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Abstract 

Whether a species is rare and requires protection or is overabundant and needs control, an accu-
rate estimate of population size is essential for the development of conservation plans and man-
agement goals. Current wildlife surveys are logistically difficult, frequently biased, and time con-
suming. Therefore, there is a need to provide additional techniques to improve survey methods 
for censusing wildlife species. We examined three methods to enumerate animals in remotely 
sensed aerial imagery: manual photo interpretation, an unsupervised classification, and multi- 
image, multi-step technique. We compared the performance of the three techniques based on the 
probability of correctly detecting animals, the probability of under-counting animals (false posi-
tives), and the probability of over-counting animals (false negatives). Manual photo-interpretation 
had a high probability of detecting an animal (81% ± 24%), the lowest probability of over-count- 
ing an animal (8% ± 16%), and a relatively low probability of under-counting an animal (19% ± 
24%). An unsupervised, ISODATA classification with subtraction of a background image had the 
highest probability of detecting an animal (82% ± 10%), a high probability of over-counting an 
animal (69% ± 27%) but a low probability of under-counting an animal (18% ± 18%). The multi- 
image, multi-step procedure incorporated more information, but had the lowest probability of 
detecting an animal (50% ± 26%), the highest probability of over-counting an animal (72% ± 
26%), and the highest probability of under-counting an animal (50% ± 26%). Manual interpreters 
better discriminated between animal and non-animal features and had fewer over-counting er-
rors (i.e., false positives) than either the unsupervised classification or the multi-image, multi-step 
techniques indicating that benefits of automation need to be weighed against potential losses in 
accuracy. Identification and counting of animals in remotely sensed imagery could provide wild-
life managers with a tool to improve population estimates and aid in enumerating animals across 
large natural systems. 
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1. Introduction 
Monitoring and detecting changes or trends in wildlife population abundance requires accurate enumeration of 
animals and has evolved from the simple counting of individuals in a given area [1] to the development of mod-
els estimating bias [2], to complex, statistically based estimators and their associated correction factors [3]-[6]. 
Regardless of the type of survey conducted, counts in remote, hard to access locations or over extensive areas 
are logistically difficult to obtain, time consuming, and frequently biased [6]-[11]. Given the biases inherent to 
aerial and ground surveys and photographic interpretation, a method to identify and enumerate animals that is 
economical, repeatable, and accurate would provide wildlife managers another tool for estimating population 
abundances of wildlife species. 

Counts of animals from remotely sensed imagery or aerial photographs have been used to estimate population 
abundances for a diverse array of wildlife species, from birds [12]-[15] to terrestrial species [16] [17] to oceanic 
mammals [18] [19]. Unfortunately, manual counts from aerial photographs are labor intensive, subject to human 
interpretation and error, and can result in inconsistent counts [12] [14] [20]-[22]. While manual counting of 
canvasbacks ducks (Aythya valisineria) on water in aerial photographs resulted in high variation among inter-
preters [12], manual counting of caribou (Rangifer tarandus, [23]) in open tundra habitatresulted in little varia-
tion in numbers of animals reported by independent interpreters. Although these studies found conflicting results, 
the types of errors indicate a link between body size and background conditions. A predominate trend across all 
studies enumerating animals in remotely sensed imagery was the importance of providing high contrast between 
animals and their background [10] [20] [24]-[28]. For example, snow geese (Chen caerulescens) are uniformly 
white-colored which facilitated separation of the birds from a darker background [20]. Snow provided a homo-
genous background and facilitated identification of deer (Odocoileus spp.) in remotely sensed images in the near 
infrared portion (NIR, 0.7 to 1.4 μm and 1.5 to 4.0 μm) of the electromagnetic spectrum (EM) but not in the 
visible region (0.5 to 0.7 μm [25]). In the same study area in summer complex, non-homogenous backgrounds 
reduced the detection and identification of deer by 50% - 80% with higher detections achieved with less 
non-photosynthetic tissue (i.e., dry, brushy vegetation) surrounding the animal [24]. Large aggregations of birds 
have also been successfully counted in remotely sensed imagery, both as individual birds and as colonies. Greater 
flamingo (Phoenicopterus roseus) colonies were identified as overlapping ellipses that were unique in shape and 
spectrally distinct from the surrounding background [27]. The process was automated and resulted <5% difference 
when compared to manual counts. A supervised classification process with a combination of medium (10 m) and 
high resolution (61 cm and 2.44 m) imagery successfully identified and enumerated colonies of emperor pen-
guins (Aptenodytes fosteri) across the continental coastline of Antarctica (approximately 18,000 km). 

As the amount of available satellite and aerial imagery increases, there is a concomitant need for automated or 
semi-automated image analysis to reduce analysis time, allow non-photogrammetric specialists to interact with 
imagery, facilitate faster searches, and identify quantitative information not readily recognizable with human in-
terpretation [29]-[31]. Similar to other research that identified and counted animals in remotely sensed imagery, 
our research was based on identifying and distinguishing features from the surrounding background. Our re-
search is unique due to the integration of multiple data sources and the development of multi-dimensional analy-
sis to increase the distinction between known animal pixels and known non-animal pixels. We developed a proof 
of concept using aerial imagery of fenced pastures containing known numbers of domestic cattle (Bos Taurus) 
and horses (Equus caballus). We examined one technique that relied solely on human interpretation (i.e., manual 
photo-interpretation) and two techniques that had minimal input from analysts: an ISODATA classification [32] 
with subtraction of a background image and a multiple image, multiple step technique. We compared the per-
formance of the three techniques based on the probability of correctly detecting animals, the probability of un-
der-counting animals (false negative), and the probability of over-counting animals (false positive). A correction 
factor integrating all detection probabilities adjusted the final count estimate for each image. The study was li-
mited to grassland ecosystems due to the reduced complexity of cover as compared to dense, tall shrublands, and 
forests. 
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The advantages of counting animals from airborne or satellite imagery include reduced survey time, a perma-
nent record of the survey, and potentially systematic errors which are more predictable when compared to con-
ventional wildlife surveys. Conventional aerial wildlife surveys frequently require multiple days to complete 
thus allowing animals to move throughout the study area and increase the probability of double-counting or 
missing individuals. Remotely sensed imagery can be acquired over larger areas more quickly than conventional 
wildlife aerial surveys which are required to fly at slow speeds and at low elevations. In addition, flight restric-
tions may prevent aerial surveys over sensitive areas (i.e., military installations). The reduction in the amount of 
time needed to acquire remotely sensed imagery over that of a conventional wildlife survey could facilitate 
counting of animals in areas previously too large or too isolated to survey with traditional aerial survey methods. 
The permanent, unchanging record of animal locations for an instant in time (i.e. a complete count), allows for 
repeated assessments using new procedures developed with new technologies. Semi-automated counts of wild-
life via remotely sensed imagery and the subsequent estimates of population size could revolutionize how ungu-
late counts are conducted and be a beneficial tool in management decisions. This method not only has the poten-
tial to improve accuracy and precision of counts and thus estimates of population size, it could aid in tracking 
grazing patterns of wild and domestic animals across large natural systems. 

2. Study Areas 
We acquired aerial imagery across portions of Cache County (i.e., Cache Valley) and a portion of Box Elder 
County in northcentral Utah. Cache Valley (CV) is a north-south trending valley surrounded by the Wellsville 
Mountains to the west and the Bear River Mountain Range to the east. Cache Valley has an average annual pre-
cipitation of 45 cm [33] with an elevation of 1355 m [34] in the center of the valley. Sites in CV were located in 
the valley bottomlands dominated by grasslands. Brigham City (BC) is located in Box Elder County and sits on 
the western base of the north-trending Wellsville Mountains. The average precipitation of the BC sites was 47 
cm [33] with an elevation of 1289 m [34]. BC study sites were dominated by sparse grasslands. 

3. Methodology  
3.1. Aerial Imagery 
On October 31, 2006, under mostly clear skies, we collected aerial imagery between 10:44 AM and 3:07 PM 
with three Kodak Megaplus 4.2i digital cameras (Kodak Company, Rochester, New York, New York) each re-
cording a specific spectral region: green (0.54 - 0.56 µm), red (0.66 - 0.68 µm), and near-infrared (0.7 - 0.9 µm) 
with an approximate spatial resolution of 25 cm [35]. An Exotech four-band radiometer included with the cam-
eras allowed for the conversion of digital numbers to reflectance values [36]. We acquired two images for each 
pasture, with at least 48 minutes between acquisitions of the first image (a) and the second image (b). Rectifica-
tion of images to the Universal Transverse Mercator System (UTM), NAD83 datum occurred in ERDAS Im-
agine 9.1.0. (Leika Geosystems, Heerburg, Canton St. Gallen, Switzerland). Image acquisition likely did not af-
fect animal movements since the aircraft flew at an average elevation of 549 m above ground level [37] [38]. 

3.2. Animal Ground Counts 
Rather than compare one estimate to another estimate, we compared the number of animals identified by each 
technique to the known number of animals in each pasture. Ground enumeration of cattle and horses occurred 
concurrently with image acquisition. Known counts of animals per pasture were derived from visual ground 
counts and available landowner counts (Figure 1). Pastures containing ≥50 animals were difficult to enumerate 
on the ground and resulted in unreliable counts, thus those pastures were not included in the analysis. Although 
no probability of detection was determined for the ground counts, by limiting analysis to those pastures with ≤50 
animals, the detection probability was likely close to 100%. We considered pastures as independent samples 
since they were geographically separated across the study sites.  

3.3. Accuracy Measures 
The output from the manual photo-interpretation was an image containing circles around suspected animals 
(Figure 1). The two semi-automated techniques generated individual polygons for each suspected animal. We  
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(a)                                       (b) 

Figure 1. Images of the first (a) and second (b) acquisitions of pasture 15 indicating animal 
movement. Circles in (a) represent how a photo-interpreter would indicate which features were 
animals.                                                                          

 
were able to evaluate when circled features (or polygons) were properly identified by comparing them against 
known animal locations. We classified polygons (or circles in the photo-interpretation) into three categories: 
“mapped polygons” consisted of all polygons generated in a particular technique, “correctly mapped” polygons 
were those generated using one of the three techniques that accurately depicted animals, and “incorrectly 
mapped” polygons were polygons not associated with a known animal. We assumed that features that moved 
location from one image to another image were animals and thus were able to determine a specific location for 
each animal. Because we knew specific locations of animals in each pasture, we were able to identify when an 
animal was not linked with a polygon (missed). Any animal not associated with a polygon was considered a 
“missed animal”. 

The probability of detection (PD) is a proportion of correctly identified animals relative to a known number of 
animals [6]. In this paper, the PD calculation was defined as the number of correctly mapped polygons (or a cir-
cle in the photo-interpretation) divided by the number of known animals in the pasture. The probability of un-
der-counting animals (Punder) indicated the proportion of animals known to be in a pasture but not associated 
with a polygon (or a circle in the photo-interpretation) identified and was calculated as the number of missed 
animals divided by the number of known animals in the pasture. The probability of over-counting (Pover) was 
calculated by dividing the number of polygons (or circles in the photo-interpretation) not associated with an 
animal by the number of mapped polygons (or circles in the photo-interpretation) in the pasture. We incorpo-
rated the three error estimates into a single correction factor (CF) that we multiplied by the number of mapped 
polygons to generate a population abundance estimate for each pasture. Abundance estimates, adjusted for false 
positives (over-counting animals) and false negatives (missed animals), have greater validity and are more ro-
bust than unadjusted estimates. The CF was calculated as (PD + Punder − Pover)/PD.  

3.4. Interpretation Techniques 
We evaluated the ability of five lay-people (L), five remote sensing analysts (R), and wildlife biologists (W) 
from the Utah Division of Wildlife Resources to count animals in aerial photographs of fenced pastures con-
taining cattle. None of the individuals in the L group had any experience in remote sensing analysis or partici-
pated in wildlife surveys, none of the individuals in the R group participated in wildlife surveys, but some of the 
individuals in the W group had limited remote sensing experience (i.e., had previously examined remotely 
sensed imagery). All participants examined the same seven images of fenced pastures. The number of animals in 
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each pasture ranged from five to 32. The photos of each pasture were presented to the photo-interpreters in nat-
ural color on a single standard 8.5 × 11-inch piece of paper. There was unlimited time for evaluation and indi-
viduals circled each feature interpreted as an animal (Figure 1). Although participants received pastures in the 
same order, the evaluation sequence was at the individual’s discretion. Due to the data being highly skewed 
across the three groups, the use of an ANOVA [39] was inappropriate. Log, squared, and square root transfor-
mations did not normalize these distributions. Additionally, a generalized linear model fit with a binomial dis-
tribution was not suitable since PD, Punder, and Pover were probabilities. Therefore, we used a Kruskal-Wallis test 
[39] to determine if there were significant differences in the probability of detection, the probability of un-
der-counting, and the probability of over-counting animals. All statistical tests were conducted in the R statistic-
al software [40]. 

We used a semi-automated, multi-step technique to identify animals in remotely sensed imagery that included 
Iterative Self-Organizing Analysis Technique (ISODATA) segmentation (Figure 2(a)) and the generation of a 
background image (Figure 2(b)). Unsupervised classification, commonly used to segment and classify remotely 
sensed imagery, has the ability to identify unique features on the landscape and separates spectral information 
into distinct statistical clusters so that pixels with similar spectral characteristics are assigned to the same cluster 
[32]. One advantage of unsupervised classification is that it requires little analyst input beyond determination of 
the number of output clusters. The ISODATA process [32] [41] places a pixel into the cluster with the closest 
Euclidean spectral distance. The ISODATA segmentation generated 20 clusters from each 3-band image that 
were then converted into polygons, with each polygon assigned the mean spectral value of the pixels that it en-
compassed. We determined that clusters with the three lowest spectral values represented potential animal po-
lygons (PAPs) and focused our subsequent analysis on these polygons (Figure 2(a)). We intersected the PAPs 
with the associated 3-band image to extract the original spectral response for each polygon to maintain as much 
spectral information as possible through the image differencing process.  

Image differencing is a change detection technique in which an image collected at time X is subtracted from a 
second, geographically identical image, collected at time Y. In a differenced image, pixels with small spectral 
values represent areas that have changed little, while pixels with large spectral differences represent areas of 
change [32]. Generally, image differencing has been used to identify land-cover changes between images ac- 

 

 
Figure 2. Outline of the steps taken in an ISODATA and background subtraction technique to 
identify animals in aerial imagery (a) Outlines generation of potential animal polygons (PAPs) 
from an unsupervised ISODATA process; (b) Outlines the background image generations; and (c) 
Outlines the subtraction of the ISODATA segmented image from the background image.          
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quired on two different dates [42]-[44]. Rather than the subtraction of temporally different images, we tested the 
feasibility of subtracting a simulated background image from an image containing animals to highlight differ-
ences between animal features and their surrounding background. As temporal image differencing detects 
changes over time, changes between a background image without animal features and an image of the same area 
with animal features should, in theory, isolate animal features. Since the ISODATA segmentation alone gener-
ated many false positives (i.e., over-counted animal features), we needed to further isolate animal features from 
the surrounding background. Based on a heuristic evaluation, we determined that low spectral values consis-
tently represented animals. To generate a background image, we removed pixels with low spectral values (i.e., 
animal clusters) using a two-step process (Figure 2(b)). First, we applied a 7 × 7 maximum convolution kernel 
to the original image, which generated an image consisting of pixels with the highest spectral values in the ker-
nel. Next, we applied a 9 × 9 low-pass filter to the maximum kernel image, which reduced spatial variation suf-
ficiently to produce a smoothed background image. We then intersected the PAPs with the simulated back-
ground to generate pixel groupings that contained only background spectral values. We subtracted the PAP pixel 
groupings generated in the ISODATA step from the background pixel groups (Figure 2(c)). Based on image 
differencing theory, pixels in the subtracted image with higher difference values should represent animal poly-
gons (i.e., animal spectral values subtracted from the background spectral values) and lower difference values 
should represent non-animal features (i.e., background spectral values subtracted from background spectral val-
ues. To further isolate animal features, a 20-class ISODATA segmentation was conducted on the differenced 
pixel groups. As with the previous 20-class ISODATA segmentation process, we heuristically identified pixels 
with the three lowest spectral values as representing animals. We eliminated pixel clusters with spectral values 
greater than the third lowest value and converted the remaining clusters to polygons. We heuristically identified 
spatial thresholds which described known animal shapes from the training images and removed polygons that 
were too large or too small to be animals. 

Our third technique examined a multi-image, multi-step (MIMS) technique to isolate animals in remotely 
sensed imagery (Figure 3) with eight training images containing 143 animals and seven test images containing  

 

 
Figure 3. Outline of the steps taken in a multi-image, multi-step technique to identify animals in 
aerial imagery (a) Outlines generation of a texture image; (b) Outlines the principal components 
analysis (PCA) and background subtraction, and (c) Outlines the subtraction of the texture and 
PCA images.                                                                        
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158 animals. The training images were chosen so the number of animals in the training images was approx-
imately the same as in the testing images. The MIMS technique generated three output images from each origi-
nal 3-band pasture image: a texture image, the first principal component image, and a background image (see 
ISODATA methods above). Texture represents spatial change in spectral values within a specified neighbor-
hood and therefore characterizes spatial patterns across an image [32]. Since texture quantifies variation within a 
neighborhood, we theorized that a neighborhood, which encompassed both an animal and its surrounding back-
ground, would exhibit greater variance (texture) than a neighborhood composed entirely of animal or back-
ground pixels. The size of a single bull can range from 1.6 to 2.2 m2 while the size of a single cow can range 
from 1.4 to 1.5 m2 (B. Bowman, personal communication); thus, an area of 1.5 m2 would encompass a small bull 
or a large cow. To generate a texture image, we used a neighborhood of 7 × 7 pixels (3.1 m2) that would theo-
retically encompass two animals standing next to each other. A mean Euclidean distance texture function 
representing the mean spectral difference between the central pixel and all other pixels in the neighborhood was 
used [41]. Neighborhoods with little spectral change resulted in low texture values while neighborhoods with 
many changes had higher texture values. To reduce heuristic determination of thresholding values and thus in-
crease potential for automation, we defined the minimum texture thresholding value based on the Rosin corner 
threshold technique (Figure 4) [45]. We removed non-animal pixels that were above the maximum texture 
threshold and below the minimum texture threshold and converted pixel clusters into polygons. Principal com-
ponents analysis (PCA) is commonly used with remotely sensed imagery to reduce dimensionality by combining 
redundant information in highly correlated bands [32] [46]. The output of a PCA is an image, which is composed 
of the same number of layers as the input image (3 bands in this case). The first PCA layer contains the highest 
amount of correlated information between the spectral bands and the second layer contains the second highest 
amount of correlated information and so on [32]. We conducted a PCA on each 3-band training image and used 
the first principal component for subsequent analysis because it contained the highest amount of spectral varia-
tion (81% vs. 17% and 2%, 1st, 2nd, and 3rd components, respectfully). We subtracted the background image 
derived from our ISODATA methods (Figure 2(b)) from the first principal component (Figure 3(b)) and ap-
plied the Rosin corner thresholding method to eliminate non-animal features. We spatially intersected the texture  

 

 
Figure 4. Graphical depiction of the Rosin corner method of determining a thresholding values 
for a histogram of texture values from an image containing animals. The peak of the histogram is 
the starting point of a straight lines that ends at the first instance of an X-axis value of zero. The 
dashed line perpendicular to the straight line with the longest distance to the histogram curve is 
the threshold value.                                                                 
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derived polygons (Figure 3(a)) with polygons derived from the PCA-background subtraction technique (Figure 
3(b)) and considered the spatial locations where both polygons intersected as an animal. The final step elimi-
nated polygons based on thresholding values for area, perimeter-area ratio (PA), and compactness ratio (CR; 
Figure 3(c)). We examined the PA to assess the circularity of a feature relative to a perfect circle. The CR also 
assesses the circularity of a feature but without influence of feature size, unlike PA. We heuristically determined 
thresholds of shape characteristics that encompassed animal features from the training imagers. Individual shape 
characteristics alone were unable to successfully threshold animal features so we used a combination of all three 
characteristics to eliminate non-animal polygons. The final output resulted in polygons classified as animal fea-
tures. 

4. Results and Discussion 
There were no significant differences (p ≥ 0.20) among individuals that manually interpreted the aerial imagery 
within the L, W, or R groups for PD, Punder, or Pover, so we collapsed individuals within each group and examined 
differences among the groups. There were no significant differences among the three groups for PD, Punder, and 
Pover (p ≥ 0.10, Figure 5). Collapsing across groups, the overall mean PD was 83% (±1%, Standard error), the 
mean Punder was 19% (±1%), the mean Pover was 8% (±3%), and the mean CF was 1.26 (±0.07). 

The mean PD for the seven pastures examined with the ISODATA and background image subtraction was 82% 
(±10%, SD) and ranged from 55% to 100% (Table 1). The mean Punder for the seven pastures was 18% (±18%) 
and ranged from 0% to 45%. The mean Pover for the seven images was 69% (±27%) and ranged from 28% to 
98%. The mean CF for the seven images was 0.40 (±0.37) and ranged from 0.04 to 0.91. The ISODATA unsu-
pervised classification with a background subtraction successfully identified animals but greatly over-estimated  

 

 
Figure 5. Graphs indicating no significant difference (p ≥ 0.05) among laymen (L), remote sensing analysts (R), and wildlife 
biologists (W) for the probability of detecting an animal, the probability of under-counting animals, the probability of over- 
counting animals, and a correction factor in aerial imagery of fenced pastures containing animals.                         
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animal numbers. While there appeared to be a positive relationship between increasing number of known ani-
mals in a pasture with increasing number of animals missed and increasing CF’s, there was no significant rela-
tionship (p > 0.05) between the actual number of animals in each pasture and any image feature characteristic 
(i.e., total number of polygons in an image, PD, Punder, Pover, or CF). 

The MIMS technique was similar to the ISODATA-background subtraction technique in that there was a 
general trend without significance (p > 0.05) for the number of missed animals to increase as the number of 
known animals in a pasture increased. The mean PD across the testing pastures was 50% (±26%) and ranged 
from 0% to 74%. The mean Punder for the testing pastures was 50% (±26%) and ranged from 26% to 100%. The 
mean Pover was 72% (±26%) and ranged from 23% to 100%. The mean CF was 0.54 (±32) and ranged from 0.24 
to 1.09 (Table 2). 

The PD is generally calculated as the ratio of the number of marked animals observed during a wildlife survey 
to the known number of marked animals on the survey area. Reported values of PD for conventional ground and  

 
Table 1. The probabity of detecting an animal (PD), the probability of under-counting an animal (Punder), the probability of 
over-counting an animal (Punder), and the correction factor (CF) for an ISODATA and background subtraction techinque to 
identify animals in aerial imagery in fenced pastures in northcentral Utah.                                            

Pasture Known number  
animals in pasture 

Mapped  
polygons 

Correctly  
mapped polygons 

Missed  
animals 

Incorrectly  
mapped polygons PDa Punder

b Pover
c CFd 

22B 5 125 3 2 122 0.60 0.40 0.98 0.04 

22A 3 63 3 0 60 1.00 0.00 0.95 0.05 

21B 13 98 12 1 86 0.92 0.08 0.88 0.13 

29A 29 117 28 1 89 0.97 0.03 0.76 0.25 

32A 38 62 32 6 30 0.84 0.16 0.48 0.61 

15B 37 46 33 4 13 0.89 0.11 0.28 0.80 

4A 20 22 11 9 11 0.55 0.45 0.50 0.91 

Mean 21 76 17 3 59 0.82 0.18 0.69 0.40 

STD 14 38 13 3 43 0.10 0.18 0.27 0.37 

a(Correctly mapped polygons/Known number of animals in pasture); b(Missed Animals / Known number of animals in pasture); c(Incorrectly mapped 
polygons/Number of mapped polygons); d(PD + Punder − Pover)/PD. 

 
Table 2. The probabity of detecting an animal (PD), the probability of under-counting an animal (Punder), the probability of 
over-counting an animal (Punder), and the correction factor (CF) for a multi-imge, multi-step (MIMS) technique to identfy and 
count animals in remotely sensed imagery across seven pastures in northcentral Utah.                                   

Pasture Known number  
animalsin pasture 

Mapped  
polygons 

Correctly  
mapped polygons 

Missed  
animals 

Incorrectly  
mapped polygons PDa Punder

b Pover
c CFd 

28B 15 62 10 5 52 0.67 0.33 0.84 0.24 

29B 29 96 12 17 84 0.41 0.59 0.88 0.30 

32Be 38 89 27 10 62 0.74 0.26 0.70 0.41 

21A 13 28 5 8 23 0.38 0.62 0.82 0.46 

4Ae 20 25 11 8 14 0.60 0.40 0.56 0.73 

15A 38 35 27 11 8 0.71 0.29 0.23 1.09 

3B 5 10 0 5 10 0.00 1.00 1.00 - 

Mean 23 49 13 6 36 0.50 0.50 0.72 0.54 

STD 13 33 10 4 30 0.26 0.26 0.26 0.32 

a(Correctly mapped polygons / Known number of animals in pasture); b(Missed Animals/Known number of animals in pasture); c(Incorrectly mapped 
polygons/ Number of mapped polygons); d(PD + Punder − Pover)/PD; eOne polygon represented 2 animals. 
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aerial surveys range from 52% in caribou (Rangifer spp., [47]), 34% - 82% for mule deer (Odocoileus hemionus, 
[48]), and 53% - 71% for feral ungulate species [49]). The mean PD of 50% for the MIMS procedure is within 
reported levels of the PD for wildlife surveys but indicates that the technique would detect only 50% of the ani-
mals present in an image. The mean PD of the manual interpretation and the ISODATA procedures, 81% and 
82%, respectively, are above reported levels for ground and aerial surveys. The higher variability of the PD of 
the manual interpretation compared to the semi-automated, ISODATA technique (Table 3) is similar to reported 
photo-interpretation values [12] [21]) and supports the contention that manual counts are inconsistent and thus 
estimates derived from them should consider those inconsistencies. The coefficient of variation (CV) is a meas-
ure of variation that is normalized with respect to the mean of a data set [39] and is an appropriate statistic to 
compare the amount of variation from one technique to another especially when there is a wide range in the 
mean values examined. The CV for the probability of detection for the ISDODATA technique is 12%, 30% for 
the manual photo-interpretation, and 52% for the MIMS technique indicating that the ISODATA has the lowest 
variance relative to the mean, followed by manual photo-interpretation, and the MIMS had the highest variance. 

Manual interpreters were better able to discriminate between animal and non-animal features and identified 
fewer over-counting errors (i.e., false positives) than either the ISODATA or the MIMS techniques (Table 3). 
Most individuals had a CF of 1.00 for at least a single image indicating no correction to the number of animals 
enumerated was needed. The interpreters were better able to distinguish between animal and non-animal features 
likely due to their ability to integrate qualitative information concerning spectral information and shape charac-
teristics [50]. Human vision evaluates features in a qualitative and comparative manner and integrates multiple 
dimensions of information to discern features [30] [50]. The multi-step techniques incorporated into both the 
ISODATA and MIMS procedures attempted to isolate and refine new information at each step. For example, the 
texture image generated in the MIMS technique (Figure 2) was an attempt to isolate and categorize the differ-
ences within a neighborhood similar to how human vision might qualify spectral differences in an area of inter-
est. The fact that the MIMS had the lowest PD coupled with the highest Punder and Pover suggests that increased 
complexity does not equate to increased accuracy nor does it represent how humans evaluate imagery. 

The MIMS technique identified too few polygons as animals in 3 pastures which resulted in a low PD (Table 
2) due to polygons that were correctly associated with animal features initially but at later steps were erroneous-
ly eliminated. The MIMS removed polygons at three steps: 1) via the Rosin corner thresholding method on 
spectral values (Figure 4), 2) due to thresholding of the texture image, and 3) due to thresholding of shape and 
size characteristics. Incorrect removal of polygons at each stage was not consistent across all pastures. The Ro-
sin thresholding method incorrectly removed polygons that represented animals in a single pasture but not in 
other pastures. The shape thresholding incorrectly removed polygons from 2 pastures because they were outside 
the shape thresholding values. Some animal features (i.e., polygons) included shadow pixels which increased the 
area of the polygon beyond the size threshold.  

5. Conclusions 
Our objective was to compare how manual interpretation, an ISODATA unsupervised classification with back-
ground subtraction process, and a multi-image, multi-step technique were able to identify and count individual 
animals in aerial imagery. Manual interpretation of remotely sensed imagery, regardless of prior knowledge or 
experience of the interpreters, resulted in higher detection probabilities, and lower under- or over-counting of 
animal when compared to an ISODATA unsupervised classification or a multi-image, multi-step process. All  

 
Table 3. The mean and standard deviation of the probability of detecting an animal (PD), the probability of under-counting 
an animal (Punder), the probability of over-counting an animal (Punder), and the correction factor (CF) for the count estimate of 
three techniques to identify animals in remotely sensed imagery from northcentral Utah.                                

Group PDa Punder
b Pover

c CFd 

Manual Interpretation 0.81 ± 0.24 0.19 ± 0.24 0.08 ± 0.16 1.26 ± 0.68 

ISODATA 0.82 ± 0.10 0.18 ± 0.18 0.69 ± 0.27 0.40 ± 0.37 

Multi-image, multi-step 0.50 ± 0.26 0.50 ± 0.26 0.72 ± 0.26 0.54 ± 0.32 
a(Correctly mapped polygons/Known number of animals in pasture); b(Missed Animals/Known number of animals in pasture); c(Incorrectly mapped 
polygons/Number of mapped polygons); d(PD + Punder − Pover)/PD. 
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interpreters were able to discriminate between non-animal and animal features by integrating qualitative infor-
mation derived from spectral and shape characteristics in a comparative process. In an attempt to emulate the 
human ability to integrate multiple dimensions of contextual information, we explored techniques that integrated 
spatial and spectral information to isolate animal features in remotely sensed imagery. Employing conventional 
remote sensing techniques, an ISODATA unsupervised classified image subtracted from a simulated back-
ground image was used to highlight differences in areas containing animals compared to differences in areas 
without animals. The ISODATA technique had a similar detection probability as manual interpretation but 
greatly over estimated the number of animals, resulting in counts that required the most correction of all 3 tech-
niques. If animals were present in an image, the ISODATA technique correctly identified most of the animals 
but greatly over-estimated numbers. Additional information was needed to reduce over-counting errors while 
maintaining low under-counting errors. A multi-dimensional technique attempted to reduce over-counting errors 
by integrating texture images, principal components analysis, heuristic thresholding, and image subtraction. The 
first principal component provided the highest amount of spectral information (i.e., the most variation) and was 
the basis for the MIMS technique. Contrary to the ISODATA technique, the MIMS errors of under-counting 
were high but like the ISODATA technique, errors of over-counting also were high. Consideration of the PD 
alone indicated the manual interpretation and ISODATA techniques would identify animals if they were present 
in an image, with the ISODATA technique being more consistent. The high Pover for the ISODATA and MIMS 
techniques indicate the enumeration would be overestimated with semi-automated techniques but less so with 
the manual photo-interpretation. Thus, the ISODATA technique will identify 80% of the animals in remotely 
sensed imagery, but it will overestimate the number of animals present due to consistent over-counting. 

The advantages of airborne or satellite imagery to count animals include reduced survey time, a permanent 
record of the survey, and potentially cost less than conventional wildlife surveys. The reduction in time required 
to acquire remotely sensed imagery of a large study area could facilitate counting of animals in areas previously 
too large or too isolated to survey. The permanent, unchanging record of animal locations for an instant in time 
allows for repeated assessments using new techniques or even new technologies. Identification and counting 
wildlife in remotely sensed imagery could revolutionize how wildlife surveys are conducted and be a beneficial 
tool in management of wildlife populations by providing improved estimates of population size. This method 
not only has the potential to improve accuracy and precision of counts and thus estimates of population size, it 
could aid in tracking grazing patterns of wild and domestic animals across large natural systems. 
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