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Abstract

Existence of traveling wave solutions for some lattice differential equations is investigated. We
prove that there exists c, >0 such that for each c2>c,, the systems under consideration admit

monotonic nondecreasing traveling waves.
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1. Introduction

Consider the following lattice differential equation

U, = V(U — 20, +U ) - f (U, (Bu), ) +ay, ieZ, 1)
V, =—oV, + pu;, ieZ,
where v, o are positive constants, a¢f>0, f isa C?-function, and (Bu), =u,; —u;.

Lattice dynamical systems occur in a wide variety of applications, and a lot of studies have been done, e.g.,
see [1]-[4]. A pair of solutions {u;}” , {v;} of (1.1) is called a traveling wave solution with wave
speed ¢ >0 if there exist functions U,V :R—R suchthat u, =U(i+ct), v, =V (i+ct) with
(U (-»),V (-=))=(U_,V.) and (U (+=),V (+=))=(U,,V,). Let £=i+ct, note that (1.1) has a pair of
traveling wave solutions if and only if U , V satisfy the functional differential equation

{cu (&)=v(U(E+1)-2U (&)+U (£-1))- (U (£).BU(&))+aV (&), 12)
oV (§)=-oV (§)+ AU (£).
Without loss of generality, we can impose (1.1) with asymptotic boundary conditions

gliﬂou (&)=0, .»;ILTOU &)=k, ;"JHOV (¢)=0, ;"JPWV (&)=k,. (1.3)

By the property of equation, we can assume that «, > 0. In the following, we give some assumptions on
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nonlinear function f :
(Ai) —f(k1,0)+ak2:0, f(0,0):O, —ok, + gk, =0.

(A,) There exists a positive-value continuous function Q:R — R such that

e [ (s () f<0r) @2 <v,
(A) —V<§f72(0,0)<0, gf—Xl(O,O)<—3v+m<—§, K=||i—j.
o’ f .
(A) (x,%)>0 forany (x,x,)e[0,k]x[0,®], i,j=12,

OX;0X;
where o= (e ~1)k,, A. isgivenin Lemma2.1,

(A) —f(U(&)U(E+D)-U(&))+aV (£)=#0 forany (U,V)(&)e(0.k)x(0k,).

Select positive constants 4, 4, suchthat g4 >2v+2Q(2k ), u, >0, and define operators
H,,H, :C(R* R)—>C(R*R) by

Hy (U V)(£)= iU (£)+v(U (§+1)-20 (£)+U (£-1)) - f (U (&)U (£+1)-U(&))+aV (&)

HZ(U,V)(ff):sz (5)—0V (§)+ﬁU(§). (1.4)
Then, (1.2) can be rewritten as
cU (&)=—pU (&)+H, (U V)(&), eV (&)=-mV (£)+H,(U,V)(&). (1.5)
Define the operators F, :C(RZ, R) —>C(R2, R) by

E(u,v)(g):%e’%éfwe%sHi(U,v)(s)ds, i=12.

Note that F, satisfy cF (U,V)(&)=-xF (U,V)(&)+H;(U,V)(&),i=12, andafixed point of
F =(F,F,) isasolution of (1.2). Denote |-| the Euclidean normin R?. Define

B, (RR)= {0 <C(R.R"):suplo (1] ' < o], ~suple(t]e !

where O< u< min{%,yz} . Note that (Bﬂ (R, RZ)," . ||”) is a Banach space.

Definition 1.1. If the continuous functions (LT(.»;) ,\7(5)) :R — R? are differentiable almost everywhere and
satisfy

{CLT(é) 2v(0(£+1)-20()+0(£-1))- 1 (0 (£),B0 () +a¥ (), (1.6

V' (£)2-oV (¢)+ U (&),

Then, (U(&),V (£)) is called an upper solution of (1.2).

Similarity, we can define a lower solution of (1.2). The main result of this paper is

Theorem 1.1. Assume that (A)—(A;) hold. Then there exists c. >0 such that for every c>c., (1.2)
admits a traveling wave solution (U &)V (5)) connecting (0,0) and (kj,k,). Moreover, each component
of traveling wave solution is monotonically nondecreasing in & e R, and for each c>c., U(&), V(&) also

satisfy lim U (&)e™* =1, 0< flim V(&)e ™ <k, where 4= A, (c) is the smallest solution of the eg-
&0 —>—0

uation

cA —[(v—i(o, 0))e* +ve *]1+ 2v+i(0, 0) —1(0,0) —axk=0.
OX, 0%, 0%,

(=)
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2. Upper-Lower Solutions of (1.2)

Set A(c,z):cz—[(v—i(o,o»e*+ve*]+2v+ﬂ(o,0)—i(o,0)—ax.
0OX, X, 0%,

Lemma 2.1. Assume that (A,) holds. Then there exists a unique c.>0 such that (i) if c>c., then
there exist two positive numbers A, (c) and A,(c) with A,(c)<A,(c) such that
A(c,A;(c))=A(c,A,(c))=0, A(c,:)>0 in (A,(c).,A,(c)), and A(c,-)<0 in R\[A,(c),A,(0)]; (ii)
if c<c., then A(c,2)<0 forall A>0; (iii) if c=c., then A, (c)=A,(c)=A.,and A(c.,A.)=0.

Proof. Using assumption (A,), we can get the result directly. o

Lemma 2.2. Assume that (A), (A)) and (A,) hold. Let c., A,(c), and A,(c) be defined as in

A .
Lemma 2.1, and c>c. be any number. Then for every e (1,min{A2((C;,2}) and 0<h<x, there exists
c
1

Q(c,0) =1 suchthatforany q>Q(c,0),

¢*(§):=min{k1,e ¢ g™ )5} y (&)= mln{kz,zc(e1 < 4 g™ )},geR,
and

6.(£)=max [0,e™¥ —ge™ ¥}y (£):=max|0,h(eMF —ge™ )} e R

are a pair of upper solutions and a pair of lower solutions of (1.2), respectively.
Proof. Let

Ny [4.w](&)=ch (&) -v[p(&+1)-2¢(&) +4(£-1) |+ f (#(£).#(E+1) - 9(8)) —av (&), (2.1)
N5 [4.1](E)=cw (&) + oy (&)- By (£). (2.2)

Since K:%,there exists & suchthat ¢" (&) =k, v (&)=k,. If £>&, then ¢" (&) =k,

1

v (£)=k,. By (A),we get that
NS [¢*,¢//+](g)z f(k,0)—ak, =0, N[¢"p"|(£)= ok, -k =0.

If &<¢&, then ¢'(&)=eMF 4 ge™F z//*(g):/c(e 10 4 ge™() ) By (A). (A)-(A), and using
Lemma 2.1, we get that

NS [¢*, w J GE c(A (c)e™* 4+ qon, (c)e™* ) - v[e“( W) 4 qe(@)eH) _ pghile)s

—2qe™(0) 4 gMONED) 4 gefMlelet J+ f (e ¢ 4 ge™k,

e/\1(°)(§+1 + qe91\1 Ne+1) qe'9/\1 ) arc(e 1(c)¢ + qe9A1 )
(2.3)
>A(c, A, (c))eMF + A(c, oA, (c))ge”™ " > 0.
Lemma2.1and (A,) yields
ckA, () + ko — B >ckA, (C)+ko—B>0. (2.4)

Thus,
N;[¢"v"](£) =CK(A (c)e™* +qon, (c)e%(c)é)
+Ka(e 10 ge™l© ‘f) ,B(e 10 4 ge™l© 5)
:(cKAl(C)+KG_ﬁ)eA1<c)¢ +q(c:<A (c)0+x0 - ﬂ) VO
Therefore, (¢*,¢//*)(§) is an upper solution of (1.2). Similarly, we can prove that (¢7,(//7)((§) is a lower

()
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solution. o

3. Existence of Traveling Wave

Let K =(k,k,), C[OYK](R,RZ):{(U,V)EC(R,RZ):OSU(s)skl,Ogv(s)gkz,SER.}. We have the fol-

lowing result.
Lemma 3.1 Assume that (Al) and (A,) hold. Then

(i) RUM)(E)2R(U,Y,)(E) and F,(UV)(§)2F, (U, V,)(8) for SeR if
(U VD)(€), (U, V,)(€) [OK](R R?) satisfy U,(£)2U,(¢). v(g)z (& ) for £eR;

mg(:ln) ; (IL?J V)(€), F,(U,V)(&) are nondecreasing in &eR if (U,V)(¢) [OK]( ) is nondecreas-
Proof. It (U, Vi )(€), (U, V,)(€) €Cpo (RR?) suchthat U, (£)=U,(£) and V,(£)2V, (&) for
eR, thenby (A) wehave

[£(Us(€), BUL(£))- £ (U2 (£).BU, (9))
U (U,+6(U,~U,),BU, +6(BU, - BU,))(U, -U,)

+ foy (U, +0(U, -U,),BU, +0(BU, - BU, ))(BU, - BUZ)]dG‘ oY
<2M, (U, (&)U, (&))+ M, (U, (£+1)-U, (£+1)),
where M, =Q(2k; ). Note that
H, (U V)(§) ~Hy (U2 V,)(€)
= (14 = 20)(U1(£) U, (&) +V[(Ui (6 +1) -V, (§ + 1)+ (Ui (§ -1 -V, (£ - 1)) (32)

[ F(Ui(£).BU, ()~ £ (U,(£).BU, (&) [+ (Wi (£) - V2 (£)).
Thus, from (3.1)-(3.2), we have
H, (U V1) () = Hi (U, ;) (8)
> (- 2v=2M,)(U, (&) -U, (&) +(v-M,) (U, (£+1)-U, (£ +1))
+V(U, (£-1)-U, (¢-1))+a(V,(£)-V,(£)) 20,

which implies that H, (U,,V,)(&)=H,(U,,V,)(&) . A similar argument can be done for H,(U,V)(&). Thus,
we can get the desired results. o
Lemma 3.2. Assume that (A ) and (A,) hold. Then F =(F,F,): Bﬂ(R, Rz) —B, (R, Rz) is continuous

with respect to the norm ||||ﬂ with 0< gz <min %,,uz .
Proof. We first prove that H,,H, : B, (R,R*)—> B, (R,R*) are continuous. Denote ®, =(U,,V,),
®,=(U,,V,).Forany &>0, choose 0<5<%,where
N =max{zy —2v+2M, +(2v+ M, )e" +a, i, —o + f}. If @, and @, satisfy
@, - @, ], =sup|d>l(§)—d>2 (&)e* <5, then by (3.1),
[ (U, V)(é‘) ( V) (€)]e
~[( - 20) (U1 (&)U (£)) +v [( §+1> U, (¢ +1)+(U,(6-9)-U, (¢ D)
~(f(ui(¢). )) (U2 (£).BU; (£))) + (W (£) ~Va (&)
<[m-2v+2M +(2v+M1)e +a]||c1> £)-o,(¢)), <&

3.3)
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Similarly, H,(U,,V,)(&) is continuous.
By definition of F,, we have

IR (UV)(&)-F (U, V,)(&) :%ef%é

J (HuULV) -~ Hy (U, V) (5)e|

M )2 (3'4)
< %”Hl (UL VL)(E)-H, (uz,vz)(g)"# A J'fw el g
If £<0, it follows that
F (UL V) (€)= R (U, V) (&) e < ﬁ"Hl(ul,vl)(g) - Hl(uz,vz)(g)"ﬂ . (3.5)
If £>0, it follows that
R (ULV)(€)-R(Uo Vo) (£)]e ™
1 1 A 1
- [(#1 —cu +cu)e T +cu]”H1(U1’V1)(§)_ Hy (U2 V) (€], (36)
1
< H, (U, V,)(&)-H,(U,.V, :
per LA URAIGRLN CRAIG)

Combining (3.5) and (3.6), we get that F, is continuous with respect to the norm ||||ﬂ . A Similar argument
canbedonefor F,. o
Define

r=r(fgv 1o ])

(i) #(&).w (&) are nondecreasing in R;
(i) 4. (£)<g(¢)<4"(5) and v (&) <y (&) <w" (&)
= (¢,y/)eC(R,R2) for all £eR;

(il [p(6) - (6] < 245, - & and (&) -

c

v(&) <5 -g for all 5.5, € R

It is easy to verify that " is nonempty, convex and compact in B, (R, RZ) . As the proof of Claim 2 in the
proof of Theorem A in [5], we have

Lemma 3.3. Assume that (A )—(A,) hold. Then F(I)cT .

Proof of Theorem 1.1. By the definition of I', Lemma 3.2-3.3 and Schauder’s fixed point theorem, we get
that there exists a fixed point (¢* (&), *(£)) eT'. Note that (¢* (), *(&)) is nondecreasing in £ €R, as-

sumption (A;) and Lemma 2.2 imply that élirpw(¢*(§)’w*(§)):(0,0), ;ILTQO(¢*(§):V/*(§))=(k1’k2)'There-
fore, (¢*(&),w *(&)) isatraveling wave solution of (1.1). o
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