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Abstract 
It is reported in the literature that the temporal structure of gait variability in healthy subjects ex-
hibits deterministic processes where not only each stride is correlated with the neighbouring 
strides (i.e. short-range correlations), but at least on a statistical basis, with tens and hundreds of 
preceding and following strides (i.e. long-range correlations). Thus, an analysis hinging on a con- 
ventional gait Poincare plot with lag one which implicitly assumes that the current stride is in- 
fluenced by the immediately preceding stride will likely underestimate the role of the autocova- 
riance function of stride intervals. This implies that a series of lagged gait Poincare plots can po-
tentially provide more information by reflecting short-range correlations of gait variability 
through the behaviour of Poincare indices in health as well as disease. Hence, in this study in the 
context of short-term variability, we assessed a curvilinear relation between lag (1 - 6) and Poin- 
care indices in normal subjects and patients with neurodegenerative disorders. We found that 
while normal subjects exhibited this curvilinearity, the patients with neurodegenerative disorders 
showed its loss. 
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1. Introduction 
Gait is a complicated process involving coordination of multiple systems within the body (e.g. central nervous, 
musculoskeletal, and cardiovascular systems) [1]. For a person to walk, the nervous system has to send signals 
to control a large number of muscles and at the same time process sensory information to monitor and refine 
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movements, all while maintaining an upright stance [1]. Thus the gait variability arises from a combination of 
factors [2]. Gait variability, defined as the fluctuations in gait characteristics between strides, is found to be low 
during walking [1]. However, increased or decreased variability is found in subjects with gait abnormalities, like 
elderly fallers and patients with neurodegenerative disorders (e.g. Parkinson’s and Huntington’s diseases). In-
creased variability is associated with balance impairments, central nervous system impairments (such as cogni-
tive functioning and motor control function), while decreased variability is associated with sensory impairments. 
Thus, gait variability reflects walking impairments and can be readily used to assess the motor performance. 
Long-term structure in gait variability has been well studied and documented [3]-[5]. These studies indicate that 
the temporal structure of gait variability in healthy subjects shows evidence of deterministic processes where not 
only each stride is correlated with the neighbouring strides (i.e. short-range correlations), but at least on a statis-
tical basis, with tens and hundreds of preceding and following strides (i.e. long-range correlations). The purpose 
of this study is to determine the distinguishing characteristic of short-range correlations in neighbouring gait cy-
cles during short gait sessions of normal subjects and patients with neurodegenerative disorders. Such short gait 
sessions are common in clinical applications. A conventional gait Poincare plot with lag one captures only the 
single lag correlation in the gait time series. Thus, an analysis banking on the use of only successive stride in-
terval duplets will likely underestimate the role of the autocovariance function of stride intervals i.e., the ability 
of gait to influence a train of succeeding strides. Therefore, a series of multiple-lag gait Poincare plots can po-
tentially provide more insight by reflecting short-range correlations of gait variability through the behaviour of 
Poincare indices in health as well as disease. Hence, in addition to this conventional plot (xn+1 against xn) we also 
used the generalized Poincare plot with different lags i.e., the m-lagged Poincare plot (plot of xn+m against xn), 
where m represented the lag. The concept of this m-lagged gait Poincare plot emerged from the rationale that 
any given stride interval could influence many of the subsequent stride intervals. We hypothesized that assess-
ment of stride-to-stride aspects of stride interval changes at different lags would differentiate the healthy con-
trols from those with neurodegenerative diseases. In this study, we use three databases of neurodegenerative 
diseases, amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Huntington’s disease (HD), for 
comparison with healthy controls. ALS is a motor neuron disease, while PD and HD are associated with disor-
ders of the basal ganglia. ALS patients display an abnormal gait with decreased walking velocity. In its most 
classical manifestation PD patients exhibit bradykinesia (i.e., slowed movements), hypokinesia (i.e., small am-
plitude movements), muscular rigidity, postural instability, and resting tremor. This implies increased stride 
variability in PD. On the other hand, HD patients exhibit an uncoordinated, lurching walk. As a result of these 
pathologies, in all the cases, the fluctuation magnitude and the stride-to-stride dynamics of gait are impaired. 
Capturing stride dynamics through the use of lagged Poincare plots we provide interesting insights into dynam-
ics of gait. To the best of our knowledge, this is the first study which unravels the short-range correlations of 
gait variability through the behaviour of Poincare indices in health as well as disease, evaluates curvilinearity in 
the lag response and separates the healthy from the aforementioned neurological disordered groups. 

2. Methods and Materials 
The paper is organized as follows. Section 2.1 discusses the database which is widely used in stride analysis. 
Section 2.2 discusses how the pre-processing of the gait data is carried out in this work. Sections 2.3 explains 
the gait Poincare plot and the Poincare indices. Section 2.4 deals with m-lagged Poincare plot and its advantages 
over conventional Poincare plot. Section 2.5 deals with lag-response analysis and curvilinearity. Section 2.6 
discusses statistical tests used. In Section 3 we discuss the results. 

2.1. Database 
The database used in this study is from subjects recruited in Neurology Outpatient Clinic at Massachusetts Gen-
eral Hospital, Boston, USA, and is contributed by Hausdorff et al. [6] [7] to public domain and can be down- 
loaded from the physionet.org [8]. The neurodegenerative disease records in this database include stride time se-
ries from 13 ALS patients (10 males and 3 females, age mean ± standard deviation: 55.6 ± 12.8 years), 15 PD 
patients (10 males and 5 females, age mean ± standard deviation: 66.80 ± 10.85 years), 20 HD patients (6 males 
and 14 females, age mean ± standard deviation: 46.65 ± 12.60 years).The patients of PD were, on average, older 
than both other groups. The subjects with neurodegenerative disorder were selected based on their ability to 
walk independently for 5 minutes. It was confirmed that the patients free from other pathologies which might 
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lead to lower extremity weakness only participated. Over the duration of treatment the medication usage was 
sustained. The database also includes records from 16 healthy control subjects (2 males and 14 females, age 
mean ± standard deviation: 39.3 ± 18.5 years). These control subjects were included from general community. It 
is to be noted that heights and weights in the four groups were not significantly different. It was also confirmed 
that the healthy subjects were free from visual, respiratory, cardiovascular, or other neurological diseases. All 
the subjects were asked to provide written consent to the hospital and the MGH institutional Review board had 
provided approval for the study [6] [7]. 

The subjects from the four groups were instructed to walk at their normal pace up and down a 77 m long 
hallway for 5 min. To measure the gait rhythm and the timing of the gait cycle, force sensitive insoles were 
place inside or under subject’s shoes. These sensors produce a measure proportional to the force applied to the 
ground during movement. The output from the footswitches which corresponds to force signal is sampled at 300 
Hz and digitized using an analog-to-digital converter and then stored in a recorder. The recorded data is then 
analyzed using a validated software that determined initial and end contact times (and also, stride and swing 
times) of each stride. 

2.2. Pre-Processing the Gait Data 
It is necessary to pre-process the gait data before the application of the method of analysis. The samples in the 
first 20 seconds of the recordings are removed to minimize the start-up effects [6]. Over the monitoring interval 
of 5 minutes, each time the subject reached the end of the hall-way the subject had to turn around and continue 
walking. The strides associated with these turning events are to be treated as outliers and should be removed 
from the rest of the time series. The three-sigma-rule [9], which states that 99.7% of the normally distributed 
probability values lie within the range of (mean ± 3.SD) where SD is the standard deviation, is employed to re-
move the outliers. This means that those samples which lie outside the range (median ± 3.SD) are outliers and 
hence, can be removed. In the removal process, median value and not mean value of the time series has been 
used because some outliers possessed large values and therefore, will affect the computation of the mean. 

2.3. Gait Poincare Plots and Poincare Indices 
A conventional Poincare plot is a geometrical representation of a time series into a Cartesian plane, where the 
values of each pair of successive elements of the time series define a point in the scatter plot [10]-[12]. In the 
case of gait analysis each stride interval is plotted against its predecessor in the scatter plot. This procedure pro-
vides an indication of the probability of occurrence of one interval from its predecessor and allows assessment 
of dynamic properties of stride interval variation. The indices of stride variability are strongly correlated with 
the length, width and shape of the resulting cloud of points (Poincare cloud) dispersed along the line of identity 
(y = x) in the scatter plot. The Poincare cloud is usually characterized by its length (SD2) along the line of iden-
tity and its width (SD1) perpendicular to this line. The scatter plot width (SD1) is closely related to short-term 
variability in stride intervals; scatter plot length (SD2) is correlated with long-term variability parameters. The 
ratio SD1/SD2, designated by SD12, is a measure of the shape of Poincare plot [13]. The Poincare indices have 
been shown to be a function of the autocorrelation of the time series at different lags [10]. 

A Poincare plot is analyzed quantitatively by evaluating SD2 and SD1, the dispersions of points along the line 
y = x and the line y = −x + 2*Xm, respectively, where Xm represents the mean of the stride interval series. The in-
tersection of these two lines is given by (Xm, Xm). 

2.4. m-Lagged Gait Poincare Plots 
A generalized Poincare plot with different lags, also called m-lagged Poincare plot, is a plot of stride interval 
xn+m against stride interval xn, where m represents the lag. Lerma et al. have found that heart rate variability 
measurements from a series of lagged Poincare plots (multiple lag correlation) can give more particulars about 
the behaviour of Poincare plot than those from the conventional 1-lag plot [14]. Thakre et al. examined the 
theoretical demand with different lags in heart rate variability studies and showed that there was a quadratic re-
lationship between lag and Poincare indices in normal subjects, which was lost in congestive heart failure pa-
tients [15]. It is reported in the literature that the temporal structure of gait variability in healthy subjects exhibits 
deterministic processes where not only each stride is correlated with the neighbouring strides (i.e. short-range 
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correlations), but at least on a statistical basis, with tens and hundreds of preceding and following strides (i.e. 
long-range correlations). Thus, an analysis solely dependent on a conventional gait Poincare plot with lag one, 
which implicitly assumes that the current stride is influenced by the immediately preceding stride, is likely to 
undervalue the role of the autocovariance function of stride intervals. This clearly implies that using a series of 
m-lagged gait Poincare plots can potentially provide more information by reflecting short-range correlations of 
gait variability through the performance of Poincare indices. Hence, in this study in the context of short-term 
variability, we assessed a quadratic/curvilinear relation between lag (1 - 6) and Poincare indices in normal sub-
jects and patients with neurodegenerative disorders. 

2.5. Lag-Response Analysis and Curvilinearity 
To study the effect of lag on Poincare indices we employed m-lagged Poincare plots. For each plot, Poincare in-
dices SD1, SD2, and SD12 were computed and those at a particular lag were averaged in each group (from 
healthy controls, ALS, PD, and HD groups). Analysis of lag-response involves plotting of these estimates of 
Poincare indices against lag, commonly called lag-responses and then trying to fit a second order polynomial 
curve using the least-squares method to establish a quadratic relationship. The model-fit is assessed using R2 
values, 0 ≤ R2 ≤ 1.0. The closer the value of R2 to 1.0 the better is the fit and closer the value to 0 worse is the fit. 
The averaged coefficients of the quadratic terms in the second order polynomial equations serve as markers for 
curvilinearity. Higher values of these coefficients indicate more curvilinearity as shown by higher curvature in 
the lag response and lower values indicate less curvilinearity as shown by diminished curvature in the lag re-
sponse. 

2.6. Statistical Analysis 
The curvilinearity of lag-response of a Poincare index (SD1, SD2, or SD12) was assessed using quadratic poly-
nomial regression and the model-fit was assessed using R2 values, 0 ≤ R2 ≤ 1 as mentioned above. For compari-
son between the m-lagged Poincare indices of healthy control and neurodegenerative disorders we used initially 
nonparametric Kruskal-Wallis test. For pair-wise comparisons between groups we employed nonparametric 
Mann-Whitney rank sum test. When the data do not meet the requirements for a parametric test (i.e. if the data 
are not normally distributed), as in gait data, it is advisable to employ nonparametric tests. To perform Mann- 
Whitney rank sum test, first rank all the values from low to high with no regard for which group it belongs to. If 
two values are same, then they both get the average of the two ranks for which they tie. The smallest among 
values gets rank 1 and the largest gets a rank N. N represents the total number of values in the two groups. Next, 
to find the test statistic, sum the rank of one population and report the sum. If the samples are small and there are 
no ties, an exact p-value will result. If the samples are large or if there are ties, an approximate p-value can be 
computed from a Gaussian approximation. The Kruskal-Wallis testis an extension of the Mann-Whitney rank 
sum test that permits simultaneous testing of the multiple groups. For all statistical analysis, the significance was 
fixed at p < 0.05. 

3. Results and Discussion 
In order to compare the gait patterns in healthy control and neurodegenerative disorder subjects we plotted 
Poincare plots at two different lags. Figure 1 shows representative gait Poincare plots with stride segment length 
= 500 and lag = 1 for subjects from healthy controls, ALS, PD, and HD groups and Figure 2 shows representa-
tive gait Poincare plots with stride segment length = 500 and lag = 6 for the same subjects in the same order. 
The first thing to observe is that the dispersion of points in a particular plot is more in Figure 2 (lag = 6) than 
the corresponding plot in Figure 1 (lag = 1) for the same group. Visual analysis of the plots shows that the gait 
variability increases with lag in all the cases. This indicates that increased lag corresponds to increased unrelated 
strides. The second point to note is that at each lag the gait Poincare plots for neurodegenerative disorder cases 
exhibit more dispersion of points and hence higher variability compared to that of healthy control. Our hypothe-
sis was that assessment of stride-to-stride aspects of stride interval changes at different lags would capture this 
behaviour and differentiate the healthy controls from those with neurodegenerative diseases. The variability in 
the plot reflects the performance of the locomotor system in controlling the strides. As mentioned above, SD1 
and SD2, respectively serve as short-term and long-term variability measures. Many researchers have observed  
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(a)                                                    (b) 

      
(c)                                                  (d) 

Figure 1. Poincare plots of x (n + lag) vs. x (n) for (a) control subject, (b) ALS patient, (c) Huntington’s pa-
tient, and (d) Parkinson’s patient at lag = 1 and stride segment length = 500.                               

 
that short-term recordings are equally reliable and accurate as long-term recordings. Therefore, we explored the 
lag-response of gait variability for stride segments with different lengths from 200 to 700 strides in steps of 50 
strides. Thus, for each group (from healthy controls, ALS, PD, and HD groups) we used stride segments of 10 
different lengths. For each segment, we used lags from 1 to 6. For each lag, the Poincare indices (SD1, SD2, and 
SD12) were computed. We first assessed the influence of stride segment length on the Poincare indices at lag = 1. 
A summary of these indices at lag = 1, expressed as mean ± SD, for different stride segment lengths (200 to 700 
strides in steps of 50 strides) are shown in Table 1 through Table 3. As mentioned above, Kruskal-Wallis test 
was employed to evaluate the statistical significance between the Poincare indices of healthy control (HC) and 
neurodegenerative disorders groups. The results are tabulated in last two columns of Table 1 through Table 3. 
The statistical significance shows that while SD1 and SD2 can readily separate healthy control from neurodegen-
erative disorder subjects, SD12 cannot. This is because both SD1 and SD2are increased simultaneously in neu-
rodegenerative disorder subjects compared to those of healthy control subjects and the SD12 ratios tend to be 
nearly same. This makes SD12 statistically insignificant to discern HC and neurodegenerative disorders groups. 
Also, the statistical significance SD1 and SD2 is found to decrease with increasing segment length. To assess the 
difference between each of SD1, SD2, and SD12 for binary classification we used Mann-Whitney rank sum test 
and the results are shown in Table 4. The p-values indicate the same findings mentioned above. 

Next, to assess the influence of lag on the estimates of Poincare indices (SD1, SD2, and SD12) we employed 
m-lagged Poincare plots with lag m varied from 1 to 6. As mentioned in Section 2.4, the lag response was ex-
amined and the curvilinearity was assessed in each group, in particular, for three segment lengths: 200, 500, and 
700 strides. Figure 3 through Figure 5 illustrate the effect of lag on SD1, SD2, and SD12 for each group. Distinct 
curvilinearity can be seen in the lag response of healthy controls as compared to those of neurodegenerative dis-
order groups at all segment lengths. The corresponding averaged coefficients of the quadratic terms for best  
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(a)                                                    (b) 

      
(c)                                                  (d) 

Figure 2. Poincare plots of x (n + lag) vs. x (n) for (a) control subject, (b) ALS patient, (c) Huntington’s patient, 
and (d) Parkinson’s patient at lag = 6 and stride segment length = 500.                                                 

 
Table 1. Comparison of Poincare index SD1 for different stride segment lengths at lag = 1 in the four groups (HC, ALS, PD, 
and HD). All the values are expressed as mean ± SD. Seg. Len: stride segment length, HC: healthy control, ALS: amyotro-
phic lateral sclerosis, PD: Parkinson’s disease, and HD: Huntington’s disease.                                                

Seg. 
Len. 

SD1 Kruskal-Wallis test 

HC ALS PD HD Chi-sq p-value 

200 0.025 ± 0.002 0.087 ± 0.042 0.060 ± 0.015 0.076 ± 0.018 37.99 2.847 × 10−08 

250 0.026 ± 0.002 0.072 ± 0.016 0.065 ± 0.017 0.080 ± 0.179 32.11 4.968 × 10−07 

300 0.024 ± 0.002 0.107 ± 0.057 0.066 ± 0.016 0.095 ± 0.032 28.68 2.609 × 10−06 

350 0.025 ± 0.002 0.112 ± 0.063 0.066 ± 0.016 0.093 ± 0.028 24.93 1.599 × 10−05 

400 0.025 ± 0.002 0.119 ± 0.067 0.063 ± 0.016 0.098 ± 0.033 21.34 8.543 × 10−05 

450 0.025 ± 0.002 0.115 ± 0.076 0.071 ± 0.018 0.097 ± 0.034 18.11 0.0004 

500 0.025 ± 0.002 0.114 ± 0.063 0.066 ± 0.018 0.094 ± 0.037 16.07 0.0011 

550 0.025 ± 0.002 0.131 ± 0.065 0.065 ± 0.023 0.096 ± 0.036 15.41 0.0015 

600 0.025 ± 0.003 0.124 ± 0.058 0.074 ± 0.011 0.092 ± 0.032 13.21 0.0042 

650 0.025 ± 0.001 0.130 ± 0.060 0.074 ± 0.014 0.100 ± 0.032 13.22 0.0042 

700 0.025 ± 0.001 0.123 ± 0.066 0.690 ± 0.015 0.092 ± 0.028 11.22 0.0106 
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Table 2. Comparison of Poincare index SD2 for different stride segment lengths at lag = 1 in the four groups (HC, ALS, PD, 
and HD). All the values are expressed as mean ± SD. Seg. Len: stride segment length, HC: healthy control, ALS: amyotro-
phic lateral sclerosis, PD: Parkinson’s disease, and HD: Huntington’s disease.                                            

Seg. 
Len. 

SD2 Kruskal-Wallis test 

HC ALS PD HD Chi-sq p-value 

200 0.053 ± 0.007 0.176 ± 0.089 0.116 ± 0.032 0.113 ± 0.027 24.72 1.770 × 10−05 

250 0.049 ± 0.005 0.189 ± 0.094 0.118 ± 0.033 0.132 ± 0.039 24.05 2.436 × 10−05 

300 0.056 ± 0.002 0.241 ± 0.060 0.136 ± 0.028 0.137 ± 0.033 23.28 3.529 × 10−05 

350 0.056 ± 0.008 0.245 ± 0.069 0.144 ± 0.028 0.146 ± 0.021 20.52 0.0001 

400 0.057 ± 0.003 0.278 ± 0.073 0.148 ± 0.030 0.157 ± 0.043 23.61 3.014 × 10−05 

450 0.058 ± 0.006 0.228 ± 0.091 0.145 ± 0.034 0.175 ± 0.043 17.95 0.0005 

500 0.058 ± 0.008 0.259 ± 0.054 0.146 ± 0.032 0.183 ± 0.057 17.27 0.0006 

550 0.062 ± 0.008 0.263 ± 0.072 0.126 ± 0.016 0.180 ± 0.052 16.08 0.0011 

600 0.059 ± 0.004 0.271 ± 0.036 0.158 ± 0.016 0.180 ± 0.056 15.33 0.0016 

650 0.065 ± 0.008 0.259 ± 0.033 0.165 ± 0.037 0.184 ± 0.045 13.73 0.0033 

700 0.056 ± 0.005 0.261 ± 0.073 0.157 ± 0.007 0.195 ± 0.060 11.36 0.0099 

 
Table 3. Comparison of Poincare index SD12 ratio for different stride segment lengths at lag = 1 in the four groups (HC, 
ALS, PD, and HD). All the values are expressed as mean ± SD. Seg. Len: stride segment length, HC: healthy control, ALS: 
amyotrophic lateral sclerosis, PD: Parkinson’s disease, and HD: Huntington’s disease.                                      

Seg. 
Len. 

SD12 ratio Kruskal-Wallis test 

HC ALS PD HD Chi-sq p-value 

200 0.489 ± 0.064 0.643 ± 0.178 0.567 ± 0.161 0.689 ± 0.131 9.84 0.020 

250 0.526 ± 0.071 0.524 ± 0.172 0.630 ± 0.151 0.665 ± 0.149 5.03 0.169 

300 0.440 ± 0.027 0.496 ± .0.200 0.549 ± 0.120 0.665 ± 0.161 10.74 0.013 

350 0.433 ± 0.043 0.477 ± 0.127 0.481 ± 0.130 0.623 ± 0.137 5.32 0.150 

400 0.423 ± 0.042 0.396 ± 0.186 0.408 ± 0.097 0.610 ± 0.121 5.36 0.148 

450 0.418 ± 0.048 0.522 ± 0.176 0.447 ± 0.124 0.628 ± 0.141 4.18 0.242 

500 0.407 ± 0.034 0.427 ± 0.202 0.497 ± 0.072 0.576 ± 0.098 2.91 0.406 

550 0.388 ± 0.019 0.506 ± 0.227 0.499 ± 0.110 0.533 ± 0.078 3.55 0.314 

600 0.393 ± 0.025 0.463 ± 0.198 0.420 ± 0.077 0.530 ± 0.081 2.61 0.456 

650 0.396 ± 0.034 0.484 ± 0.217 0.421 ± 0.064 0.522 ± 0.094 1.89 0.596 

700 0.429 ± 0.027 0.454 ± 0.180 0.432 ± 0.069 0.530 ± 0.119 1.18 0.758 

 
Table 4. Statistical significance of Poincare indices between healthy control (HC) and neurodegenerative disease groups for 
stride segment length = 200 strides and lag = 1 using Mann-Whitney rank sum test.                                           

Poincare Inde ×  Group 1 Group 2 p-value 

SD1 

HC ALS 1.495 × 10−04 

HC PD 4.930 × 10−07 

HC HD 6.376 × 10−08 

SD2 

HC ALS 0.002 

HC PD 9.434 × 10−05 

HC HD 6.854 × 10−06 

SD12 ratio 

HC ALS 0.216 

HC PD 0.176 

HC HD 8.508 × 10−04 
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(a)                                                (b) 

 
(c) 

Figure 3. Lag response of Poincare plot indices in control subject, ALS patient, Huntington’s patient, and 
Parkinson’s patient for sequences of length = 200 strides. (a) SD1, (b) SD2, and (c) SD1/SD2 ratio.            

 
model-fit are tabulated in Table 5 through Table 7. The curvilinearity of lag-response of a Poincare index was 
evaluated using quadratic polynomial regression and the model-fit was assessed using R2 values. It is found that 
R2 ≥ 0.8159.The following points can be noted. The coefficients of quadratic terms were insignificant in all the 
neurodegenerative disorder groups (ALS, PD, and HD groups) and showed diminished curvilinearity, irrespec-
tive of the stride segment length. In contrast, coefficients of quadratic terms in the healthy controls were signifi-
cant and exhibited curvilinearity, irrespective of the stride segment length. 

The important findings of this work are summarised below. The autocovariance information contained in 
m-lagged Poincare plots can be employed to capture short-range correlations of gait variability through the be-
haviour of Poincare indices in health as well as disease. The analysis showed that the Poincare indices SD1 and 
SD2 can be readily employed to discern healthy control from neurodegenerative disorder subjects. However, 
SD12 ratio cannot be used directly to separate healthy from the diseased in the gait analysis. It is also found that 
the coefficients of quadratic terms of the (SD1, SD2, and also, SD12) lag response in the healthy controls were 
significant and the lag responses exhibited curvilinearity. The coefficients of quadratic terms in all the neurode-
generative disorder groups, on the other hand, were insignificant and the lag responses showed either diminished 
or loss of curvilinearity. 

This study has a number of limitations. 1) In general, factors like high variance, age differences, and differing 
male-to-female ratios between groups will have an impact on the results when statistical analyses are carried out 
on small sample sizes. However, it has been shown that the effect of gender on usual gait patterns is considera-
bly small [16]. Though the effect of age on gait is complex, the effect of neurodegenerative disorders considera-
bly predominates over the aging effects. 2) Subjects were also not perfectly matched with respect to height. 
However, it has been shown that the influence of height on usual gait patterns is significantly small [6]. 3) An-
other limitation of this study is small sample size. This is because neurodegenerative disordered subjects capable 
of walking independently for 5 minutes were only selected. Acquiring longer data from the same subjects is dif-
ficult as stress may interfere with the outcome of the disease. This brings a strong restriction on acquiring data.  
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(c) 

Figure 4. Lag response of Poincare plot indices in control subject, ALS patient, Huntington’s patient, and 
Parkinson’s patient for sequences of length = 500 strides. (a) SD1, (b) SD2, and (c) SD1/SD2 ratio.             

 

      
(a)                                                (b) 

 
(c) 

Figure 5. Lag response of Poincare plot indices in control subject, ALS patient, Huntington’s patient, and 
Parkinson’s patient for sequences of length = 700 strides. (a) SD1, (b) SD2, and (c) SD1/SD2 ratio.              
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Table 5. Second-order coefficients (Coeft.) and statistical significance of lag response of Poincare indices for stride segment 
length = 200 strides, in the four groups (HC, ALS, PD, and HD). All the values are expressed as mean ± SD. HC: healthy 
control, ALS: amyotrophic lateral sclerosis, PD: Parkinson’s disease, and HD: Huntington’s disease.                              

Poincare Inde ×  
HC ALS PD HD 

Coeft. p-value Coeft. p-value Coeft. p-value Coeft. p-value 

SD1 
−0.0004 ± 

0.0001 2.2696 × 10−06 −0.0004 ± 
0.0002 0.0421 −1.55 × 10−05 

 ± 0.0002 0.3902 −0.0003 ± 
0.0004 0.2921 

SD2 
0.0002 ±  

8.54 × 10−05 6.0030 × 10−06 0.0001 ± 
0.0001 0.2814 −5.17 × 10−05 

± 0.0001 0.9872 0.0001 ± 
0.0003 0.4081 

SD12 ratio −0.0103 ± 
0.0049 1.7502 × 10−05 −0.0031 ± 

0.0028 0.0629 0.0007 ± 
0.0046 0.9047 −0.0034 ± 

0.0076 0.2348 

 
Table 6. Second-order coefficients (Coeft.) and statistical significance of lag response of Poincare indices for stride segment 
length = 500 strides, in the four groups (HC, ALS, PD, and HD). All the values are expressed as mean ± SD. HC: healthy 
control, ALS: amyotrophic lateral sclerosis, PD: Parkinson’s disease, and HD: Huntington’s disease.                             

Poincare Inde ×  
HC ALS PD HD 

Coeft. p-value Coeft. p-value Coeft. p-value Coeft. p-value 

SD1 
−0.0003 ± 

0.0001 0.0054 −0.0004 ± 
0.0002 0.2880 3.446 × 10−06  

± 0.0004 0.6691 −0.0001 ± 
0.0005 0.4834 

SD2 
0.0001 ±  

9.69 × 10−05 0.0138 9.16 × 10−05 ± 
0.0001 0.8570 −4.47 × 10−05  

± 0.0002 0.7805 20.34 × 10−05 
± 0.0002 0.6826 

SD12 ratio −0.0084 ± 
0.0049 0.0154 −0.0016 ± 

0.0012 0.5025 0.0013 ± 
0.0029 0.7186 −0.0010 ± 

0.0033 0.5765 

 
Table 7. Second-order coefficients (Coeft.) and statistical significance of lag response of Poincare indices for stride segment 
length = 700 strides in the four groups (HC, ALS, PD, and HD). All the values are expressed as mean ± SD. HC: healthy 
control, ALS: amyotrophic lateral sclerosis, PD: Parkinson’s disease, and HD: Huntington’s disease.                               

Poincare Inde ×  
HC ALS PD HD 

Coeft. p-value Coeft. p-value Coeft. p-value Coeft. p-value 

SD1 
−0.0003 ± 

0.0001 0.0034 −0.0003 ± 
0.0004 0.4672 −0.0002 ± 

0.0005 0.5264 −0.0004 ± 
0.0004 0.4186 

SD2 
0.0002 ±  

9.30 × 10−05 0.0218 0.0001 ± 
0.0002 0.6863 5.48 × 10−05 

± 0.0002 0.7493 0.0001 ± 
0.0002 0.5077 

SD12 ratio −0.0087 ± 
0.0041 0.0155 −0.0018 ± 

0.0020 0.4498 −0.0016 ± 
0.0035 0.5595 −0.0021 ± 

0.0044 0.3949 

 
In any case, this study is a compromise between a classical single case study and a cross-sectional survey and 

it is possible to arrive at reliable results with a small number of participants. This implies that the discrimination 
using this method stands irrespective of the above limitations. Nevertheless, further research related to larger 
subject groups and spread across many age groups and ethnicity is recommended. Also, further understanding of 
the origin and mechanisms of these and other neurological disorders is essential to more completely characterize 
the underlying pathophysiologies. 

4. Conclusion 
This study shows that lagged gait Poincare plots have potential to provide more information by reflecting short- 
range correlations of gait variability through the behaviour of Poincare indices in health as well as disease. In the 
context of short-term variability, a curvilinear relation between lag (1 - 6) and Poincare indices was found in the 
lag response of Poincare indices in healthy subjects whereas in patients with neurodegenerative disorders this 
curvilinear relation was either diminished or absent depending upon the severity of the disease. 
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