
Open Access Library Journal 

How to cite this paper: Nagata, K. and Nakamura, T. (2015) Can Hidden Variables Theories Meet Quantum Computation? 
Open Access Library Journal, 2: e1804. http://dx.doi.org/10.4236/oalib.1101804  

 
 

Can Hidden Variables Theories Meet  
Quantum Computation? 
Koji Nagata1, Tadao Nakamura2 
1Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea 
2Department of Information and Computer Science, Keio University, Yokohama, Japan 
Email: ko_mi_na@yahoo.co.jp, nakamura@pipelining.jp    
 
Received 29 July 2015; accepted 21 August 2015; published 24 August 2015 

 
Copyright © 2015 by authors and OALib. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
We study the relation between hidden variables theories and quantum computation. We discuss 
an inconsistency between a hidden variables theory and controllability of quantum computation. 
To derive the inconsistency, we use the maximum value of the square of an expected value. We 
propose a solution of the problem by using new hidden variables theory. Also we discuss an in-
consistency between hidden variables theories and the double-slit experiment as the most basic 
experiment in quantum mechanics. This experiment can be an easy detector to Pauli observable. 
We cannot accept hidden variables theories to simulate the double-slit experiment in a specific 
case. Hidden variables theories may not depicture quantum detector. This is a quantum mea-
surement theoretical profound problem. 
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1. Introduction 
Quantum mechanics (cf. [1]-[6]) gives approximate and at times remarkably accurate numerical predictions. 
Much experimental data approximately fits to the quantum predictions for the past some 100 years. We do not 
doubt the correctness of quantum mechanics. Quantum mechanics also says new science with respect to infor- 
mation theory. The science is called the quantum information theory [6]. Therefore, quantum mechanics gives 
us very useful another theory in order to create new information science and to explain the handling of raw 
experimental data in our physical world. 

As for the foundations of quantum mechanics, Leggett-type non-local variables theory [7] is experimen- 
tally investigated [8]-[10]. The experiments report that quantum mechanics does not accept Leggett-type 
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non-local variables interpretation. As for the applications of quantum mechanics, implementation of a quan- 
tum algorithm to solve Deutsch’s problem [11] on a nuclear magnetic resonance quantum computer is re- 
ported firstly [12]. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is also 
reported [13]. There are several attempts to use single-photon two-qubit states for quantum computing. 
Oliveira et al. implement Deutsch’s algorithm with polarization and transverse spatial modes of the 
electromagnetic field as qubits [14]. Single-photon Bell states are prepared and measured [15]. Also the 
decoherence-free implementation of Deutsch’s algorithm is reported by using such single-photon and by 
using two logical qubits [16]. More recently, a one-way based experimental implementation of Deutsch’s 
algorithm is reported [17]. 

Given the fundamental studies and the application reports, we consider why quantum computer is faster than 
classical counterpart. It is essential to study the relation between hidden variables theory (classical theory) and 
quantum mechanics to investigate the quantum computation problem. So we address studying the relation 
between hidden variables theories and quantum computation. 

We study the relation between hidden variables theories and quantum computation. The possible values of the 
pre-determined result of measurements are 1±  (in 2  unit) in the original hidden variables theory. The 
reference frames are necessary to control a quantum state. We need controllability of quantum computation. 

Let us consider controllability of quantum computation. We derive quantum proposition concerning a quan- 
tum expected value under an assumption about the existence of the orientation of reference frames in N spin-1/2 
systems. However, the original hidden variables theory violates the proposition with a magnitude that grows 
exponentially with the number of particles. To derive the inconsistency, we rely on the maximum value of the 
square of an hidden variables theoretical expected value. Therefore, we have to give up either the existence of 
the reference frames or the original hidden variables theory. The original hidden variables theory does not 
depicture physical phenomena using reference frames with a violation factor that grows exponentially with the 
number of particles. 

The double-slit experiment is an illustration of wave-particle duality. In it, a beam of particles (such as 
photons) travels through a barrier with two slits removed. If one puts a detector screen on the other side, the 
pattern of detected particles shows interference fringes characteristic of waves; however, the detector screen 
responds to particles. The system exhibits the behaviour of both waves (interference patterns) and particles (dots 
on the screen). 

If we modify this experiment so that one slit is closed, no interference pattern is observed. Thus, the state of 
both slits affects the final results. We can also arrange to have a minimally invasive detector at one of the slits to 
detect which slit the particle went through. When we do that, the interference pattern disappears. An analysis of 
a two-atom double-slit experiment based on environment-induced measurements is reported [18]. 

We assume an implementation of the double-slit experiment. There is a detector just after each slit. Thus 
interference figure does not appear, and we do not consider such a pattern. The possible values of the result of 
measurements are 1±  (in 2  unit). If a particle passes one side slit, then the value of the result of mea- 
surement is +1. If a particle passes through another slit, then the value of the result of measurement is 1− . This 
model is an easy detector model to Pauli observable. 

We consider whether hidden variables theories meet an easy detector model to Pauli observable. We assume 
an implementation of the double-slit experiment. There is a detector just after each slit. We assume that a source 
of spin-carrying particles emits them in a state, which can be described as an eigenvector of Pauli observable 

zσ . We consider a single expected value of Pauli observable xσ  in the double-slit experiment. A wave 
function analysis says that the quantum expected value of it is zero. However, hidden variables theories can 
predict different value to the expected value of 0xσ = . To derive the inconsistency, we use the maximum 
value of the square of an expected value. Hence, hidden variables theories do not meet the easy detector model 
as the whole. 

Our paper is organized as follows. 
In Section 2, we argue a hidden variables theory does not meet the reference frames. 
In Section 3, we give a solution of the problem of the hidden variables theory. We find new hidden variables 

theory meets the reference frames. 
In Section 4, we review the Deutsch-Jozsa algorithm using new hidden variables theory. 
In Section 5, we discuss the relation between the double-slit experiment and hidden variables theories. 
Section 6 concludes this paper. 
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2. A Hidden Variables Theory Does Not Meet the Reference Frames 

Assume that we have a set of N spins 1
2

. Each of them is a spin-1/2 pure state lying in the x-y plane. Let us  

assume that one source of N uncorrelated spin-carrying particles emits them in a state, which can be described as 
a multi spin-1/2 pure uncorrelated state. Let us parameterize the settings of the j th observer with a unit vector 

jn  (its direction along which the spin component is measured) with 1, ,j N=  . One can introduce the “hidden 
variables” correlation function, which is the average of the product of the hidden results of measurement  

( ) ( )HV 1 2 1 2, , , , , , ,N N avg
E r=n n n n n n                                  (1) 

where r  is the hidden result. We assume the value of r  is 1±  (in ( )2 N
  unit), which is obtained if the 

measurement directions are set at 1 2, , , Nn n n . 
Also one can introduce a quantum correlation function with the system in such a pure uncorrelated state  

( ) [ ]QM 1 2 1 2, , , trN NE ρ= ⋅ ⊗ ⋅ ⊗ ⊗ ⋅n n n n n n σ σ σ                             (2) 

where ⊗  denotes the tensor product, ⋅  the scalar product in 2R , ( ),x yσ σ=σ  is a vector of two Pauli 
operators, and ρ  is the pure uncorrelated state,  

1 2 Nρ ρ ρ ρ= ⊗ ⊗ ⊗                                       (3) 

with j j jρ = Ψ Ψ  and jΨ  is a spin-1/2 pure state lying in the x-y plane. 
One can write the observable (unit) vector jn  in a plane coordinate system as follows:  

( ) ( ) ( )1 2cos sin ,j j jk k k
j j j j j jθ θ θ= +n x x                                  (4) 

where ( )1
j =x x  and ( )2

j =x y  are the Cartesian axes. Here, the angle jk
jθ  takes two values (two-setting 

model):  

1 2 π0, .
2j jθ θ= =                                          (5) 

We derive a necessary condition to be satisfied by the quantum correlation function with the system in a pure 
uncorrelated state given in (2). In more detail, we derive the maximum value of the product of the quantum  

correlation function, QME  given in (2), i.e., 
2

QM max
E . We use the decomposition (4). We introduce simplified  

notations as  
( )1 2

1 2

( )( )
1 2tr N

N

i ii
i i i NT ρ = ⋅ ⊗ ⋅ ⊗ ⊗ ⋅ x x x


σ σ σ                              (6) 

and  

( ) ( )1 2, cos ,sin .j jk k
j j j j jc c θ θ= =c                                   (7) 

Then, we have  

1
1 1

1 1 1

2
2 2 2 22 2

QM 1
1 1 , , 1 , , 1

1,N
N N

N N N

ii
i i N i i

k k i i i i
E T c c T

= = = =

 
= = ≤ 

 
∑ ∑ ∑ ∑

 

 

                       (8) 

where we use the orthogonality relation 2
,1j j jk c cα β

α βδ
=

=∑ . The value of 
11

2 2
, , 1 NN i ii i T

=∑




 is bounded as  

11

2 2
, , =1 1

NN i ii i T ≤∑




. We have  

( ) 22

11
tr 1.j

j

N i
j j

ij
ρ

==

  ⋅ ≤    ∑∏ x σ                                    (9) 

From the convex argument, all quantum separable states must satisfy the inequality (8). Therefore, it is a 
separability inequality. It is important that the separability inequality (8) is saturated iff ρ  is a multi spin-1/2 
pure uncorrelated state such that, for every j, jΨ  is a spin-1/2 pure state lying in the x-y plane. The reason of 
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the inequality (8) is due to the following quantum inequality  

( ) 22

1
tr 1.j

j

i
j j

i
ρ

=

  ⋅ ≤    ∑ x σ                                     (10) 

The inequality (10) is saturated iff j j jρ = Ψ Ψ  and jΨ  is a spin-1/2 pure state lying in the x-y plane. 
The inequality (8) is saturated iff the inequality (10) is saturated for every j . Thus we have the maximum 
possible value of the scalar product as a quantum proposition concerning the reference frames  

2
QM max

1E =                                          (11) 

When the system is in such a multi spin-1/2 pure uncorrelated state. 
On the other hand, a correlation function satisfies the hidden variables theory if it can be written as  

( )
( )1 2

1
HV 1 2

, , , ,
, , , lim

m

N
l

N m

r l
E

m
=

→∞
=

∑ n n n
n n n



                          (12) 

where l  denotes some hidden variable and r  is the hidden result of measurement of the dichotomic ob- 
servables parameterized by the directions of 1 2, , , Nn n n . 

Assume the quantum correlation function with the system in a pure uncorrelated state given in (2) admits the 
hidden variables theory. One has the following proposition concerning the hidden variables theory  

( )
( )1 2

1
QM 1 2

, , , ,
, , , lim .

m

N
l

N m

r l
E

m
=

→∞
=

∑ n n n
n n n



                            (13) 

In what follows, we show that we cannot assign the truth value “1” for the proposition (13) concerning the 
hidden variables theory. We rely on the maximum value of the square of an expected value. Assume the 
proposition (13) is true. By changing the hidden variable l  into l′ , we have the same quantum expected value 
as follows  

( )
( )1 2

1
QM 1 2

, , , ,
, , , lim .

m

N
l

N m

r l
E

m
′=

→∞

′
=

∑ n n n
n n n



                           (14) 

An important note here is that the value of the right-hand-side of (13) is equal to the value of the right- 
hand-side of (14) because we only change the hidden variable. 

We abbreviate ( )1 2, , , ,Nr ln n n  to ( )r l  and ( )1 2, , , ,Nr l′n n n  to ( )r l′ . 
We have  

( ) ( )

( ) ( )

1

1

1

2 22 1 1
QM

1 1

2 2
1 1

1 1

2 2
1 1

1 1

lim lim

lim lim

lim lim 2 .

N

N

N

m m

l l

m mk k

m m

l l

m mk k

m m

Nl l

m mk k

r l r l
E

m m

r l r l
m m

m m

′= =

→∞ →∞= =

′= =

→∞ →∞= =

′= =

→∞ →∞= =

 ′ 
 = ×
 
 
 
 
 
 ′≤ ×
 
 
 
 
 
 = × =
 
 
 

∑ ∑
∑ ∑

∑ ∑
∑ ∑

∑ ∑
∑ ∑







                          (15) 

Here we use the fact  

( ) ( ) 1r l r l′ =                                          (16) 
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Since the possible values of ( )r l  are 1± . The above inequality can be saturated because we have  

( ){ } ( ){ }
( ){ } ( ){ }

1 1

1 1 .

l r l l r l

l r l l r l

′ ′= = =

′ ′= − = = −
                               (17) 

Hence we derive the following proposition if we assign the truth value “1” for a hidden variables theory  
2

QM max
2 .NE =                                      (18) 

Clearly, we cannot assign the truth value “1” for two propositions (11) (concerning the reference frames) and 
(18) (concerning the hidden variables theory), simultaneously, when the system is in a multiparticle pure 
uncorrelated state. Of course, each of them is a spin-1/2 pure state lying in the x-y plane. Therefore, we are in the 
contradiction when the system is in such a multiparticle pure uncorrelated state. Thus, we cannot accept the 
validity of the proposition (13) (concerning the hidden variables theory) if we assign the truth value “1” for the 
proposition (11) (concerning the reference frames). In other words, the hidden variables theory does not reveal 
physical phenomena using reference frames. The reference frames are necessary to control a quantum state. 
Thus, the hidden variables theory does not reveal physical phenomena controlling a quantum state. 

3. Solution of the Problem of the Hidden Variables Theory  
In this section, we solve the contradiction presented in the previous section. We have the maximum possible 
value of the product as a quantum proposition concerning the reference frames  

2
QM max

1E =                                       (19) 

when the system is in such a multi spin-1/2 pure uncorrelated state. On the other hand, one has the following 
proposition concerning the hidden variables theory  

2
QM max

2 .NE =                                      (20) 

We cannot assign the truth value “1” for two propositions (19) (concerning the reference frames) and (20) 
(concerning the hidden variables theory), simultaneously, when the system is in a multiparticle pure un- 
correlated state. Of course, each of them is a spin-1/2 pure state lying in the x-y plane. Therefore, we are in the 
contradiction when the system is in such a multiparticle pure uncorrelated state. 

We introduce the following hypothesis: 

Hypothesis: We assume the value of r  is 1

2N
±  (in ( )2 N

  unit), which is obtained if the measurement  

directions are set at 1 2, , , Nn n n .  
When we accept this hypothesis, the proposition (20) (concerning the hidden variables theory) becomes the 

following new proposition concerning other hidden variables theory (two-setting model)  
2

QM max
1.E =                                        (21) 

We can assign the truth value “1” for both two propositions (19) (concerning the reference frames) and (21) 
(concerning other hidden variables theory), simultaneously, when the system is in a multiparticle pure un- 
correlated state. Of course, each of them is a spin-1/2 pure state lying in the x-y plane. Therefore, we are not in 
the contradiction when the system is in such a multiparticle pure uncorrelated state. Hence, we solve the 
contradiction presented in the previous section by changing the value of the result of pre-determined mea- 
surements. Our solution is equivalent to changing Planck’s constant ( )  to the new constant ( )2 . 

4. The Deutsch-Jozsa Algorithm Using New Hidden Variables Theory 
The earliest quantum algorithm, the Deutsch-Jozsa algorithm, is representative to show that quantum com- 
putation is faster than classical counterpart with a magnitude that grows exponentially with the number of 
qubits. 

Let us follow the argumentation presented in [6]. The application, known as Deutsch’s problem, may be 
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described as the following game. Alice, in Amsterdam, selects a number x  from 0 to 2 1N − , and mails it in a 
letter to Bob, in Boston. Bob calculates the value of some function  

{ } { }: 0, , 2 1 0,1Nf − →                                   (22) 

and replies with the result, which is either 0 or 1. Now, Bob has promised to use a function f which is of one of 
two kinds; either the value of ( )f x  is constant for all values of x , or else the value of ( )f x  is balanced, 
that is, equal to 1 for exactly half of all the possible x , and 0 for the other half. Alice’s goal is to determine with 
certainty whether Bob has chosen a constant or a balanced function, corresponding with him as little as possible. 
How fast can she succeed? 

In the classical case, Alice may only send Bob one value of x  in each letter. At worst, Alice will need to 
query Bob at least  

2 2 1N +                                          (23) 

times, since she may receive 2 2N  0s before finally getting a 1, telling her that Bob’s function is balanced. The 
best deterministic classical algorithm she can use therefore requires 2 2 1N +  queries. Note that in each letter, 
Alice sends Bob N bits of information. Furthermore, in this example, physical distance is being used to 
artificially elevate the cost of calculating ( )f x , but this is not needed in the general problem, where ( )f x  
may be inherently difficult to calculate. 

If Bob and Alice were able to exchange qubits, instead of just classical bits, and if Bob agreed to calculate 
( )f x  using a unitary transformation fU , then Alice could achieve her goal in just one correspondence with 

Bob, using the following algorithm. 
Alice has an N qubit register to store her query in, and a single qubit register which she will give to Bob, to 

store the answer in. She begins by preparing both her query and answer registers in a superposition state. Bob 
will evaluate ( )f x  using quantum parallelism and leave the result in the answer register. Alice then interferes 
states in the superposition using a Hadamard transformation (a unitary transformation),  

( ) 2 ,x zH σ σ= +                                      (24) 

on the query register, and finishes by performing a suitable measurement to determine whether f was constant or 
balanced. 

Let us follow the quantum states through this algorithm. The input state is  

0 0 1 .Nψ ⊗=                                        (25) 

Here the query register describes the state of N qubits all prepared in the  

0                                            (26) 

state. After the Hadamard transformation on the query register and the Hadamard gate on the answer register we 
have  

{ }
1

0,1

0 1
.

22N N
x

x
ψ

∈

 − 
=  

 
∑                                 (27) 

The query register is now a superposition of all values, and the answer register is in an evenly weighted 
superposition of  

0                                            (28) 

And  

1 .                                            (29) 

Next, the function f is evaluated (by Bob) using  

( ): , , ,fU x y x y f x→ ⊕                                  (30) 

giving  
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( ) ( )

2

1 0 1
.

22

f x

Nx

x
ψ

−  − 
= ±  

 
∑                                (31) 

Here  

( )y f x⊕                                          (32) 

is the bitwise XOR (exclusive OR) of y and ( )f x . Alice now has a set of qubits in which the result of Bob’s 
function evaluation is stored in the amplitude of the qubit superposition state. She now interferes terms in the 
superposition using a Hadamard transformation on the query register. To determine the result of the Hadamard 
transformation it helps to first calculate the effect of the Hadamard transformation on a state  

.x                                            (33) 

By checking the cases 0x =  and 1x =  separately we see that for a single qubit  

( )1 2 .xz

z
H x z= −∑                                    (34) 

Thus  

( ) 1 1

1

1
, ,

1

1 , ,
, , .

2

N N

N

x z x z
N

z zN
N N

z z
H x x

+ +

⊗

−
=
∑ 





                           (35) 

This can be summarized more succinctly in the very useful equation  

( )1
,

2

x z

N z
N

z
H x

⋅

⊗
−

=
∑

                                     (36) 

where  
x z⋅                                               (37) 

is the bitwise inner product of x  and z , modulo 2. Using this equation and (31) we can now evaluate 
3ψ , 

( ) ( )

3

1 0 1
.

22

x z f x

Nz x

z
ψ

⋅ +−  − 
= ±  

 
∑∑                                (38) 

Alice now observes the query register. Note that the absolute value of the amplitude for the state  

0 N⊗                                             (39) 

Is  

( ) ( )1 2 .f x N

x
−∑                                        (40) 

Let’s look at the two possible cases-f constant and f balanced-to discern what happens. In the case where f is 
constant the absolute value of the amplitude for  

0 N⊗                                            (41) 

is 1+ . Because  

3ψ                                            (42) 

is of unit length it follows that all the other amplitudes must be zero, and an observation will yield  

1
2

 
+ 
 

                                          (43) 
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times for all N  qubits in the query register. Thus, global measurement outcome is  

1 .
2N

 
+  
 

                                         (44) 

If f is balanced then the positive and negative contributions to the absolute value of the amplitude for  

0 N⊗                                            (45) 

cancel, leaving an amplitude of zero, and a measurement must yield a result other than  

1 ,
2

+                                           (46) 

that is,  

1 ,
2

−                                           (47) 

on at least one qubit in the query register. Summarizing, if Alice measures all 1
2

 
+ 
 

s and global mea-  

surement outcome is 1

2N

 
+  
 

 the function is constant; otherwise the function is balanced. 

We notice that the difference between 1

2N
+  and 1

2N
−  is approximately zero when 1N  . We  

question if the Deutsch-Jozsa algorithm in the macroscopic scale is possible or not. This question is open 
problem. 

We see the measurement outcome is predetermined. This is classical situation. We can see the result of the 
Deutsch-Jozsa algorithm classically. And an input state violates non local realism [19]. This is quantum theo- 
retical situation. The Deutsch-Jozsa algorithm is performed in the arrow of time. The arrow of time goes from 
quantum theory to classical theory. This physical situation is similar to the quantum decoherence. We may say 
the Deutsch-Jozsa algorithm is physical. 

5. The Double-Slit Experiment and Hidden Variables Theories  
In this section, we consider the relation between the double-slit experiment and the original hidden variables 
theory. We assume an implementation of the double-slit experiment. There is a detector just after each slit. Thus 
interference figure does not appear, and we do not consider such a pattern. The possible values of the result of 
measurements are 1±  (in 2  unit). If a particle passes one side slit, then the value of the result of mea- 
surement is 1+ . If a particle passes through another slit, then the value of the result of measurement is 1− . 

5.1. A Wave Function Analysis 
Let ( ),z xσ σ  be Pauli vector. We assume that a source of spin-carrying particles emits them in a state ψ , 
which can be described as an eigenvector of Pauli observable zσ . We consider a quantum expected value 

xσ  as  

0.x xσ ψ σ ψ= =                                    (48) 

The above quantum expected value is zero if we consider only a wave function analysis. 
We derive a necessary condition for the quantum expected value for the system in the pure spin-1/2 state ψ  

given in (48). We derive the possible value of the product 2
x x xσ σ σ× = . xσ  is the quantum expected 

value given in (48). We have  
2 0.xσ =                                         (49) 

Thus,  
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2 0.xσ ≤                                            (50) 

We derive the following proposition  

( )2

max
0.xσ =                                          (51) 

5.2. The Original Hidden Variables Theory 
On the other hand, a mean value E  admits the hidden variables theory if it can be written as  

( )
1

m

l x
l

r
E

m

σ
==
∑

                                         (52) 

where l  denotes some hidden variable and r  is the hidden result of measurement of the Pauli observable xσ . 
We assume the value of r  is 1±  (in 2  unit). 

Assume the quantum mean value with the system in an eigenvector ( )ψ  of Pauli observable zσ  given in 
(48) admits the hidden variables theory. One has the following proposition concerning the hidden variables 
theory  

( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ ==

∑
                                      (53) 

We can assume as follows by Strong Law of Large Numbers,  

( ) .x x xσ σ ψ σ ψ+∞ = =                                   (54) 

In what follows, we show that we cannot assign the truth value “1” for the proposition (53) concerning the 
hidden variables theory. We rely on the maximum value of the square of a mean value. 

Assume the proposition (53) is true. By changing the hidden variable l  into l′ , we have the same quantum 
mean value as follows  

( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ

′
′==
∑

                                     (55) 

An important note here is that the value of the right-hand-side of (53) is equal to the value of the right- 
hand-side of (55) because we only change the hidden variable. We have  

( ) ( )
( ) ( )

( ) ( )1 1 1 1 1 1 1.

m m m m m m

l x l x
l l l l l l

x x l x l x

r r
m m r r

m m m m m m

σ σ
σ σ σ σ

′
′ ′ ′= = = = = =

′× = × ≤ × = × =
∑ ∑ ∑ ∑ ∑ ∑

         (56) 

Here we use the fact  

( ) ( ) 1l x l xr rσ σ′ =                                        (57) 

since the possible values of ( )l xr σ  are 1± . The above inequality can be saturated because we have  

( ){ } ( ){ }
( ){ } ( ){ }

1 1

1 1 .
l x l x

l x l x

l r l r

l r l r

σ σ

σ σ

′

′

′= = =

′= − = = −
                                (58) 

Hence we derive the following proposition if we assign the truth value “1” for a hidden variables theory  

( ) ( )( )max
1.x xm mσ σ× =                                   (59) 

From Strong Law of Large Numbers, we have  

( )max
1.x xσ σ× =                                     (60) 
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Hence we derive the following proposition concerning the hidden variables theory  

( )2

max
1.xσ =                                           (61) 

We do not assign the truth value “1” for two propositions (51) (concerning a wave function analysis) and (61) 
(concerning the hidden variables theory), simultaneously. We are in the contradiction. 

We cannot accept the validity of the proposition (53) (concerning the hidden variables theory) if we assign the 
truth value “1” for the proposition (51) (concerning a wave function analysis). In other words, we cannot accept 
the hidden variables theory to simulate the detector model for spin observable xσ . 

5.3. New Hidden Variables Theory 
A mean value E  admits new hidden variables theory if it can be written as  

( )
1

m

l x
l

r
E

m

σ
==
∑

                                          (62) 

where l  denotes some hidden variable and r  is the hidden result of measurement of the Pauli observable xσ . 
We assume the value of r  is 1 2±  (in 2  unit). 

Assume the quantum mean value with the system in an eigenvector ( )ψ  of Pauli observable zσ  given in 
(48) admits new hidden variables theory. One has the following proposition concerning new hidden variables 
theory  

( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ ==

∑
                                      (63) 

We can assume as follows by Strong Law of Large Numbers,  

( ) .x x xσ σ ψ σ ψ+∞ = =                                   (64) 

In what follows, we show that we cannot assign the truth value “1” for the proposition (63) concerning new 
hidden variables theory. We rely on the maximum value of the square of a mean value. 

Assume the proposition (63) is true. By changing the hidden variable l  into l′ , we have the same quantum 
mean value as follows  

( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ

′
′==
∑

                                     (65) 

An important note here is that the value of the right-hand-side of (63) is equal to the value of the right-hand- 
side of (65) because we only change the hidden variable. We have  

( ) ( )
( ) ( )

( ) ( ) ( )1 1 1 1 1 1 1 2 1 2.

m m m m m m

l x l x
l l l l l l

x x l x l x

r r
m m r r

m m m m m m

σ σ
σ σ σ σ

′
′ ′ ′= = = = = =

′× = × ≤ × = × =
∑ ∑ ∑ ∑ ∑ ∑

       (66) 

Here we use the fact  

( ) ( ) 1 2l x l xr rσ σ′ =                                      (67) 

since the possible values of ( )l xr σ  are 1 2± . The above inequality can be saturated because we have  

( ){ } ( ){ }
( ){ } ( ){ }

1 2 1 2

1 2 1 2 .

l x l x

l x l x

l r l r

l r l r

σ σ

σ σ

′

′

′= = =

′= − = = −
                           (68) 

Hence we derive the following proposition if we assign the truth value “1” for new hidden variables theory  

( ) ( )( )max
1 2.x xm mσ σ× =                                  (69) 
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From Strong Law of Large Numbers, we have  

( )max
1 2.x xσ σ× =                                      (70) 

Hence we derive the following proposition concerning new hidden variables theory  

( )2

max
1 2.xσ =                                        (71) 

We do not assign the truth value “1” for two propositions (51) (concerning a wave function analysis) and (71) 
(concerning new hidden variables theory), simultaneously. We are in the contradiction. 

We cannot accept the validity of the proposition (63) (concerning new hidden variables theory) if we assign 
the truth value “1” for the proposition (51) (concerning a wave function analysis). In other words, we cannot 
accept new hidden variables theory to simulate the detector model for spin observable xσ . 

6. Conclusions 
In conclusion, we have studied the relation between a hidden variables theory and quantum computation. The 
possible values of the pre-determined result of measurements have been 1±  (in 2  unit). The reference 
frames have been necessary to control a quantum state. 

We have derived some proposition concerning a quantum expected value under an assumption about the 
existence of the orientation of reference frames in N spin-1/2 systems. However, the hidden variables theory has 
violated the proposition with a magnitude that grows exponentially with the number of particles. Therefore, we 
have had to give up either the existence of the reference frames or the hidden variables theory. The hidden 
variables theory does not have depictured physical phenomena using reference frames with a violation factor 
that grows exponentially with the number of particles. 

We have proposed a solution of the problem. Our solution has been equivalent to changing Planck’s constant 
( )  to a new constant ( )2 . The Deutsch-Jozsa algorithm has been performed in the arrow of time. The 
arrow of time has gone from quantum theory to classical theory. This physical situation had been similar to the 
quantum decoherence. 

We may have said the Deutsch-Jozsa algorithm is physical. Also we have discussed the fact that both the 
original hidden variables theory and new hidden variables theory do not meet an easy detector model to a single 
Pauli observable. Hidden variables theories may not depicture quantum detector. This is a quantum measure- 
ment theoretical profound problem. 
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