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Abstract 
 
This paper proposes a nonparametric FPE-like procedure based on the smooth backfitting estimator when the 
additive structure is a priori known. This procedure can be expected to perform well because of its 
well-known finite sample performance of the smooth backfitting estimator. Consistency of our procedure is 
established under very general conditions, including heteroskedasticity. 
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1. Introduction 
 
With the wide application of nonparametric techniques in 
the time series literature, many nonparametric lag selec-
tion criteria based on kernel smoothing methods have 
been proposed; such as nonparametric FPE (Tjostheim 
and Auestad, 1994 [1] and Tschernig and Yang, 2000 [2]) 
and cross validation(Cheng and Tong, 1992 [3]). Under 
very general assumptions, Tschernig and Yang (2000) [2] 
show the asymptotic equivalence of cross validation and 
nonparametric FPE and the consistency of the latter pro-
cedure originally proposed by Tjotheim and Auestad 
(1994) [1]. Unfortunately, despite the desirable asymp-
totic property of the FPE procedure, Tschernig and Yang 
(2000) [2] point out that overfitting models are selected 
too often when the sample size is small. 

Until recently, Guo and Shintani (2011) [4] impose the 
additivity assumption and propose a consistent FPE-like 
lag selection procedure based on the marginal integration 
method by Linton and Nelson (1995) [5]. In contrast to 
the unrestricted FPE procedure without the additivity 
assumption, the additive nonparametric FPE-like proce-
dure performs reasonably well in small samples and 
generally outperforms the unrestricted FPE due to the 
reduction of overfitting. 

As is discussed in the conclusion of Guo and Shintani 
(2011) [4], the better finite sample properties of the 
backfitting method over marginal integration have been 
reported in simulation studies (e.g., Sperlich, Linton and 
Hardle, 1999 [6]). The possibility of developing a more 

effective lag selection procedure based on the smooth 
backfitting remains to be studied. In this paper, we close 
this gap and propose a consistent FPE-like procedure 
based on the smooth backfitting estimator. We provide 
the conditions required for the consistency. In contrast to 
the FPE-like procedure by Guo and Shintani (2011) [4], 
our procedure can be expected to perform better in the 
finite sample because of its well-known desirable prop-
erties. 

The remainder of the paper is organized as follows. In 
section 2, we introduce the model and discuss the as-
ymptotic properties of our procedure. Section 3 discusses 
the implementation and the consistency of the criterion. 

 
2. The Nonparametric FPE for Additive 

Models 
 
In this paper, we consider the problem of selecting the 
combination of lag 1 2{ , ,..., }mS i i i , where j ki i for 

, in an additive AR model with the form of j k

   t i t i
i S

Y c f Y Xt t 


    

for 1,..., ,t n where 
1 2t mt i t i t iX ( , ,..., )Y Y Y   . Since the 

convergence rate of additive regression estimators does 
not depend on the dimension of the model, we do not 
impose any restriction on . Below are our 
main assumptions. 

m ( i )m 

Assumptions. 
 For some integer mM i , the vector process , =M tX  
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 , ,...,t t t MY Y Y  

 n c
1 2  is strictly stationary and β-mix- 

ing with  2 2 /
0n    for some 0    and 

0c  . 0

 The stationary distribution of the process ,M tX has a 
continuous differentiable density ( )MX . 

 The autoregression function for i S is twice con-
tinuously differentiable while    is continuous and 
positive on the support of    . 

 t is a sequence of i.i.d random variables with 
( ) 0E t  , 2( ) 0E   and a finite fourth moment. t

 The support of the weight function    is compact 
with nonempty interior. The function    is con-
tinuous, nonnegative and   0Mx   for  

 suppMx  . 
 The kernel-based nonparametric additive regression 

estimator  ˆ
i if x for i S converges to  i if x at the 

one-dimensional rate. 
In estimating the additive AR model, we employ the 

smooth backfitting estimator, which is a useful practical 
variant of the classical backfitting estimator (see Mam-
men, Linton and Nielsen, 1999 [7], and Nielsen and 
Sperlich, 2005 [8]). By using an analogy to the asymp-
totic FPE of Tschernig and Yang (2000 [2]), the second 
term in formula (7) of Tjostheim and Auestad (1994) [1] 
is decomposed as follows 

   

   
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We can show 

   M Mx x 
 

with being the limit of  and 

   i
21

2
i i

i
i

f x x
i i

i S

x f x
x x

 
  

  

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


   2 2



( )f x

 

when the local linear estimator is used for , or with 

i i i i i i j j j

ˆ

   x f x   

)

f x x dx 

ˆ (

 when the 
local constant (Nadaraya-Watson) estimator is used for 
f x

 2
E I 

. 
Similarly, we can show that  con-

verges to 
 ,M tX 

 

 
     

2
21

|| || i i
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i S h i
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where  

    2 var |i i i ix Y f x X x    . 

Therefore, we can define AFPE as  
4

2 4
2

1
|| ||

4
KAFPE A K B h C

nh


             (1) 

with  

         2
M M M MA x x x dx    , 

 
     

2
2
2|| || i i

M M M
i S h i

x
B K x x dx

c x


 



 
  

  
 , 

     ,    
2

( )i i M M M
i S

C r x x x d 


   
 
 x

where    2 2 2 2
2|| || , KK K u du K u u du    and  i ir x  

is the term appears in the asymptotic bias of the estima-

tor ˆ
i ( )f x opth. The optimal bandwidth, which minimizes 

equation (1), is given by 

 1/ 52 4 1 1/
opt 2|| || Kh K BC n    5 . 

 
3. Estimation and the Consistency of our  

Criterion  
 
Our criterion for additive AR models takes the form 

   ( 1) 1

1ˆ ˆ2 0
m

FPE S A K B
nh     

where [0,1]  , 

 
2

1
,

1

ˆ ( )
n

t i t i M
t i S

A n Y f Y X


 

 
  

 
  t


, 

and  

2
1

,
1

( ( ))
( )

ˆ ( )

n
t i t i

M t
t i S t i

Y f Y
B n X

Y



 

  


 




. 

The first term in FP corresponds to the measure of 
regression fit in traditional information criteria for the 
model selection, while the second term serves as a pen-
alty to avoid overfitting, depending on a tuning parame-
ter 

E( )S

 .  
We follow Tschernig and Yang (2000) [2] and focus 

on the case when the optimal bandwidth is used for  opth
ˆ ( )f x  in Â , but any bandwidth of order  can be 

used for

1/n 5

ˆ ( )f x in B


. We select the subset Ŝ   
   ..., , 2 M1 2, ,i i  1 ,...,m which minimizes i  ( )FPE S  am- 
ong all possible combinations of {1,2,..., }M . The selected 
Ŝ S  overfits if Ŝ S   and ; and underfits if 
it does not overfit and 

Ŝ S 
Ŝ S  . 
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The lag selection procedure is consistent if the prob-
ability of  approaches one as .  Ŝ S n 
Theorem 1: Under our assumptions and [0,1]  , as 

, n 

( )

( )

FPE S A

FPE S A

 
 


 

for any overfitting combinations . 1 2{ , ,..., }mS i i i   
The overfitting ( )FPE S

0

asymptotically becomes lar-
ger than the correctly specified  because the 
penalty of the former converges at a rate slower than the 
latter as long as 

FPE( )S

  . It should be noted that opth used 
for  differs from opt . Unlike the unrestricted 
FPE, however, the convergence rates of two bandwidths 
are the same for additive models even if the dimensions 
of the regressors are different, that is why 

FPE( )S  h

0   is not 
desirable in excluding overfitting models. Following the 
same argument as in Guo and Shintani (2011) [4], we 
can easily show that the FPE for underfitting case is lar-
ger that of a correctly fitting model. Then we have: 

Theorem 2. Under our assumptions and [0,1]  , as 

, n 

ˆ 1P S S    . 

Remarks 
 The consistency of our procedure holds for both local 

linear and local constant estimators. 
 If 0  , the probability of selecting the correct 

model converges to one as the sample size increases. 
If 0  , our criterion is asymptotically equivalent 
to the asymptotic FPE. 

 While the FPE-like procedure by Guo and Shintani 
(2011) [4] and our procedure are both consistent, 
the latter procedure can be expected to perform 
better in the finite sample because of better finite 
sample performance of our procedure. 

 
4. Conclusions 
 
The better finite sample properties of the backfitting me- 
 

thod over marginal integration have been often reported 
in many simulation studies. Guo and Shintani (2011) [4] 
propose a FPE-like procedure based on the marginal in-
tegration method due to its simplicity. Our paper pro-
poses a more effective lag selection criterion based on 
the smooth backfitting estimator. The new criterion can 
be expected to perform better in the finite sample. 
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