 
 
 ⋅ ⋅ − − −
 ⋅ ⋅ − − − 







      





                  (5) 
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We now check the matrix (5). By calculus, we know that the determinant of the matrix (5) is  

0
2 !( 1)! ( )i j

i j
N N x x

< < <

− −∏


. Then Problem 2 is solvable from the invertibility of the matrix (5). 

3.2. Representations of the Interpolation Operators 
As with the Lagrange interpolation, we search for a nodal basis to represent the interpolating polynomial. For 
Problem 1, we need to look for (1) ( ) (0 )j NB x j N∈ ≤ ≤  such that 

(1) (1)
0 0( 1) 1, ( ) , 1' 0 ,iB B x i N− = = ≤ ≤  

(1) (1)( 1) 0, ( ) , 1 , 1 .'j j i ijB B x i N j Nδ− = = ≤ ≤ ≤ ≤                        (6) 

Theorem 1. The Birkhoff nodal basis has the following formulas: 
(1)
0 ( ) 1,B x =  

(1)
1

( ) ( ) , 1 ,
x

j jB x h t dt j N
−

= ≤ ≤∫  

where 

1 ,
( ) .k

j
k N k j j k

x xh x
x x≤ ≤ ≠

 −
=   − 

∏  

Proof. The proof is direct by computing. Here we omit it. 
Making use of the nodal basis in Theorem 1, we have the representation of (1) ( )NI u x  as 

(1) (1)

1
( ) ( 1) ( ) ( ).

N

N j j
j

I u x u u x B x
=

′= − +∑                             (7) 

We now turn to Problem 2. Here need to look for (2) ( ) (0 )j NB x j N∈ ≤ ≤  such that 
(2) (2) (2)
0 0 0( 1) 1, ( ) 0, 1 1, (1) 0'' ,iB B x i N B− = = ≤ ≤ − =  

(2) (2) (2)( 1) 0, ( ) , 1 1, (1) 0, 1 1,''j j i ij jB B x i N B j Nδ− = = ≤ ≤ − = ≤ ≤ −               (8) 

(2) (2) (2)( 1) 0, ( ) 0, 1 1, (1) 1' ,'NN i NB B x i N B− = = ≤ ≤ − =  

Theorem 2. The Birkhoff nodal basis has the following formulas: 

(2)
0

1( ) ,
2

xB x −
=  (2) 1( ) ,

2N
xB x +

=  

1(2)
1 1

1( ) ( 1) ( ) ( ) ( ) , 1 1,
2

x
j j j

xB x t k t dt x t k t dt j N
− −

+
= − + − ≤ ≤ −∫ ∫  

where 

1 1,
( ) .k

j
k N k j j k

x xk x
x x≤ ≤ − ≠

 −
=   − 

∏  

Proof. The proof is in [12]. 
Making use of the nodal basis in Theorem 2, we have the representation of (2) ( )NI u x  as 

1
(2) (2) (2) (2)

0
1

( ) ( 1) ( ) ( ) ( ) (1) ( ).
N

N j j N
j

I u x u B x u x B x u B x
−

=

′′= − + +∑                      (9) 

4. The Interpolation Errors on Gauss-Type Points 
In this section, we will analyze the error between the online function and its Birkhoff interpolation approxima-
tion on Gauss-type interpolating points. Let , ( )mJ xα β  be the classical Jacobi orthogonal polynomial of degree 
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exact m  with index pair ( , )α β . We take Jacobi-Gauss-Lobatto nodes as the interpolating points, namely, 
( , )
, 0{ }N

j j N jx x α β
== , and ( , ) ( , ) ( , )

0, , ,1, 1, (1 1)N N N j Nx x x j Nα β α β α β= − = ≤ ≤ −  are the zeros of ,
x NJα β∂  (also zeros of 1, 1

1NJα β+ +
− ). 

In order to analyze interpolation Problem 1, we introduce the following Lagrange-Gauss-Radau interpolation 
(1)

1N−Π  defined as: for (1)
1 1(0,1], N Nu C u− −∈ Π ∈ , such that 

(1) ( , ) ( , )
1 , ,( ) ( ), 1 .N j N j Nu x u x j Nα β α β
−Π = ≤ ≤  

The following lemma (page 134, Theorem 3.42 in [13]) is important for error estimate. 
Lemma 1. For 1, 2,α β> − > −  and any , 1( 1,1)mu Bα β+∈ − , we have that for 0 l m≤ ≤  and 2 m Nβ + < ≤ , 

( ) , 1, 1
(1) ( 1)/2

1
( )!( 1) || || ,
( 1)! m ml l

l l m m
x N x

N mu u c N u
N α βα β ωω

+ + ++ + +

− +
−

−
∂ Π − ≤ − ∂

−
 

where c  is a positive constant independent ,m N  and u . 
From the Definitions of two interpolation operators (1)

NI  and (1)
1N−Π , we find that 

(1) (1)
1 1( ) ( ) ( )( ) .N N NI u x u x′
− −′= Π ∈                               (10) 

Now, we come to the following error estimation by combining the result in Lemma 1 with (10). 
Theorem 3. Under the assumption of Lemma 1, it holds 

( ) , 1, 1
1 (1) ( 1)/2 1( )!( 1) || ,

( 1)!
|| m ml l

l l m m
x N x

N mI u u c N u
N α βα β ωω

+ + ++ + +

+ − + +−
∂ − ≤ − ∂

−
               (11) 

where c  is a positive constant independent ,m N  and u . 
Next, we consider the interpolation Problem 2. We need the following Lagrange-Gauss interpolation (2)

2N−Π  
defined as: for (2)

2 2(0,1), N Nu C u− −∈ Π ∈ , such that 
(2) ( , ) ( , )

2 , ,( ) ( ), 1 1.N j N j Nu x u x j Nα β α β
−Π = ≤ ≤ −  

The following lemma (page 132, Theorem 3.41 in [13]) is important for error estimate. 
Lemma 2. For , 2,α β > −  and any 1, 1( 1,1)mu Bα β+ +∈ − , we have for 0 1l m N≤ ≤ < − , 

( ) 1, 11, 1
(2) ( 1)/2

2
( 1)!( 2) || || ,

( 2)! m ml l
l l m m
x N x

N mu u c N m u
N α βα β ωω

+ + + ++ + + +

− +
−

− −
∂ Π − ≤ + − ∂

−
 

where c  is a positive constant independent ,m N  and u . 
From the Definitions of two interpolation operators (2)

NI  and (2)
2N−Π  we find that 

(2) (2)
2 2( ) ( ) ( )( ) .N N NI u x u x′′

− −′′= Π ∈                             (12) 

Now we come to the following error estimation. Similarly, combining the result in Lemma 2 with (12), we 
obtain 

Theorem 4. Under the assumption of Lemma 2, it holds 

( ) 1, 11, 1
2 (2) ( 1)/2 2( 1)!( 2) || || ,

( 2)! m ml l
l l m m
x N x

N mI u u c N m u
N α βα β ωω

+ + + ++ + + +

+ − + +− −
∂ − ≤ + − ∂

−
          (13) 

where c  is a positive constant independent ,m N  and u . 

5. Efficient Formulations to Computing the Interpolations 
The representation (7) (or (9)) with Theorem 1 (or with Theorem 2) is unconvenience for computing (1)

NI  (or 
(2)
NI ). Here, we develop efficient algorithms to deal with them. 
Case (1)

NI . Since (1) ( )N NI u x ∈ , we write 

(1) 1,

0
( ) ( ).

N

N l l
l

I u x a J xα β−

=

= ∑                                    (14) 

We only need to compute (0 )la l N≤ ≤ . Derivating (14), we have 

 
1272 



T. G. Zhao, Y. J. Li 
 

( )(1) , 1
1

1
( ) ( ).

2

N

N l l
l

lI u x a J xα βα β′ +
−

=

+ +
= ∑                              (15) 

Making use of the orthogonality of Jacobi polynomials, we can obtain for 1 l N≤ ≤ , 

( )1 (1) , 1 , 1
1( , 1) 1

1

2 ( ) ( ) ( ) ,
(1 )l N l

l

a I u x J x x dxα β α β
α β ω

α β γ
′ + +

−+ −
−

=
+ + ∫  

Since ( )(1) , 1
1 2 2( ) ( )N l NI u x J xα β′ +
− −∈ , the Jacobi-Gauss-Radau quadrature at nodes (1 )jx j N≤ ≤  is exact. At  

last, we have 

( )(1) , 1
1( , 1)

11

2 ( ) ( ) ,
(1 )

N

l N j l j j
jl

a I u x J xα β
α β ω

α β γ
′ +

−+
=−

=
+ + ∑                       (16) 

where (1 )j j Nω ≤ ≤  is the weight corresponding to quadrature node jx  of Jacobi-Gauss-Radau with the 
fixed endpoint 1x = . Now we only left 0a  to determine. It is not difficult because that 

1,
0

1 1

( 1)( 1) ( 1) ( 1) ( 1) .
! ( 1)

N N
l

l l l
l l

la u a J u a
l

α β β
β

−

= =

Γ + +
= − − − = − − −

Γ +∑ ∑                  (17) 

Case (2)
NI . Since (2) ( )N NI u x ∈ , we write  

(2) 1, 1

0
( ) ( ).

N

N l l
l

I u x a J xα β− −

=

= ∑                                 (18) 

We need to compute (0 )la l N≤ ≤ . Derivating (18) twice, we have 

( )(2) 1, 1
22

2

( 1)( )( ) ( ).
2

N

N l l
l

l lI u x a J xα βα β α β′′ + +
−

=

+ + − + +
= ∑                      (19) 

Making use of the orthogonality of Jacobi polynomials, we can obtain for 2 l N≤ ≤ , 

( )
2 1 (2) 1, 1 1, 1

2( 1, 1) 1
2

2 ( ) ( ) ( ) .
( 1)( )l N l

l

a I u x J x x dx
l l

α β α β
α β ω

α β α β γ
′′ + + + +

−+ + −
−

=
+ + − + + ∫  

Since ( )(2) 1, 1
2 2 4( ) ( )N l NI u x J xα β′′ + +

− −∈ , the Jacobi-Gauss quadrature at nodes (1 1)jx j N≤ ≤ −  is exact. 

At last, we have for 2 l N≤ ≤  

( )
2 1

(2) 1, 1
2( 1, 1)

12

2 ( ) ( ) ,
( 1)( )

N

l N j l j j
jl

a I u x J x
l l

α β
α β ϖ

α β α β γ

− ′′ + +
−+ +

=−

=
+ + − + + ∑               (20) 

where (1 1)j j Nϖ ≤ ≤ −  is the weight corresponding to quadrature node jx  of Jacobi-Gauss. Now there left 
0a  and 1a  to be determined. In fact, 

( )1, 1 1, 1

2
1 1, 1 1, 1

1 1

(1) ( 1) (1) ( 1)
.

(1) ( 1)

N

l l l
l

u u a J J
a

J J

α β α β

α β α β

− − − −

=
− − − −

− − − − −
=

− −

∑
                     (21) 

and 

1, 1
0

1
( 1) ( 1).

N

l l
l

a u a Jα β− −

=

= − − −∑                               (22) 

For every 0 l N≤ ≤ , we need ( )O N  operations to computing la  in both cases. The computational com-
plexity is 2( )O N  to obtain the interpolation polynomial (14) or (18) assuming that , 1 ,, ( ),j l j jJ xα β α βγ ω+  or jϖ  
are all pre-computed. 

6. Conclusive Remarks 
Two Birkhoff-type interpolations which are related with first-order initial value problem and second-order 
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boundary value problem respectively are considered in the paper. As in [12], this Birkhoff interpolation leads to 
well-conditioned collocation matrices or pre-conditioner. We remark that it is worthy to consider the similar in-
terpolations for high-order derivative case or fractional-order derivative case. 
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