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Abstract 
Initial value ordinary differential equations arise in formulation of problems in various fields such 
as physics and Engineering. The present paper shows the method how to solve the initial value or-
dinary differential equation on some interval by using finite difference method in a very accurate 
manner with the formulation of error estimation. 
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1. Introduction 
Differential equations are used to model problems in science and engineering that involve the change of some 
variable with respect to the other. Most of these problems require the solution of an initial-value problem, that is, 
the solution to a differential equation that satisfies a given initial condition. In common real-life situations, the 
differential equation that models the problem is too complicated to solve exactly [1]. There are numerical me-
thods which simplify such problems and the one is finite difference method which is a numerical procedure that 
solves a differential equation by discrediting the continuous physical domain into a discrete finite difference grid 
[2]. Finite difference methods are very suitable when the functions being dealt with are smooth and the differ-
ences decrease rapidly with increasing orderas discussed by Colletz, L. [3]: calculations with these methods are 
best carried out with fairly small length of step. Suppose that the first order IV differential equation 

( ) ( )0 0, ,y f x y y x y′ = =                                  (1.1) 
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is integrated numerically by dividing the interval [ ]0 ,x b  on which the solution is desired, into a finite number 
of sub intervals 

0 1 2 .px x x x b< < < < =  

The points are called mesh points or grid points. The spacing between the points is given by  

1 , 1, 2, , .r r rh x x r p+= − =   

If the spacing is uniform, then constantrh h= = , 1, 2, ,r p=  . For this discussion, consider the case of 
uniform mesh only. Let the range of integration be covered by the equally spaced points 0 1, ,, nx x x  with the 
constant difference 1r r rh x x x+= ∆ = −  (the step length) and let ry  be an approximation to the value ( )ry x  
of the exact solution at the point rx . The finite difference methods are based on the integrated form 

( ) ( ) ( )( )1
1 , d .r

r

x
r r x

y x y x f x y x x+

+ = + ∫                           (1.2) 

That is obtained by integrating Equation (1.1) in the interval [ ]1,r rx x +  then the aim of the finite difference 
method is to approximate this integral more accurately. Let denote the numerical solution and the exact solution 
at rx  by ry  and ( )ry x  respectively. Suppose that the integration has already been carried as far as the point 

rx x=  so that approximations 1 2 1, , , , ,r r ry y y y− −  and hence also approximate values ( ),r r rf f x y= , are 
known. The aim is to calculate 1ry + . 

Since ( )( ),f x y x  cannot be integrated without knowing ( )y x , which is the solution to the problem, in-
stead integrate an interpolating polynomial, ( )P x  determined by some of the previously obtained data points  

( ) ( ) ( )0 0 1 1, , , , , ,r rx y x y x y . Assuming, in addition, ( )r ry x y≈  and ( )( ) ( )1 1, d dr r

r r

x x

x x
f x y x x P x x+ +≈∫ ∫ , then, 

( ) ( )1
1 d .r

r

x
r r x

y x y P x x+

+ ≈ + ∫                                  (1.3) 

This takes the values rf  at a certain number of points rx  and then integrates this polynomial over the in-
terval rx  to 1rx + . We need to have a sequence of approximations rf . If the solution at any point 1rx +  is ob-
tained using the solution at only the previous points, then the method is called an explicit method. If the right 
hand side of (1.2) depends on 1ry +  also, then it is called an implicit method. According to [4], a general p-step 
explicit method can be written as 

( )1 1 1 1 1, , , , , , , , .r r r p r r r p r ry y h x x x y y y hφ+ − + − − + −= +    

And a general p-step implicit method can be written as 

( )1 1 1 1 1, , , , , , , , .r r r p r r r p r ry y h x x x y y y hφ+ − + + − + += +    

The objective of finite difference method for solving an ordinary differential equation is to transform a calcu-
lus problem to an algebra problem [5]. Consequently the finite-difference methods consist of two distinct stages: 

I) Approximations 1 2, ,y y  , the “starting values” (we reserve the “initial values” for values at the initial 
point 0x x= ) sufficiently many to calculate the values rf  required for the first application of the finite differ-
ence formula, are obtained by some other means. 

II) The solution is continued step by step by the finite-difference formulae; these give the values of y at the 
point 1rx +  once the values at 1, ,r rx x −   are known “main calculation”. 

The approximate solution in finite difference method is converging to the true solution (convergence). If  
( ),f x y  satisfies the Lipschitz condition i.e. ( ) ( ) ( ), , ,f x y f x y L x y∗ ∗− ≤ . L being a constant, then the se- 

quence of approximations to the numerical solution converges to the exact solution [6]. A finite difference me-
thod is convergent if the numerical solution approaches the exact solution as 0x∆ → . 

2. Calculation of Starting Values 
The starting values needed for the main calculation can be obtained in a variety of ways. Particular care must be 
exercised in the calculation of these starting values, for the whole calculation can be rendered useless by inac-
curacies in them. Several possible ways of obtaining starting values are mentioned below: 
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2.1. Using Some Other Method of Integration 
Provided that it is sufficiently accurate, any method of integration which does not require starting values (as dis-
tinct from initial values) can be used. Bearing in mind the high accuracy desired, one would normally choose the 
Runge-Kutta method: further one would work preferably with a step of half the length to be used in the main 
calculation and with a great number of decimals. 

2.2. Using the Taylor Series for y(x) 
If the function ( ),f x y  is of simple analytical form, the derivatives ( ) ( ) ( )0 0 0, , ,x x xy y y′ ′′ ′′′

  can deter-
mined by differentiation of the differential equation; starting values can be calculated from the Taylor series 

( ) ( ) ( ) ( ) ( ) ( )
2

0 0 0 02!v

vh
y x y x vh y x vhy x y x′ ′′= + = + + +                 (1.4) 

of which as many terms are taken as are necessary for the truncation not to affect the last decimal carried (al-
ways assuming that the series converges).Several of the finite difference methods needs three starting values, 
and for these it suffices to use (1.4) for 1v = ± ; this usually posses advantages over using (2.4) for v =1, 2, par-
ticularly as regards convergence. 

2.3. Using Quadrature Formulae 
Using the forward difference relation, we have 

2
1 2

1 1
2 2r h r r r ry y h f f f+ + +

 = + + ∇ − ∇ + 
 

 ⤇ 2
1 0 0 1 2

1 1 .
2 2

y y h f f f = + + ∇ − ∇ + 
 

  

Here the procedure which is suitable for the construction of two ( )1 2,y y  or three ( )1 2 3, ,y y y  starting val-
ues can be given. The procedure is completely described by the following formulae. 

1) 1 0 0y y hf= + , consequently ( )1 1 1 1 1 0 ., ;f f x y f f f= ∇ = −  

  

2) [ ]0
1 0 0 1

1
2

.y y h f f 
 


= + ∇


+   

Again we have the following formulae 
2 4

1 2
1 12
3 90r h r h r r ry y h f f f+ − + +

 = + + ∇ − ∇ + 
 

  

⤇ 2 4
2 0 1 2 2

1 1
3 90 ry y h f f f +

 = + + ∇ − ∇ + 
 

  From these there is also 

3) [ ] [ ]0 0
2 0 12y y hf= + , [ ] ( )0

1 1 2,f f x y=  
Improving these, the following three starting values ( )1 2 3, ,y y y  can be obtained as; 

4) [ ] [ ] [ ]1 0 02
1 0 0 1 2

1 1
2 12

y y h f f f= + + ∇ − ∇ 
 
 

 

[ ] [ ] [ ]1 0 02
2 0 1 2

12
3

y y h f f 
 


= + +


∇  

5) 
[ ] [ ] [ ] [ ]1 1 1 12
3 1 2 3

12
3

y y h f f= + + ∇ 
 
 

                                     (1.6) 

Generally for 1, 2,v =   (or 0,1,v =  ) 
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

1 2 3
1 0 0 1 2 3

1 2
2 0 1 2

1 1 2
3 1 2 3

1 1 1
2 12 24

12
3

12
3

v v v v

v v v

v v v v

y y h f f f f

y y h f f

y y h f f

+

+

+ +

= + + ∇ − ∇ + ∇

= +

 
 
 
 
 
 


+ ∇

= + + ∇ 
 
 

                     (1.7) 
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Thus alternatively three y values can be improved and the function values can be revised. [ ] [ ]( ),v v
j j jf f x y=  

and their differences. This starting process should be carried out with a sufficiently small step length. 

3. Formulae for the Main Calculation 
The next approximate value 1ry +  can be obtained once the values 1 2, , , ry y y  at the points 1 2, , , rx x x  have 
been computed. To do this the following methods are used. 

3.1. The Adams Extrapolation Method 

In the extrapolation methods we consider first the function ( )( ),f x y x  is reduced by the interpolation poly- 

nomial P(x) which takes the values 1, , ,r p r rf f f− −  at the points  1, , ,r p r rx x x− −  [where ( ),l l lf f x y= ]. 
In effect the integral can be evaluated and with 1ry +  and ry  replacing ( )1ry y +  and ( )ry y , (1.1) becomes 

2 3 4
1

1 5 3 251 .
2 12 8 720r r r r r r ry y h f f f f f+

 = + ∇ + ∇ + ∇ + ∇ +
+ 

                (1.8) 

The exact solution ( )y x  satisfies the corresponding exact form  

( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

2
1

3 4
1

1 5, , ,
2 12

3 251, ,
8 720

r r r r r r r r

r r r r p

y x y x h f x y x f x y x f x y x

f x y x f x y x s

+

+

= + + ∇ + ∇
+ ∇ + ∇ + +



     (1.9) 

where 1ps +  is the remainder term and it is estimated by integrating Newton forward interpolation formula for 
0x x uh= + , we have the following. 

( ) ( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )
( )

( )

0

0

11
1

12
1

0

1

12 0

max

1
d

1 !

1 d
1

.

!

1 d

1 !

x h
pp

p
x

p
p

pp

u u u p
s h f x

p

h f u u u p u
p

u u u p u
h f

p

ξ

ξ

+
++

+

+
+

++

+ +
=

+

≤ + +  +

+ +  ≤
+

∫

∫

∫







 

3.2. The Adams Interpolation Method 
Here the integrand ( )( ),f x y x  in the Equation (1.1) is replaced by the polynomial P*(x) which takes the values 

1 1, , ,r p r rf f f− + +  at the points 1 1 1, ,, ,r p r r rx x x x− + − +  then from the quadrator formula, it follows that  

2 3
1 1 1 1 1

1 1 1 .
2 12 24r r r r r ry y h f f f f+ + + + +

 = + − ∇ − ∇ − ∇ −  
                (1.10) 

For the exact solution y(x) we have the following formula 

( ) ( ) ( ) ( ) ( )2 *
1 1 1 1 1.

1 1
2 12r r r r r py x y x h f x f x f x s+ + + + +

 = + − ∇ − ∇ − +  
            (1.11) 

With the remainder term *
1ps + , for which an estimate is given by  

( ) ( ) ( )
( )

( ) ( )

( ) ( )
( )

( )

0

0

1* 1
1

1

12 0

max

1 1 1
d

1 !

1 1 d

!
.

1

x h
pp

p
x

pp

u u u u p
s h f x

p

u u u p u
h f

p

ξ
+

++
+

++

− + + −
=

+

− + −  ≤
+

∫

∫




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3.3. Central Difference Interpolation Method 
If we integrate both sides of Equation (1.3) over the interval r hx −  to r hx + , using Stirling’s interpolation for-
mula, we obtain (with p even) 

( ) ( ) ( ) ( ) ( ) ( )2 4 6
1 1 1 2 3

1 1 12 .
3 90 756r r r r r ry x y x h f x f x f x f x+ − + + +

 − = + ∇ − ∇ + ∇ −  
  

In the remainder term is neglected, the approximations ly , is 

2 4 6
1 1 1 2 3

1 1 12 .
3 90 756r r r r r ry y h f f f f+ − + + +

 = + ∇ − ∇ + ∇ −
+ 

                (1.12) 

Usually this formula is truncated after the term in 2∇ , which gives Simpson’s rule: 

( )

( )

2
1 1 1

1 1

1 1 1

12
3
12
3
12
3

r r r r

r r r r

r r r r r r

y y h f f

y h f f f

y h f f f f f

+ − +

− +

− + −

 
 

= + + ∇

 = + + ∇ −  
 = + + − − +





 

( )1 1 1 14
3

.r r r r r
hy y f f f+ − − += + + +                                (1.13) 

An estimate for the remainder term **
2s  in the corresponding formula 

( ) ( ) ( )( ) ( )( )2 **
1 1 1 1 2

12 , ,
3r r r r r ry x y x h f x y x f x y x s+ − + += + + ∇ 

+ 


             (1.14) 

for the exact solution the remainder term is calculated as 

( )
5

**
2 max90

.ivhs f≤  

4. Recursive Error Estimates 
This section describes how error is estimated for the finite difference methods. Care must be taken that the 
number of decimals carried in the calculation is sufficient for rounding errors to be neglected. 

I) Taylor series method: If the necessary starting values are calculated by Taylor series method, the error can  

usually be estimated very easily; the maximum rounding error, i.e. 1 10
2

d−×  for a d decimal number, will often 

provide a suitable upper bound [7]. 
II) Quadrature formulae: If the iteration method quadrature formula (1.6) is used to obtain the starting values, 

the error can be estimated as follows. For the exact solution we have  

( )

( )

( ) ( )

2 3
1 0 0 1 2 3 1

2
2 0 1 2 2

2
3 1 1 3 3

1 1 1
2 12 24
12
3

12
3

,

,

.

y x y h F F F F s

y x y h F F s

y x y x h F F s

 
 

 = + + ∇ − ∇ + ∇ +  

= + + ∇ +

= + +

 
 
  

∇ +







                 (1.15) 

In which there is ( )( ),v v v pF f x y x s= ⋅   have the from 
( )

( ) ( ) ( )
12

1
1 max

0

1 1 d
1 !

p
nhs f u u u p u

p

+
+≤ − + −  + ∫

  
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at three points (p = 3) 

( ) ( ) ( )( )

( ) ( )

( )

15
4

max
0

15
4 4 3 2

max
0

15 5 4 3
4 2

max
0

1 1 2 d
4!

2 2 d
4!

4! 5 2 3

h f u u u u u

h f u u u u u

h u u uf u

= − + +  

= + − −

 
= + − − 

 

∫

∫  

( ) ( )
5 5

4 4

max max

19 19
30 4! 72

.
0!

h hf f= =
×

                             (1.16) 

Similarly,  

( )
5

2 max90
ivhs f≤ , ( )

5

3 max90
.ivhs f≤                             (1.17) 

III) Adams interpolation method: Let us investigate the Adams interpolation method, which is based on the 
formula (1.11). 

2 3
1 1 1 1 1

1 1 1 .
2 12 24r r r r r ry y h f f f f+ + + + +

 = + − ∇ − ∇ − ∇ −  
  

A similar relation, but with a remainder term *
1ps + , holds for the exact solution 

( ) ( ) 2 3 *
1 1 1 1 1 1

1 .1 1
2 12 24r r r r r r py x y x h f f f f s+ + + + + +

 = + − ∇ − ∇ − ∇ − +  
  

The truncation error is then ( ) *
1.r r r py x y sε += − =  

For this remainder term, or “truncation error”, there exists the estimate  

( ) ( )
( )

( )
1

1* 2 0
1 max

.
1 1 d

1 !
pp

p

u u u p u
s h f

p
++

+

− + −  ≤
+

∫ 

 

5. Conclusion 
In this research, finite difference approximate methods for solving initial value ordinary differential equation 
have been studied. Even if the method is long, it is shown that finite difference method is fundamental to get 
very accurate solution. Basically the solution method is based on Equation (1.2) by some rearrangement of Equ-
ation (1.1). Finite-difference methods are very suitable when the functions being dealt with are smooth and the 
differences decrease rapidly with increasing order; calculations with these methods are best carried out with a 
fairly small length of step. On the other hand, if the functions are not smooth, perhaps given by experimental 
results, or if we want to use a large step, then the Runge-Kutta method is to be preferred; it is also advantageous 
to use this method when we have to change the length of step frequently, particularly when this change is a de-
crease. Clearly we should not choose too large a step even for the Runge-Kutta method. 
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