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Abstract

Some special matrices can really help us to construct more than two mutually unbiased maximally

entangled bases in C”> ® C*. Through detailed analysis of the necessary and sufficient conditions
of two maximally entangled bases to be mutually unbiased, we find these special matrices. Taking
one such kind of matrix, we present the steps of constructing five mutually unbiased maximally

entangled basesin C’>® C*.
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1. Introduction

Mutually unbiased maximally entangled bases (MUMEBS) are an interesting topic combining mutually unbiased
bases (MUBs) and maximally entangled states. Mutually unbiased bases play an central role in quantum kine-
matics [ 1], quantum state tomography [2]-[4] and many tasks in quantum information processing, such as quan-
tum key distribution [5], cryptographic protocols [6] [7], mean king problem [8], quantum teleportation and su-
perdense coding [9]-[11]. Maximally entangled state is central both to the foundations of quantum mechanics
and to quantum information and computation [12]-[24].

A state |go> is said tobe a d ®d' (d'>d) maximally entangled state if and only if for an arbitrary given
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orthonormal complete basis {|z A)} of subsystem A, there exists an orthonormal basis {|z B)} of subsystem B

such that |(p> can be written as |¢>:§|i/1>®|i3> [24]. Two orthonormal bases B, :{|¢i>}il and
i=0

B, ={|t//l.>}il of C? are mutually unbiased if and only if |(¢,.|y/,.)|:%,w,]’ﬂ,z,---,d. A set of

orthonormal bases B,,B,,---,B, in C? are said to be a set of mutually unbiased bases if every pair of bases
in the set is mutually unbiased.

Mutually unbiased bases are recently combined with other bases, such as product basis (PB) [25], unextendi-
ble product basis (UPB) [26], unextendible maximally entangled basis (UMEB) [27]-[32] and maximally entan-
gled basis (MEB) [33]-[35]. The MEB is a set of orthonormally maximally entangled states in C? ® C* con-

sisting of d* vectors. In [33]-[35], by systematically constructing MEBs, the concrete construction of pairs of
MUMEBEs in bipartite systems C¢ ® C* (k € Z*) is studied.

m

In this note, we study the problem of constructing more than two mutually unbiased maximally entangled
bases in bipartite spaces C> ® C* . Through the sufficient and necessary conditions of two maximally entangled
bases to be mutually unbiased, we find the special matrices and present steps of using special matrix to construct
five mutually unbiased maximally entangled bases in C* ® C*.

2. Main Results

We first recall the sufficient and necessary conditions of two maximally entangled bases to be mutually un-
biasedin C*®C*.
)27,

Let {|O>,|1>} be the orthonormal basis in C?, (|e’>) = {|0'>,
(|a’>) = {|aé>,|al’>,|a;>,|a3’>} be two othonormal bases in C*, A denotes the transition matrix between them,

3')} and

that is (|a'>) = A(|e'>) ,ie., (|al'>) = iaij (|j'>) , a; are entries of the matrix 4.
7=0

We first consider two MEBs in C* ® C* [33] as follows:

|¢ij>:%(0'i ®1,)(|0)] 2/ ) +|1)|2/+1)), i=0,1,2,3;j=0,1. (0
|z//,.f'>=%(0,- ®1)(|0)]as, ) +[1)a3,)). i=0.12.3/=0.1. @)

where o,,i=1,2,3 are Pauli matrices and o, =1,.

From [33], the above two MEBs (1) and (2) in C> ® C* are mutually unbiased if and only if the matrices 4
satisfy the following relations:

L f 1
IJZ:;)(_I)F Ap+2j,p®q+2i :E (3)

where i,j=0,1;¢,¢q=0,1; and p®gq denotes p+¢g mod?2.
To visualize the conditions (3), we divide the transition matrix 4 into 4 submatrices of 2 x 2 from left to right,

then the conditions (3) hold if and only if each 2 x 2 submatrix satisfying the similar conditions as follows (we
might take the upper left submatrix as a representative):

|a11 +a22| = |a11 —a22| ==
4)

|a12 + a2|| = |a12 —a21| =

ﬁ;

From [33], it is easy to find matrices satisfying the above conditions (4) such as
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- -1 1 i 1 1 = —i - =i - i I 1 1 1
1\—= -1 -1 & 14¢ ¢« -1 =1y 111 1 =1 =1 1}i @i —i —if
20=i 1 -1 =i 2] =i -1 1 201 1 1 =1 2]i =i i -l

- 1 1 i 1 -1 =i i - i - i 1 -1 -1 1

In this note, we want to find more than two MUMEBES, so how to find the third MEB mutually unbiased with
the above two MEBs (1) and (2), it depends on the property transit matrix satisfied. Suppose that

(|b'>) = {|b(;>,|b1'>,|b2’>,|b3'>} be the third orthonormal basis in C*, and B denotes the transition matrix between
(|b’>) and (|a'>) , that is (|b’>) = B(|a'>) , L.e (|bl.'>) = Zslbi/. (|a_;.>), b, are entries of the matrix B. Then ac-
=0

cording to [33], we have the third MEB as follows
/ 1 4 4 ; PR
|4 = ) (o, ®1,)(|0)[B2, ) +[1D)]B3,1))> 7=0,1,2,3,=0,1. (5)

Then, the above three MEBs in C*> ® C* are mutually unbiased if and only if the matrices 4, B and BA all
satisfy the conditions (4) simultaneously.

Since the transit matrix A is easy to choose, we really want to know the way to construct matrix B. Assume
that

B=AP
where P is a 2 x 2 matrix, if 4 is known, how can we choose the matrix P to assure B and BA all satisfy the
conditions (4)? For simplicity, we can first assume that P be a diagonal block matrix
Py P O 0
Py Pn O 0
0 0 py Py
0 0 py Pu

[bn b]zJ:£a11 alzj'[pn plzJ:(anpn"‘alzpzl a1|p12+alzpzzj 7)
b,y by a4y A4y P P Ay Pyt ayppy Gy P tanpxn

Since B satisfy the conditions (4), then we have

P= (©6)

then we have

1
|a”p” +a,p +ap, +a22p22| = |a11p11 +a,py — AP —a22p22| = $§
) (®)
|a11p12 +a, Py tay Py +a22p21| = |a11P12 +a,Py — a4y P _a22p21| = E;
thus we must have
P =Py =0o0rp,=p, =0.
It follows from the unitarity of matrix P that
= =0; = =0;
{pnz P ) or {plzz P2 . )
P =Py ==L Py =Pn =1L
Similarly, we can have
—p =0 —p. =0
{pssz y2m ) > or {p342 Pz ) > (10)
Py =Da ==L Py =Py =1L

so there are many choices about the values of p,,, Py, P1ys Pars P33s Pias Paz» Dag - 10 avoid the trivial diagonal
case of matrix P, we may take p,, = p,, = p3; = p,, =0, then the values of p,, p,,, Py, Pss can be divided
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into the following two cases:

2 2 . 2

Dy =Ps =L D3y = ]7432 =-1
We first discuss the case I. Obviously, there are many forms of P satisfying the above property, such as

2 2 2 2
- -1 - =1
Case I: {p” P > Casell: {p” P ’

i 000 i 0 0 O - 0 0 0 - 0 0 O
0 i 00 |O -0 0| |0 i 0 O |0 = 00 (11
000 17(0 0 0 -1"|0 0 0 —-1]7]0 0 0 1|
0010 0 01 0 0 0 -1 0 0O 0 1 0
No loss of generality, we first choose
1 1 1 1 i 000
11¢i @ —i —i 07 00
A=— : P= ; (12)
21 =i 1 —i 0 0 0 1
1 -1 -1 1 0 010
then we have
i i 1 1 i -1 i 1
-1 -1 —i —i 1= -1 i -1
B=AP=— . BA=- :
21-1 1 =i i 21 -1 =i -1
i -1 -1 i 1 i -1

It is direct to verify that the transformation matrix B and BA both satisfy the conditions (4), then the MEBs
(1), (2)and (5)in C*®C* are mutually unbiased.
Let A4, = BA, then

c£>,|c3' >} be the fourth orthonormal basis in C*, and C denotes the transition

b)), that is (|¢'))=C(]#')), then the fourth MEB in C*®C* can be con-

Denoting (|¢')) ={|c}).|cl).
matrix between (|c'>) and (

structed as follows:
|u!) :%(a, ®1,)(|0)]ci;)+[D)|eiy)), i=0,1,2,3=0,1. (13)

Obviously, (|c'>) =CA, (|e’>) , (|c'>) =CB (| a’)) and

-1 i —-i -1 -1 1 -1 -1
1{-1 i i 1 1| i i i =i

CA =— ; CB=— ;
20—-i 1 1 i 211 -1 -1 -1

It is easy to check the above matrices C, CA, and CB all satisfy the conditions (4), so the fourth MEB (13)
is mutually unbiased with the former three bases (1), (2) and (5)in C*®C*.
Moreover, let A, = CA,, then

i -1 -1 —i
- -1 1

N | —
et it
- =
|~
<.
| o
—_—
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Denoting (|d )) { d0> |d 2’ |d )} be the fifth orthonormal basis in C*, and D denotes the transition
matrix between (| ") ) that is (|d ) (| )), then the fourth MEB in C>?®C* can be con-
structed as follows

v/)= I(a ®1,)(|0)|ds, ) +[1)|d2,.1)), i=01,2,3j=0,1. (14)

2
Obviously, (|d'))=DA4,(|¢)). (|d'))=DCB(|d’)), (|d"))=DC(|b")) and

T -1 - 1 i ioi 101
11 1 = i 11 - -1 i -1 -1 - —i
DA, =— ; DCB=— ; DC=— ;
2= i -1 -1 21-1 =i -1 —i 2/-1 1 - i
-1 -1 - i -1 i -1 i i - 1 -1

One can directly check that the above matrices D, DA,, DCB and DC all satisfy the conditions (4), so
the fifth MEB (14) is mutually unbiased with the former four bases (1), (2), (5) and (13)in C* ® C*.
Furthermore, let A4, = DA, , then

-1 1 -1 -1
Wi ¢« i —i
211 -1 -1 -1

- - i -

>

Denoting (| f ’)) = {|f0’>,| f]'>,| f2’>,| f3>} be the fifth orthonormal basis in C*, and F be the transition ma-
trix between (|f’>) and (|d'>) , that is (|f’>) = F(|d'>) , then (|f’>) = FA, (|e'>) and

pa <L
21
1 -1 -1 1
Since FA, is exactly equal to 4, the sixth orthonormal basis (| f ')) is equal to (| a')) , thus using matrix P,
we can only get five MUMEBS (1), (2), (5), (13), (14) and no the sixth one.
Next, we discuss Case Il of p,, = p,, = p;; = p,, =0. Now there are many forms of P satisfying the property,

such as

1 0 0y (1 0 0 O0) (-1 0 O O -1 0 0 0
0 1 0|10 -1 0 O |O T OO0 |0 -1 0 O0]
00 0 —i|"|0 0 0 —<"|0 0O0 ilfO 0 0 if
00 - O 0 0 i O 0 0 i O 0 0 i 0

If we take the same A4 in (12) and choose the following form of P:

1 0 0 O

01 0 0]

oo o —if

00 - O

similar to the above analysis, we can get the five MUMEBs in C* ® C* in[33].

3. Conclusion

In this note, we have constructed five mutually unbiased maximally entangled bases in bipartite spaces
C*®C* using special matrices. Thus, we have presented a method to construct more than two mutually un-
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biased maximally entangled bases in C*> ® C*. Similar problems can be discussed in arbitrary bipartite spaces
c'®ct (kezr).
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