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ABSTRACT 

Fusarium head blight, one of the most destructive 
diseases of wheat (Triticum aestivum L.), results in 
significant economic losses from reduced grain yield 
and quality. In recent decades, the disease has been 
frequently recorded, especially under warm and wet 
climatic conditions. Genetic resistance has engaged 
plant breeders because the use of resistant cultivars is 
the most economical, effective, and environmentally 
friendly method of control. In the present paper, we 
summarize the research on resistance genetics of Fu-
sarium head blight, suggest a new method for evalu-
ating Fusarium head blight resistance, and recom-
mend strategies for creating and developing new 
sources of resistance to Fusarium head blight through 
the use of alien genes and chromosomal segments.  
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1. INTRODUCTION 

Fusarium head blight (FHB), also called ear blight or 
head scab, is caused by Fusarium spp. and is one of the 
most destructive diseases of wheat (Triticum aestivum 
L.). FHB occurs primarily in warm and humid climatic 
conditions during the flowering stage [1,2]. Diseased 
spikes show premature bleaching and produce shriveled 
kernels, leading to large yield losses [3]. Worse yet, FHB 
can cause quality reduction as a result of contamination 
by trichothecene mycotoxins, which are detrimental to 
the health of both humans and domestic animals [4,5]. 
With its frequent incidence and the expansion of the 
infected area, FHB has grown in importance to plant 
breeders and pathologists. 

Several review articles on wheat FHB have been pub-

lished with different foci, including conventional breed-
ing and FHB resistance improvement [1,3,6-8], the oc-
currence scope and the significance of mycotoxins [9,10], 
the interaction mechanisms between host and patho- 
gens [11], molecular markers for FHB resistance genet-
ics [12], an alien gene library for enhancing resistance 
[13], and the main available Quantitative traits loci (QTL) 
[14,15]. To date, there has been no review of the meth-
ods for quickly and accurately evaluating genetic resis-
tance or for effectively developing new FHB-resistant 
lines for wheat breeding. Therefore, this article has three 
objectives: 1) to summarize and update current knowl-
edge on FHB, 2) to discuss methods for evaluating re-
sistant cultivars and provide suggestions for establishing 
an evaluation system, and 3) to describe new methods of 
wheat resistance improvement using the alien gene li-
brary. 

2. THE PATHOLOGY OF FHB 

The prevalence of FHB, caused by various fungi, is 
closely associated with favorable environments. Nineteen 
species of Fusarium are reported to cause wheat FHB 
disease [4]. In general, F. culmorum, F. avenaceum (teleo-
morph Gibberella avenacea), and especially F. graminear 
(teleomorph G. zeae), appear most common in nature 
[1,3]. Studies show that F. graminear is the predominant 
pathogen causing FHB under warmer, humid conditions 
found in China, Canada, Australia, Central Europe and 
parts of the wheat-growing area in the United States; that 
F. culmorum, F. avenaceum, F. sporotrichioides and F. 
langsethiae are the main pathogens in cool and wet/hu-
mid conditions, and that F. poae may be the most impor-
tant pathogen in warmer and drier environments [8,16]. 
This suggests that environmental factors, besides the 
genetic diversity of the pathogens, may explain the dis-
tribution of FHB because different species of pathogens, 
or strains of the same species under different conditions, 
would infect different parts of wheat plants during vari-
ous developmental stages.  
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2.1. FHB Development and Prevalance  

The source of primary inoculation is the fungal colonies 
overwintering on crop residues such as wheat, maize, 
and rice [1,17-20], so that FHB usually occurs in wheat- 
wheat, corn-wheat, or rice-wheat rotations [21-24]. The 
pathogens spread mainly via the dispersal of conidia that 
are blown or splashed to new infection sites [8,25]. 

Wheat is most susceptible to infection during anthesis, 
after which susceptibility declines sharply [26]. Later 
infections may lead to deoxynivalenol (DON) accumula-
tion despite the absence of visible symptoms, especially 
under conditions of prolonged wetness during the hard 
dough stage [27]. The occurrence and development of 
this disease are significantly associated with temperature 
and humidity [16,28]. Anderson[14] found incidence 
increases as temperature increases from 20˚C to 30˚C, 
and little or no infection occurred under 15˚C. Humidity 
is as important as temperature for the occurrence of 
wheat scab [8,25,29,30]. Infection in different stages has 
different effects on both yield and quality reduction, and 
various climatic factors have different effects on infec-
tion at different wheat growth stages, which may be re-
sponsible for the difficulty in controlling infection. 

2.2. FHB Reduce Wheat Yield and Quality  

FHB causes about 10% - 70% yield loss during epidemic 
years [31]. In China, FHB has been found in 2/3 of prov-
inces, with more than 7 million hectares of wheat-grow-
ing areas affected and yield losses of more than 1 million 
tons in epidemic years [32,33]. In the United States, se-
vere FHB outbreaks during the 1990s resulted in a total 
economic loss of about $3 billion [34]. In Canada, HB 
epidemics occurred about once every 9 years from 1927 
to 1980 [3]. Clearly, FHB has been a major disease threat-
ening wheat yields [20,35-37].  

In addition, various Fusarium species are capable of 
producing mycotoxins in corn. Over 20 mycotoxins are 
produced by Fusarium species, and the dominant my-
cotoxin is DON and its derivatives [4]. DON can be 
translocated within the wheat head via xylem and ph- 
loem and accumulated in cells [38]. DON levels are 
strongly influenced by host genotype as well as weather 
later in the grain fill period. Higher DON accumulates 
with extended periods of moisture post-anthesis [39,40]. 
However, some host genotypes react to prolonged ex-
posure to moisture with a decrease in DON content [41]. 
These genotypes produce “premature spikes” with the 
upper portion wilted, leading to bleaching and yield re-
duction, but are not colonized by the fungus, so DON 
content is reduced [4]. DON not only plays an important 
role in fungal spreading and disease development but 
also threatens human and livestock health with micro-
dosis [9,42]. DON present in food at mg/kg can cause 

vomiting, diarrhea, fever and other symptoms of acute 
poisoning in humans and animals, and it is also closely 
correlated with anemia, immuno-suppression, and cancer 
[43,44]. Many countries have established maximum al-
lowed levels of DON in cereal and cereal products to pro-
tect humans and animals from mycotoxicosis [15-45]. 

Food production and safety is a society-wide concern, 
so it is important to control FHB disease and minimize 
risks to humans and livestock. Control of wheat FHB 
can be approached from aspects of both the pathogen 
and the host. 

3. PATHOGEN CONTROL 

Preventing contamination of seeds and soil by Fusarium 
species can reduce the occurrence of FHB [46]. Rotation 
with non-host crops, removal of infected residue and 
seed-treatment fungicide can effectively reduce primary 
inoculation [3,20]. However, these methods cannot effi-
ciently control FHB because of the large influx of in-
oculum later in the growing season. Anthesis-treatment 
fungicides are considered to be the most effective meas-
ure against FHB and DON accumulation in many trials 
[47-49]. However, fungicide application alone is often 
not sufficient to reduce FHB and DON accumulation, 
and results vary among studies [47,50,51]. In addition, 
fungicide abuse can result in pathogen tolerance and 
environmental problems [52,53]. Therefore, fungicides 
should generally not be used if control is not urgent or 
when host resistance alone could be effective.  

3.1. Resistant Cultivars  

Since Arthur [18] first found differences in scab-resis-
tance among different germplasms, finding and creating 
scab-resistant cultivars has been considered the most 
economical and effective method for controlling FHB 
and DON [1].  

Only a few scab-resistant germplasms have been used 
in breeding for FHB-resistant wheat, including Sumai 3, 
Wangshuibai and Ning 7840 from China; Nobeokabouzu 
from Japan; Frontana from Brazil and Praa 8 and No-
vokrumka from Europe [54]. Sumai 3 is the most suc-
cessful and widely used scab-resistant germplasm in 
breeding programs [15,55]. However, most wheat culti-
vars are susceptible or mildly susceptible to FHB while 
no cultivars are immune to this disease [56,57]. Identi-
fying and developing new sources of scab-resistant cul-
tivars is the most important task in future breeding ef-
forts. 

3.2. Methods for Evaluating Host Resistance  

Screening new resistant germplasms is a prerequisite for 
developing new resistant cultivars, and a quick and ef-
fective method for evaluating FHB/DON resistance is 
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very important in screening new germplasms. 
Schroeder and Christensen [58] identified two types 

of resistance: Type I, resistance to primary infection, 
usually measured by counting infected spikelets 7 to 21d 
after spraying inoculation, and Type II, resistance to dis-
ease spread, characterized by infected spikes after point 
inoculation. Three additional types of resistance have 
been identified: Type III, resistance to DON accumula-
tion [59,60]; Type IV, resistance to kernel infection; and 
Type V, resistance to yield loss [6,11]. The last two 
types are rarely used because of unclear mechanisms and 
concepts of disease resistance. Type I and Type II resis-
tance are the present main evaluation systems, but they 
are morphological traits that strongly depend on the 
subjective interpretation of the observer. Type III is a 
quantitative method based on measuring DON concen-
tration rather than on observing symptoms. However, 
DON can be both a consequence of pathogen invasion 
and a virulence factor for disease development [61,62], 
and the associations between pathogen invasion, DON, 
and disease spread are highly variable and fairly com-
plex [63]. Thus, none of the existing methods for identi-
fying FHB resistance in wheat are completely reliable.  

Establishment of a quantitative method based on meas-
uring a hall marker during the host-pathogen interaction 
process would play a key role in screening for resistant 
germplasms. For example, a pathogen of host tissue is 
probably facilitated by the vast array of hydrolyzing en-
zymes secreted by Fusarium and develops when the 
plant cuticle is degraded by the cutinase/lipases secreted 
by Fusarium [2]. The infected wheat cell wall, mem-
brane and even the mitochondria and chloroplasts are 
damaged [64,65], infected spikelets show premature 
bleaching and their ability to photosynthesize is reduced 
or lost, resulting in yield loss. In this process, the hydro-
lyzing enzymes, cutinase, lipases, and photosynthetic 
parameters are at different levels for different cultivars, 
and these varying levels can be used to evaluate FHB 
resistance. In addition, some complexes in plants, like 
phytoanticipins, cyclic hydroxamic acids and phenolics 
[66,67] in wheat that can inhibit the growth of Fusarium 
pathogens can also be used to evaluate FHB resistance.  

3.3. Genetic Control for FHB  

FHB resistance is a quantitative trait controlled by mul-
tiple genes, making it difficult to determine resistance 
mechanisms and breed resistant cultivars. With the de-
velopment of a molecular marker and marker map, QTLs 
for FHB resistance have been identified. Anderson and 
Buerstmary et al. reviewed the stable QTLs for FHB 
resistance found by previous research [14,15]. QTLs for 
FHB disease were found on all wheat chromosomes ex-
cept chromosome 7D [15].  

Different cultivars appear to have their own FHB 
QTLs on chromosomes, so crosses between these culti-
vars may yield transgressive progeny with FHB resis-
tance [3]. Unfortunately, the resistant cultivars are usu-
ally accompanied by poor agronomic traits. As a result, 
transgressive lines are often selected from crosses be-
tween two moderately susceptible parents with good 
agronomic characters or from crosses between a resistant 
cultivar and a susceptible cultivar with superior agro-
nomic traits in the breeding process [4,68]. This ap-
proach results in many new resistant germplasms. Most 
FHB-resistant lines are from crosses between Sumai 3 
and other cultivars with good agronomic traits. There-
fore, it is important to identify FHB-resistant cultivars 
other than Sumai 3 in order to diversify the gene pool of 
wheat FHB resistance.  

3.4. Alien Genetic Resources and the Prospect of 
Wheat FHB Resistance Improvement 

A number of relatives of wheat have been identified as 
resistant to FHB since the 1980s. High resistance to FHB 
of Elymus giganteus (2n = 2x = 28, JJNN) was reported 
by Mujeed-Kazi et al. [69] and was confirmed by Wang 
et al. [70,71] Following this, a large-scale screening of 
wheat relatives was carried out, and several were found 
to have high FHB resistance. Relatives of wheat identi-
fied as resistant to FHB have various ploidy levels, 
ranging from 2x to 10x. Wan et al. [72] found high re-
sistance was mainly found in perennial genera: Roegneria, 
Hystrix, Agropyron, Kengyilia and Elymus, with some 
species’ resistance even exceeding that of Sumai 3 [13]. 
Fedak [73] reported that the native Japanese species E. 
humidus was immune to FHB. These related species can 
be novel sources of FHB-resistant genes, which would 
be useful for FHB resistance improvement in wheat.  

It is worthwhile to consider how to use the alien gene 
library. Alien chromatin genes can usually be incorpo-
rated in cultivated wheat through chromosome amphip-
loids, addition, substitution and translocation because 
wheat is allopolyploid [74]. Several hundred alien chro- 
mosomal fragments with FHB resistance have been suc-
cessfully integrated in wheat, including fragments from 
Triticum macha, Elytrigia intermedia, Thinopyrum pon-
ticum, Elymus racemifar, Roegneria kamoji and Leymus 
racemosus [74-80].  

Wheat-alien amphiploid lines contain the genomes of 
both wheat and the alien species. Wheat-alien addition 
and substitution lines carry a whole alien chromosome 
on a wheat genetic background through chromosome 
addition and substitution, respectively. All of the am-
phiploid, addition and substitution lines carry a large 
number of unwanted genes in addition to FHB-resistant 
genes. Moreover, chromosome instability and linkage 
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drag on the individual alien chromosomes and meiotic 
lines in breeding limit the utilization of addition and 
substitution lines [13]. Therefore, it is difficult for breed- 
ers to directly use amphiploids, addition and substitution 
lines in breeding programs. Wheat-alien translocation only 
carries an alien chromosome segment connected with a 
wheat chromosome, which reduces the presence of un-
wanted genes and linkage drag. In addition, the wheat 
portion of a translocated chromosome in the translocation 
lines can recombine with a corresponding wheat chro-
mosome, ensuring chromosome stability. Therefore, wheat- 
alien translocation is the most effective approach for 
introducing FHB-resistant genes from alien species, in-
tegrating alien chromosomal fragments that carry the 
resistant genes without conferring significant linkage drag 
on wheat genomes [13]. 

Most of the wheat-alien translocations currently in use 
are large fragment translocations containing many gar-
bage genes that may threaten normal wheat growth. 
Small chromosome segment translocation reduces the 
number of unwanted genes as much as possible, leading, 
for example, to a successful wheat-rye cross with the 
induction of the genetic instability of the monosomic 
addition of a rye chromosome [81]. Traits of interest can 
be transferred to the recipient crop without cytological 
changes in its genomic constitution [82], implying that 
the introgressed chromatin segments are cryptic. This 
type of translocation, known as cryptic translocation, 
cannot be detected by cytological techniques, and mo-
lecular methods must be used [83]. Although the mecha-
nism for the occurrence of such cryptic translocations is 
unknown, their occurrence seems frequent [84]. Theo-
retically, the more of the resistant loci wheat possesses, 
the stronger the resistance it has. Multiple loci for resis-
tance in cryptic translocations can be adapted well in the 
wheat chromosomes together and strengthen the resis-
tance of wheat while many larger chromosome translo-
cations cause genetic unbalance. Yu25 (Triticum aesti-
vum, 2n = 6x = 42, AABBDD) provides an example of a 
benefit from cryptic translocation, possessing two Pm 
(powdery mildew) and a Yr (stripe rust)-resistant gene 
from Thinopyrum intermedium and exhibiting immunity 
to powdery mildew and stripe rust [85-87]. Cryptic trans-
location is a favorable method for incorporating multiple 
alien genes into wheat. Wheat line 699, derived from 
crosses of Mianyang11 (MY11)/Yu25, has been identi-
fied as immune and nearly immune to both stripe rust 
and powdery mildew, and highly resistant to FHB [88]. 
We can conclude that the resistant genes are cryptic 
translocations from Thinopyrum intermedium because 
MY11 is susceptible to all three diseases. Resistance 
screening showed that wheat line 699 has high resistance 
(Figure 1 and Table 1) and is a novel resource for wheat 

FHB resistance. 
Integrating different alien FHB-resistant genes and 

even multi-fungus resistant genes into wheat is possible 
because of cryptic translocation. However, cryptic trans- 
location can only be achieved after a long period of 
breeding, a lot of manpower and financial resources. But 
if we can find one gene that prevents infection by the 
pathogens, this problem of long period of breeding can 
be solved. Though discovery of a germplasm immune to 
infection with the pathogens is still elusive, reports of a 
putative ABC transporter gene that confers durable re-
sistance to multiple fungal pathogens in wheat indicates 
the possibility of developing and screening new resistant 
lines [89].  

4. CONCLUSIONS 

FHB is a destructive disease for wheat, which can result 
in yield loss and produce mycotoxins that threaten hu-
man and animal health. Screening and breeding resistant 
wheat cultivars can stably, effectively and safely guard 
against FHB compared with cropping measures and fun-  

 

Figure 1. The spikelets of 661 (left) and 699 (right) after 21 
days point inoculation. 

Table 1. The ratio of infected spikelets of 661 and 699 28 days 
after inoculation. 

 Materials
Plant 
tests 

infected 
spikelets 

0.05 0.01 

Injection 661 166 67.18 a A 
 669 264 10.04 b B 

Smearing
661 
699 

146 
254 

40.75 
17.77 

a 
b 

A 
B 
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gicide control. FHB/DON resistance evaluation is very 
important for screening new germplasms. We suggest a 
quantitative method based on measuring a hall marker 
during the host-pathogen interaction process such as an 
enzyme or other complex that has a significant relation-
ship with host FHB resistance. Many relatives of wheat 
exhibit very high resistance to FHB, and can contribute 
many novel FHB-resistant genes to wheat. These alien 
genes can be more effective for resistance compared with 
limited inherent resistance to FHB. The multiple loci of 
FHB resistance indicate that wheat-alien translocation 
(especially cryptic translocation) is the ideal technique 
for transferring alien genes to wheat chromosomes. In 
the future, breeders should identify more new alien 
genes with FHB resistance and utilize cryptic transloca-
tion to integrate the genes into the wheat genome for 
higher FHB resistance. In addition, finding a novel gene 
with resistance to fungi is important for breeding highly 
multi- fungus-resistant wheat. 
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