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Abstract 
In this article we have considered Fredholm integro-differential equation type second-order 
boundary value problems and proposed a rational difference method for numerical solution of the 
problems. The composite trapezoidal quadrature and non-standard difference method are used to 
convert Fredholm integro-differential equation into a system of equations. The numerical results 
in experiment on some model problems show the simplicity and efficiency of the method. Numer-
ical results showed that the proposed method is convergent and at least second-order of accu-
rate. 
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1. Introduction 
The occurrences of differential equations and integral equations are common in many areas of studies in partic-
ular sciences and engineering. However, there are many mathematical formulations in science where both diffe-
rential and integral operators appear together in the same equation. These equations were termed as integro-dif- 
ferential equations. The integro-differential equations have gained importance in the literature for the variety of 
their applications and in general it is impossible to obtain solutions of these problems using analytical methods. 
So it is required to obtain an efficient approximate solution. There are different methods and approaches for ap-
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proximate numerical solution such as difference and compact finite difference method [1]-[3], Tau method [4], 
an extrapolation method [5], Taylor series method [6], method of regularization [7] [8], variational method [9], 
adomian decomposition method [10], variational iterations method [11] and references therein. 

In this article we consider a method for the numerical solution of the following linear Fredholm integro-dif- 
ferrential equations of the form 

( ) ( ) ( ) ( ), , d , .
b

a
y x f x y K x t y t t a x b′′ = + ≤ ≤∫                          (1) 

subject to the boundary conditions 

( ) ( )and  .y a y bα β= =  

where α  and β  are real constant. The functions ( ),f x y  and the kernel ( ),K x t  are known. The solution 
( )y x  is to be determined. 
The emphasis in this article will be on the development of an efficient numerical method to deal with ap-

proximate numerical solution of the integro-differential equation and then to prove theoretical concepts of con-
vergence and existence. The theorems of uniqueness, existence and convergence are important and can be found 
in the literature [1] [12] [13]. The specific assumption to ensure existence and uniqueness of the solution to 
problem (1) will not be considered. Thus the existence and uniqueness of the solution to problem (1) are as-
sumed. We further assumed that problem (1) is well posed. 

Last few decades have seen substantial progress in the development of approximate solution by non-conven- 
tional methods. One such method, a non-standard finite difference method has increasingly been recognized as a 
efficient method for the numerical solution of initial value problems in ordinary differential equation [14]-[16]. 
The non-standard finite difference method is simple and generates impressive numerical result with high accu-
racy. Hence, the purpose of this article is to develop a non-standard finite difference method similar to [16] for 
numerical solution of the second-order boundary value problems of Fredholm integro-differential Equation (1). 

We have presented our work in this article as follows. In the next section we derived a non-standard finite 
difference method. In Section 3, we have discussed local truncation error in propose method and convergence 
under appropriate condition in Section 4. The applications of the proposed method to the model problems and 
illustrative numerical results have been produced to show the efficiency in Section 5. Discussion and conclusion 
on the performance of the new method are presented in Section 6. 

2. The Non-Standard Finite Difference Method 
Let us assume that ( ),K x t  is smooth and separable kernel otherwise by using the Taylor series expansion for 
the kernel, reduce it to separable kernel. Let further assume that ( ),K x t  is bounded by 𝛿𝛿for at all points of  

{ }Ω ,a x b a t b= ≤ ≤ ≤ ≤  i.e. ( ),K x t δ≤ . 
We define N finite nodal points of the domain [a, b], in which the solution of the problem (1) is desired, as 

0 1 1N Na x x x x b−= < < < < =  using uniform step length h such that ( ), 0 1ix a i h i N= + ⋅ = . Suppose that we 
wish to determine the numerical approximation of the theoretical solution ( )y x  of the problem (1) at the nodal 
point , 1, 2, ,ix i N=  . We denote the numerical approximation of ( )y x  at node ix  as iy . Let us denote 

if  as the approximation of the theoretical value of the source function ( )( ),f x y x  at node , 0,1, 2, ,ix i N=  . 
Thus the integro-differential Equation (1) at node ix  may be written as 

( ) ( ) ( ) ( ) ( ), d .
b

i i i i a
y x f x y x t y t tξ ϑ′′ = + ∫                              (2) 

where ( ) ( ) ( ),x t K x tξ ϑ = . 
We approximate the integral that appeared in Equation (2) by the repeated/composite trapezoidal quadrature 

method [17] which will yield the following 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0
, d

Nb
j j j tj i i ia

j
j i

I x y t x t y t t x t y t E x t y tξ ϑ ξ ϑ λ ξ ϑ λ
+

=
≠

 = = + +    ∑∫          (3) 

where 0 1 2 1 1 , 0,1, 2, , 1N N Na t t t t t t b j N− += < < < < < < = = +   using uniform step length h such that jt a= +  
, 0,1, 2, , 1j h j N⋅ = + , tjE  is the truncation error in thj  interval and quadrature nodes ,j jλ =

0,1,2, , 1N +  are numerical coefficients such that 
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1 if 0, 1,
2

otherwise 1,2, , .
j

h j N

h j N
λ

  = + =  
 = 

 

and , 1, 2,3, , ,i i Nλ =   do not depend on the function ( )y t . The term tjE  in (3) depends on N and large N 
reduces tjE  considerably. Let us define a function ( ) ( )( ), , ,F x y t I x y t    node ix x=  after neglecting the 
error terms in (3) such that 

( )
1

0
.

N

i i i j j j i i i i
j
j i

F f y t yξ ϑ λ ξ ϑ λ
+

=
≠

= + +∑                               (4) 

Thus with the application of (4), the considered problem (1) at node ix x=  may be written as, 
.iiy F′′ =                                         (5) 

subject to the given boundary conditions. 
Let us assume a local assumption as in [18] that no truncation errors have been made i.e. 

( )i i iy x h y ±± =  

and following the ideas [19], we propose non-standard finite difference method for the approximation of the 
analytical solution ( )y x  of the problem (5) at node ix x=  as, 

2 2

1 1 2

12
2 , 1,2, , .

12
i

i i i
i i

h F
y y y i N

F h F+ −− + = =
′′−

                         (6) 

where 
2

2
i

i
F

F
x

∂′′=
∂

. Thus we will obtain the system of nonlinear equations at each nodal point , 1, 2, , .ix i N=   

For the computational purpose in Section 4, we have used the following finite difference approximation in 
place of 2

ih F ′′  in (6), 
2

1 12 .ii i ih F F F F+ −′′= − +                                   (7) 
Thus from (7) we can write (6) as, 

2 2

1 1
1 1

12
2 , 1,2, , .

14
i

i i i
i i i

h F
y y y i N

F F F+ −
+ −

− + = =
− −

                       (8) 

which is a nonlinear system of equations. We have to solve a nonlinear system with a large number of equations. 
So there is some complexity in the system and computation is difficult. However we have applied an iterative 
method to solve above system of nonlinear Equation (8). 

3. Local Truncation Error 
The local truncation error at the node ix x=  using the exact arithmetic, is given as: 

2 2

1 1 2

12
2 .

12
i

i i i i
i i

h F
T y y y

F h F+ −= − + −
′′−

 

At the nodal point ix x= , 1, 2, ,i N=  , the truncation error iT  in Method (5) may be written [17], 
12

2 2
1 12 1 .

12i i i i i
i

ih F
T y y y h F

F

−

+ −

 ′′
= − + − − 

 
 

writing the Taylor series expansion for 1iy ±  at nodal point ix x=  and binomial expansion under appropriate 
conditions for above equation. Simplify the expression so obtained by using i iy F′′ =  and ( )4

iiy F ′′=  we have 
following expression 

( )
( )( )24

6
62 5 .

720
i

i
i

i

yhT y
y

 
 = − ′′ 
 

                               (9) 
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Thus we obtain a truncation error at each node of ( )6O h . 

4. Convergence of the Non-Standard Difference Method 
Consider the difference Method (6), 

( )

12 2 2
2 2

1 1 2

22 2
2 2

22
2 4

12
2 1

1212

1
12 12

12 .
12 12

i

i

i

i
i i i i

ii

i
i

ii

i

i

i

i

h F h F
y y y h F

FF h F

h F h F
h F

F F

Fh F h F h
F

−

+ −

 ′′
− + = = − ′′−  

  ′′ ′′ = + + +    
 ′′
 ′′= + + +
 
 





 

Let us ignore the third and other terms on right side of the above expression. After replacing 2
ih F ′′  by the 

second order difference approximation 1 1 2i i iF F F+ −+ − , we have 

( )
2

1 1 1 12 10
12i i i i i i
hy y y F F F+ − + −− + = + +  

Thus 

( )
2

1 1 1 12 10 0
12i i i i i i
hy y y F F F− + + −− + − + + + =                         (10) 

Let us define 

( )
1

0

N

i i j j j
j
j i

G y tξ ϑ λ
+

=
≠

= ∑  

So we can write (10) as, 

( )( )

3 3 3

1 1 1 1 1 1

2

1 1 1 1

101 2 1
12 12 12

10 0
12

i i i i i i i i i

i i i i i i

h h hy y y

h f G f G f G

ξ ϑ ξ ϑ ξ ϑ− − − + + +

− − + +

     
− + + + + − +     
     

+ + + + + + =

                (11) 

Let us define 

( )( )

( )( )

( )( )

2 3

1 1 1 1 1 1

2

1 1 1 1

2 3

1 1 1 1 1 1

10 1 , if 1
12 12

10 , if 2 1
12

10 1 , if .
12 12

i i i i i i i i

i i i i i i i

i i i i i i i i

h hf G f G f G i

h f G f G f G i N

h hf G f G f G i N

ξ ϑ α

ϕ

ξ ϑ β

− − + + − −

− − + +

− − + + + +

  
+ + + + + + − + =  

 
= + + + + + ≤ ≤ −

  

+ + + + + + − + =  
 

 

Let us define column matrix 1N×ϕ  and 1N×y  as 

[ ] [ ]T T
1 2 1 21 1
, , , and , , ,N NN N

y y yϕ ϕ ϕ
× ×

= =y ϕ  

The difference Method (11) represents a system of nonlinear equations in unknown , 1, 2, , .iy i N=   Let us 
write (11) in matrix form as, 

( )+ =Dy yϕ 0                                       (12) 

where 
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3 3

1 1 2 2

3 3 3

1 1 2 2 3 3

3 3

1 1

102 1 0
12 12

101 2 1
12 12 12

100 1 2
12 12N N N N

N N

h h

h h h

h h

ξ ϑ ξ ϑ

ξ ϑ ξ ϑ ξ ϑ

ξ ϑ ξ ϑ− −
×

 
+ − + 

 
 
− + + − + =  

 
 
 − + + 
 

D 

    

 

 

is tridiagonal matrix. Let Y be the exact solution of (11), so it will satisfy matrix equation 

( )+ + =DY Y Tϕ 0                                   (13) 

where Y is column matrix of order 1N ×  which can be obtained replacing y by Y in matrix y and T is truncation 
error matrix in which each element has ( )6O h . 

Let us define 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 1 1 1

1 1 1

, , , , , ,

, , , , , .
i i i i i i i i i

i i i i i i i i i

f f x Y f f x y f f x Y

f f x y f f x Y f f x y
+ + + + + + − − −

− − −

= = =

= = =
 

After linearization of 1if + , we have 

( )1 1 1 1 1i i i i if f y Y Q+ + + + += + −  

where 1
1

i
i

fQ
Y+

+

∂ =  ∂ 
. Let us define ( ) , 1, 2, , .i i iE y Y i N= − = 

 Thus we have 

1 1 1 1.i i i if f E Q+ + + +− =                                     (14) 

Similarly, we can linearize 1if − , if  and obtained the following results : 

1 1 1 1.i i i if f E Q− − − −− =                                        (15) 

.i i i if f E Q− =                                          (16) 

By Taylor series expansion of 1iQ ± . about ix x= , and from (14)-(16), we can write 

( ) ( ) .− =y Y PEϕ ϕ                                      (17) 

where [ ] ( )T
1 2 ,1
, , , and l mN N N

E E E P
× ×

= =E P  is a tri-diagonal matrix defined as 

2

2

,

2

10 , if , 1, 2, ., ,
12

, if 1, 1, 2, , 1,
12

, if 1, 1, 2, , 2.
12

i

l m i
i

i
i

h Q i l m l N

h QP Q h m l i l N
x

h QQ h i l m m N
x


 = = =

  ∂  = + = + = = −   ∂  
  ∂  − = = + = −   ∂  







 

Let us assume that the solution of difference Equation (11) has no round off error. So from (12), (13) and (17) 
we have 

( )+ = =D P E JE T                                     (18) 

Let us define { }0 : 1, 2, ,iG Q i N= =   

[ ] [ ]
*

* , ,
min , max
x a b x a b

f fG G
Y Y∈ ∈

∂ ∂
= =

∂ ∂
 

Then 
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* 0
*0 , .G Q G Q G≤ ≤ ≤ ∀ ∈  

We further define 0 : 1, 2, ,
i

QH i N
x

 ∂ = =  ∂  
 . 

Let there exist some positive constant W  such that 0 0,Q W Q H≤ ∀ ∈ . So it is possible for very small h , 

2
,

,

1, 1, 2, , 110
12 1, 1,2, , 2.

l m
l

l m

P m l l Nh Q
P l m m N

 ∀ = + = −≥ 
∀ = + = −





 

Let [ ]T1 2 1
, , , NR R R

×
=R  , denotes the row sum of the matrix ( ),l m N N

J
×

=J  where 
i

Q
x

∂ 
 ∂ 

 

( )

2 3

1 1 1 2 2
1

3
2

1 1 1 1

2 3

1 1

111 10 , if 1
12 12

10 , if 2 1
12

111 10 , if .
12 12

l i i i i i i i

N N N N N
N

h h QQ l i
x

hR h Q l i N

h h QQ l i N
x

ξ ϑ ξ ϑ

ξ ϑ ξ ϑ ξ ϑ

ξ ϑ ξ ϑ

− − + +

− −

  ∂ + + + + = =   ∂  
= + + + ≤ = ≤ −

  ∂ + + + − = =   ∂  

 

Neglecting the higher order terms i.e. ( )3O h  in lR  then it is easy to see that J  is irreducible [20]. Also 
by row sum criterion matrix J  is for sufficiently small h monotone [21]. For the bound of J , we define 
[22]-[24], 

( ) , , , 1, 2, ,
N

l l l l m
l m

d J J l N
≠

= − =∑J   

where 

( )
2 3

1 1 1 1 2 2
1

111 10 , if 1
12 12
h h Qd Q l i

x
ξ ϑ ξ ϑ

 ∂ = + + + + = =  ∂  
J  

( ) ( )
3

2
1 1 1 110 , if 2 1,

12l i i i i i i i
hd h Q l i Nξ ϑ ξ ϑ ξ ϑ− − + += + + + ≤ = ≤ −J  

( )
2 3

1 1
111 10 , if .
12 12N N N N N N

N

h h Qd Q l i N
x

ξ ϑ ξ ϑ− −

 ∂ = + + + − = =  ∂  
J  

It is easy to prove after neglecting higher order terms i.e. ( )3O h  in the above expressions that matrix J  is 
diagonally dominant. Thus matrix J  is nonsingular [25] i.e. 1−J  exist and 1 0− ≥J  [21]. Let ( ) 0,ld l≥ ∀J  
and 

( ) ( )* 1
min .ll N

d d
≤ ≤

=J J  

Then 

( )
1

*

1
d

− ≤J
J

                                    (19) 

Thus from (18) and (19), we have 

( )*

1
d

≤E T
J

                                   (20) 

It follows from (9) and (20) that 0→E  as 0h → . Thus we conclude that Method (6) converges and the 
order of the convergence of Method (6) is at least quadratic. 
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5. Numerical Experiments 
To illustrate our method and demonstrate its computational efficiency, we have considered four model problems. 
In each model problem, we took uniform step size h. In Tables 1-4, we have shown MAY the maximum absolute 
error in the solution y of the problems (1) for different values of N. We have used the following formula in 
computation of MAY, 

( )
1
max .i ii N

MAY y x y
≤ ≤

= −  

The order of convergence NO  of the Method (8) is estimated by the formula 

log .N
N m

mN

MAY
O

MAY
 

=  
 

 

where m can be estimated by considering the ratio of different values of N. 
We use Newton-Raphson iteration method to solve the system of nonlinear equations arising from Equation 

(9). All computations are performed on a Windows 2007 Ultimate operating system in the GNU FORTRAN en-
vironment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20 Ghz PC. The solutions are computed 
on N nodes and iteration is continued until either the maximum difference between two successive iterates is less 
than 10−10 or the number of iterations reaches 103. 

Problem 1. The model linear problem given by 
 

Table 1. Maximum absolute error (Problem 1).                                                                

 
Maximum absolute error 

N = 8 N = 16 N = 32 N = 64 

MAY 0.19123437 (−3) 0.47540005 (−4) 0.95266687 (−5) 0.79055745 (−7) 

Iter. 43 113 166 6 

 
Table 2. Maximum absolute error (Problem 2).                                                                

 
Maximum absolute error 

N = 8 N = 16 N = 32 N = 64 

MAY 0.35524368 (−4) 0.76293945 (−5) 0.19073486 (−5) 0.47683716 (−6) 

Iter. 36 80 64 3 

 
Table 3. Maximum absolute error (Problem 3).                                                                

 
Maximum absolute error 

N = 8 N = 16 N = 32 N = 64 

MAY 0.13130903 (−3) 0.32335520 (−4) 0.57816505 (−5) 0.59064645 (−7) 

Iter. 45 116 158 3 

 
Table 4. Maximum absolute error (Problem 4).                                                                 

 
Maximum absolute error 

N = 8 N = 16 N = 32 N = 64 

MAY 0.14352799 (−4) 0.58977230 (−6) 0.41181391 (−7) 0.38045517 (−7) 

Iter. 24 10 2 2 
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( ) ( ) ( ) ( ) ( )1

0
1 d , 0 1,y x y x x t y t t f x x′′ = + − + ≤ ≤∫  

subject to boundary conditions 

( ) ( )0 0 and 1 1.y y= =  

where ( )f x  is calculated so that the analytical solution of the problem is ( ) 1

1 e
1 e

x

y x
−

−

−
=

−
. The MAY computed 

by Method (8) for different values of N and no. of iterations Iter. are presented in Table 1. 
Problem 2. The model linear problem given by 

( ) ( ) ( ) ( )11
0

2e 1 d , 0 1,y x y x x xty t t x−′′ = + − + ≤ ≤∫  

subject to boundary conditions 

( ) ( ) 10 1 and 1 e .y y −= =  

The analytical solution is ( ) e xy x −= . The MAY computed by Method (8) for different values of N and num-
ber of iterations Iter. are presented in Table 2. 

Problem 3. The model nonlinear problem [26] given by 

( )
( )( ) ( ) ( )

2
1

0

2
1 d , 0 1,

1
y x

y x x x t y t t x
x

′′ = − + + ≤ ≤
+ ∫  

subject to boundary conditions 

( ) ( ) 10 1 and 1 .
2

y y= =  

The analytical solution is ( ) 1
1

y x
x

=
+

. The MAY computed by Method (8) for different values of N and 

number of iterations Iter. are presented in Table 3. 
Problem 4. The model nonlinear problem given by 

( ) ( ) ( ) ( ) ( )1

0
e 1 d , 0 1,y xy x x x t y t t f x x−′′ = − − + − + ≤ ≤∫  

subject to boundary conditions 

( ) ( ) ( )0 0 and 1 ln 2 .y y= =  

where ( )f x  is calculated so that the analytical solution of the problem is ( ) ( )ln 1y x x= + . The MAY com-
puted by Method (8) for different values of N and number of iterations Iter. are presented in Table 4. 

We have described a numerical method for numerical solution of Fredholm integro-differential type boundary 
value problem and four model problems considered to illustrate the preciseness and effectiveness of the pro-
posed method. Numerical results for example 1 which is presented in Table 1, for different values of N show 
decreases with step size maximum absolute errors in our method decrease. Similar observation can be found in 
result of example 2, 3 and 4. Over all Method (6) is convergent and convergence of the method does not de-
pends on choice of step size h. 

6. Conclusion 
A non-standard difference method to find the numerical solution of Fredholm integro-differential equation type 
boundary value problems has been developed. This method has been used for transforming Fredholm integro- 
differential equation into system of algebraic equations i.e. each nodal point , 1, 2, , .ix x i N= =   We will ob-
tain a system of algebraic equations given by (6). So we have obtained a nonlinear system of equations that is 
always difficult to be solved, which is the disadvantage of the proposed method. The proposed method produces 
good approximate numerical value of the solution for variety of model problems with uniform step size. The 
numerical results for the model problems showed that the proposed method is computationally efficient. The 
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rate of convergence of the present method is quadratic. The idea presented in this article leads to the possibility 
to develop non-standard difference methods for the numerical solution of higher-order integro-differential equa-
tions. Works in these directions are in progress. 
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