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Abstract

Hypothesizing that a mere binary partition in symbolic analysis may not be sufficient to capture
the dynamics in gait signals, we attempted to find how far the symbolic analysis with six partitions
helps to characterize the nonlinear properties of gait signals and thereby discriminate between
healthy control and neurodegenerative disordered gait signals. Differences found in the symbolic
entropies of the healthy control and neurodegenerative disorder groups facilitated classification
between the groups with higher accuracy. The differences found in the percentage of ordinal pat-
terns provided a visual compact presentation to recognize the hidden variability patterns in the
different gait signals.
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1. Introduction

Physiological data more often demonstrate complex structures which cannot be quantified or interpreted using
linear methods. The conventional nonlinear methods suffer from the disadvantage of dimensionality. Further,
there are not enough samples in the time series to arrive at a reasonable estimate of the nonlinear measures.
From this point of view it is sensible to resort to methods like the symbolic dynamics, which can quantify sys-
tem dynamics even for short time series. Collet and Eckmann have proved that symbolic dynamics can provide a
complete description of the dynamics of a system under investigation [1]. Further, symbolic analysis provides
new parameters independent of those derived from time domain or frequency domain. Other advantages of this
analysis include increase in efficiency of numerical computations compared to what it would be for original data
and lower sensitivity to measurement noise. Also, to apply symbolic analysis, there is no need for a priori
knowledge of the disease states or we do not have to make any assumptions about the structure of the underlying
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dynamical system. That is to say that the approach applies equally well to linear or nonlinear, deterministic or
stochastic systems. Further, symbolic analysis has well defined measures of uncertainty and complexity which
provide guidelines to fix an appropriate model for the given data. The approach of symbolic analysis of time se-
ries is recommended when the data is characterized by a low degree of precision, i.e., when the available infor-
mation is essentially qualitative. Symbolic time series analysis involves the transformation of the original time
series into a series of discretized symbols that is processed to extract useful information about the state of the
system generating the process.

Symbolic time series analysis has found profound application during the past few decades in the field of com-
plexity analysis, including combustion [2], multiphase flow [3], astrophysics, geomagnetism, geophysics, clas-
sical mechanics, medicine and biology, plasma physics, robotics, communication, and linguistics [4], and en-
cephalography [5]. Kurths et al. [6], Porta et al. [7], Tobaldini et al. [8], and Voss et al. [9]-[10] have applied
symbolic dynamics on RR interval series successfully to study heart rate variability. Symbolic time series analy-
sis has been seldom tried to evaluate gait dynamics under different conditions. Aziz and Arif [11] employed
threshold dependent symbolic entropy with binary-partition quantization (symbols 0 and 1) in the complexity
analysis of stride interval time series and showed that the symbolic entropy can discern control from neurode-
generative disease subjects for a certain range of thresholds. Qumar et al. [12] compared multiscale entropy
analysis and symbolic time series analysis and showed that the latter outperformed the former in discriminating
normal and metronomically paced stressed walking. In a different study, Abbasi and Loun [13] applied normal-
ized corrected symbolic entropy on symbolic sequences and found that the voluntary output of human locomo-
tors system was more complex during unconstrained normal walking as compared with slow, fast or metro-
nomically paced walking.

Aziz and Arif’s [11] methodology employed a binary-partition and symbolic entropy with a threshold. Binary
partitions are useful for extracting deterministic patterns when high noise is present, but these can miss distinc-
tive intermediate scale features useful for diagnostics. This is because there is strong evidence that mechanisms
generating gait signals obey nonlinear deterministic laws and that these processes are chaotic [14]-[16]. Hence, a
good option is to partition the data range into 2 - 10 equiprobable partitions [17]. This approach removes thresh-
old dependency of the entropy as well. Symbol alphabets greater than 10 tend to capture too much detail at the
expense of global patterns. Equiprobable partitioning allows distinction between stochastic and deterministic
structure because nonrandom patterns show up as peaks in the symbol sequence histogram. Hypothesizing that
binary-partition symbolization (with symbols labelled 0 and 1) may not be sufficient to capture the important
and robust dynamical properties of gait signal variations, in this work, we employ six-partition symbolization
(with symbols labelled from 0 to 5, both inclusive) to discern different pathological gait signals. We show that
our approach to symbolic dynamics analysis permits to identify different ordinal temporal patterns (some of
which cannot be captured with binary-partition) and their percentage variations in the stride dynamics to under-
stand the differences between the control and pathological subjects, as well as differences among various patho-
logical diseases. Monitoring and evaluating accurate reliable gait characteristics over time will facilitate early
diagnosis of neurodegenerative disorders and help to identify the best treatment to avoid complications.

2. Methods and Materials

The paper is organized as follows. Section 2.1 discusses the database which is widely used in stride analysis.
Section 2.2 discusses the pre-processing of the gait data used in this work. Sections 2.3 to 2.5 explain the meas-
ures used to evaluate fluctuation magnitude and fluctuation dynamics of stride-to-stride variability in detail. In
particular, Section 2.3 deals with coefficient of variation (CV) and standard deviation of the detrended stride
time series (SDgetrended), While Sections 2.4 and 2.5 deal with symbolic dynamics and symbolic entropy feature.
Statistical tests used and ROC analysis for decision making and binary classification and its significance in di-
agnosis are discussed in Section 2.6. Gait symmetry and the measures used to evaluate the same are dealt with in
Section 2.7. In Section 3 we discuss the results.

2.1 Database

The database used in this study is contributed by Hausdorff et al. [18] [19] and can be downloaded from the
physionet.org [20]. The database includes stride time series from 13 amyotrophic lateral sclerosis (ALS) patients
(10 males and 3 females, age mean * standard deviation: 55.6 + 12.8 years old), 15 Parkinson’s disease (PD) pa-
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tients (10 males and 5 females, age mean + standard deviation: 66.80 + 10.85 years old), 20 Huntington’s dis-
ease (HD) patients (6 males and 14 females, age mean + standard deviation: 46.65 + 12.60 years old), and 16
healthy control subjects (2 males and 14 females, age mean + standard deviation: 39.3 + 18.5 years old). Heights
and weights in the four groups were not significantly different. It was confirmed that the patients were free from
other pathologies which might lead to lower extremity weakness only participated. Over the duration of treat-
ment the medication usage was not changed. It was also confirmed that the healthy subjects were free from vis-
ual, respiratory, cardiovascular, or other neurological diseases.

The subjects from the four groups were asked to walk at their normal pace up and down a 77 m long hallway
for 5 min. To measure the gait rhythm and the timing of the gait cycle, force sensitive insoles were place inside
or under subject’s shoes. These sensors produce a measure proportional to the force applied to the ground during
movement. The output from the footswitches which corresponds to force signal is sampled at 300 Hz and digi-
tized using an analog-to-digital converter and then stored in a recorder. The recorded data is then analyzed using
a validated software that determined initial and end contact times (and also, stride and swing times) of each
stride.

2.2 Pre-Processing the Gait Data

Before the application of the method of analysis it is necessary to pre-process the gait data. To minimize the
start-up effects the samples in the first 20 seconds of the recordings are removed [18]. Over the monitoring in-
terval of 5 minutes, each time the subject reached the end of the hall-way the subject had to turn around and
continue walking. The strides associated with these turning events are to be treated as outliers and should be re-
moved from the rest of the time series. To remove the outliers we employ the three-sigma-rule [21], which states
that 99.7% of the normally distributed probability values lie within the range of (mean + 3.SD), where SD is the
standard deviation. This implies that those samples which lie outside the range (median + 3.SD) are outliers and
hence, can be removed. In the removal process, median value and not, the mean value of the time series has
been used because some outliers possessed large values and would affect the computation of the mean.

2.3 Measures of Fluctuation Magnitude of Stride-to-Stride Variability

It is often difficult to use the usual standard deviation to compare measurements from different populations. To
get round this problem, two measures are used to assess the magnitude of stride-to-stride variability and gait un-
steadiness: 1) coefficient of variation (CV) original stride time series; and 2) standard deviation of the detrended
stride time series (SDgewended)- It is important to note that both of these measures are not sensitive to changes in
the ordering of the stride intervals or stride dynamics. That is to say, randomly ordering the time series will not
affect these measures.

The CV expresses the standard deviation as a percentage of what is being measured relative to the sample or
population mean. CV is a normalized measure of stride-to-stride variability. It is defined as the ratio of the stan-
dard deviation (SD) ¢ to mean u as, CV = g/ It shows the extent of variability in relation to mean of the popu-
lation. It provides a measure of relative variability. The only advantage is that it lets you compare the scatter of
variables expressed in different units.

The standard deviation of a time series, in general, provides a measure of overall variations in the gait with
respect to mean. It is a metric for absolute variability. This measure may be influenced by the trend in the data
and may fail to differentiate between a walk with large changes from stride to next and one in which stride
changes are small. To minimize effects of local changes in the mean the time series is detrended. The detrended
stride time series refers to time series from which the trend is removed. Detrending can be carried out by com-
puting the first difference of the time series or removing the least-squares-fit straight line. In this study, the for-
mer method is used for detrending. SDgetrended 1S @ Mmeasure of variability which minimizes the effects of the local
changes in the mean.

2.4 Measure of Fluctuation Dynamics of Stride-to-Stride Variability

Fluctuation dynamics is about how the stride interval changes from one stride to the next, independent of the
variance. To quantify how the dynamics fluctuates over time during walk, we employ symbolic entropy, which
is explained in detail below.
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2.5. Symbolic Dynamics and Symbolic Codes

Symbolic dynamics is an efficient approach to investigate the dynamic aspects of the signal of interest. The
concept of symbolic dynamics is based on a coarse-graining of the dynamics [9]. That is, the range of original
observations is partitioned into a finite number of regions and each region is associated with a specific symbolic
value so that each observation is uniquely mapped to a particular symbol depending on the region into which it
falls. Thus, the original observations are transformed into a series of same length but the elements are only a few
different symbols (letters from the same alphabet), the transformation are being termed symbolization.

If x; represents the time series and S;is the corresponding symbolic time series that comprises the full range of
dynamics of x;, the difference between the minimum and the maximum of x; is divided into a & quantization par-
titions each of size | = (max(x;) — min(x;))/&. Hence, this transformation leads to an alphabet A = {0, 1,..., &1}
[17]. The transformation is as below.

0 min(x )< x <1:1

1 Ll<x <2
Si=1. ' @)

5'—1 (£-1)- 1<% <max(x)

In this work, the number of partitions is fixed to & = 6. The advantages of this kind of symbolization are (1)
ease of computation and (2) robustness against noise.

A general rule of thumb is that the partitions must be such that the individual occurrence of each symbol is
equiprobable with all other symbols or the measurement range covered by each region is equal. This is done to
bring out ready differences between random and nonrandom symbol sequences. The transformations into sym-
bols have to be chosen context dependent. For this reason, we use complexity measures on the basis of such
context-dependent transformations, which have a close connection to physiological phenomena and are rela-
tively easy to interpret. This way the study of dynamics simplifies to the description of symbol sequences. Some
detailed information is lost in the process but the coarse, invariant, and robust dynamic behaviour is conserved
and can be analyzed [9]. After symbolization the next step in the identification of temporal patterns is the con-
struction of symbol sequences of specific length L, termed words, from the symbol series by gathering groups of
symbols in the temporal order. L is called the word length. In this work, word length is set to L = 3. This se-
quencing process involves definition of a template of finite length L that can be moved along the symbol series
one symbol at a time, each step revealing a new sequence/word. If each possible new sequence is identified by a
unique identifier the resulting series will be a new time series, termed word-sequence series. For symbolization
with a number of partitions ¢ = 6 and a word length L = 3, there shall be a maximum of & (6° = 216) words. This
is a compromise of retaining important dynamical information, on one hand and of having a robust statistics to
estimate probability distribution, on the other hand. The next step is to evaluate the relative frequency of occur-
rence of all possible words. A simple way to keep track word-sequence frequencies is to assign a unique value,
called symbolic code, to each word by computing the corresponding base-10 value for each base-¢ word, where,
¢ is the number of partitions. The subsequent step is to plot symbol-sequence histogram which is a plot of sym-
bol-sequence frequencies as a function of symbolic codes and evaluate the measure of complexity, i.e. Shan-
nonentropy which we call symbolic entropy, explained in the following section. Because of the above rule of
thumb for partitioning, for a truly random data the relative frequency of all possible symbolic codes will be
equal. This implies that any significant deviation from this equiprobable feature is an indication of deterministic
characteristic of the given data, the more the deviation the more is the data deterministic and time correlated.

There are several quantities that properly characterize such symbol strings. Next, from the above symboliza-
tion we compute ordinal patterns to describe relations within words of length L (3-consecutive time points, in
our case) of a given time series. All possible patterns are grouped without loss into 3 major classes based on
variability, referred to as (1) patterns with no or 0-variation, with all the three consecutive symbols being equal;
(2) patterns with 1-variation, with two consecutive symbols being equal and the remaining being different; (3)
patterns with 2-variations (these patterns cannot be identified with binary-partition), with each symbol being
different from the adjacent one. We call these pattern classes respectively, by no-variation, small-variation, and
large-variation pattern classes. Patterns with 1-variation are further divided into 4 subclasses, two subclasses
with first two consecutive symbols being equal and the third symbol being different and remaining two sub-
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classes with first symbol being different and the last two symbols being equal. Patterns with 2 variations are
further divided into 4 subclasses, two subclasses with like variations and two subclasses with unlike variations.
In all, we have 9 subclasses one for each ordinal pattern {0V, 1V1, 1V2, 1V3, 1V4, 2V1, 2V2, 2V3 and 2V4}.
Representative illustrations in Figure 1 show these ordinal patterns of consecutive three time-point data. Both x
and y scales are arbitrary. Figure 1(a) depicts O-variation pattern, Figures 1(b)-(e) depict 1-variation patterns
and Figures 1(f)-(i) depict 2-variation patterns. In this framework, we investigate the frequency distribution
(relative frequencies) of each of the ordinal patterns from the alphabet {0V, 1V1, 1V2, 1V3, 1V4, 2V1, 2V2,
2V3 and 24}, tabulate the percentage of ordinal patterns and perform pattern classification.

Assuming that 3 patterns (3 major classes) based on variability are sufficient for visual inspection to bring out
better differences among the variability classes we investigate the frequency distribution (relative frequencies)
of each of the variability patterns from the alphabet {0V, 1V, and 2V}, plot the corresponding bar graph for the
percentage of symbolic indices and perform pattern classification. On a percentage basis, the sum of normalized
symbolic indices will be 100% (i.e., OV% + 1V% + 2V% = 100%) and each can increase or decrease at the cost
of others.

2.6. Measure of Complexity

The measure of complexity is the symbolic entropy defined below [2]. A larger value implies higher complexity
and a smaller value implies a lower complexity. From the probabilities p(s“) of words of length k we evaluate k™
order Shannon entropy (symbolic entropy) as given by

Hy ==X ()0 p(s )Iog( p(s* )) @)

2.7. Statistical and Receiver Operating Characteristic (ROC) Analyses

Kruskal-Wallis tests are used to evaluate the statistical differences among Symbolic entropies of the gait of
healthy control and neurodegenerative disorder classes. These non-parametric tests are used because they make
no assumption about the underlying distribution of the data. A p-value < 0.05 is considered statistically signifi-
cant. If significant differences between classes are found, then the ability of the nonlinear analysis method to
discriminate gait of healthy control and neurodegenerative disorder states is evaluated using receiver operating
characteristic (ROC) plots in terms of area under ROC curve (AUC) [22]. ROC curves are obtained by plotting
sensitivity values (which represent that proportion of states identified as neurodegenerative disorder) along the y
axis against the corresponding (1-specificity) values (which represent the proportion of the correctly identified
healthy control states) for all the available cut off points along the x axis. Accuracy is a related parameter that

(a)-0vV (b)-1V1 (c)-1v2
1 1
0.5¢ 0 0.5 0.5
0 0 0
o 05 1 0 05 1 0 05 1
(d)-1v3 (e)-1v4 (f)-2v1
1 1
0.5 0.5 0.5
0 0% 0%
o 05 1 0 05 1 0 05 1
(9)-2v2 (h)-2v3 (i)-2v4
1 1
0.5 0.5 0.5
0 0% 0

0 0.5 1 0 0.5 1 0 0.5 1

Figure 1. Ordinal patterns: (a) O-variation (no-variation) pat-
tern; (b)-(e) 1-variation (small-variation) patterns; (f)-(i) 2-
variation (large-variation) patterns.
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quantifies the total number of states (both healthy control and neurodegenerative disorder states) precisely clas-
sified. The AUC measures this discrimination, that is, the ability of the test to correctly classify stride of healthy
control and neurodegenerative disorder classes and is regarded as an index of diagnostic accuracy. The optimum
threshold is the cut-off point in which the highest accuracy (minimal false negative and false positive results) is
obtained. This can be determined from the ROC curve as the closet value to the left top point (corresponding to
100% sensitivity and 100% specificity). An AUC value of 0.5 indicates that the test results are better than those
obtained by chance, where as a value of 1.0 indicates a perfectly sensitive and specific test.

3. Results and Discussion

After pre-processing the gait data as explained in Section 2.2, it is necessary to normalize the data by subtracting
from each sample the mean of the time series and dividing the result by the standard deviation of the time series.
Normalization removes most of the very large within and across-subject variability in the signal under consid-
eration. Normalization also tends to produce values that are more exchangeable across different laboratories and
research studies.

Unlike a linear measure which focuses on the magnitude of variation in a distribution irrespective of the order
in which data points accumulate, a nonlinear measure is explicitly concerned with the temporal evolution of
structure of the data variability and hence, may unravel more meaningful information. In this study, first we in-
vestigate the linear statistics of stride time series of healthy controls and neurodegenerative diseases. Each gait
record (left and right), in each group, is divided into segments, with 28 strides per segment. A thumb rule to se-
lect segment length is that it must be long enough to reliably estimate the measure of interest, while it must be
short enough to accurately capture local activities. For each segment the variability measures are computed and
the results of a particular group are averaged. Table 1 shows the linear measures of fluctuation magnitude of
stride-to-stride variability characteristic of healthy control and neurodegenerative disorder groups (left and right)
time series. All the variability measures are expressed as mean + SD. The table shows differences among the
three patient groups, possibly indicating differences in neuropathology. It is found that the average stride time is
longer in all the neurodegenerative disorder groups compared to that of control group. The two measures of
fluctuation magnitude, CV and SDgetreng, are also considerably increased in neurodegenerative disorder groups
compared to those of the control group. The CV of patients with ALS, was nearly twice while with PD (right-
foot) and HD (left-foot), was nearly thrice as that observed in control subjects. The SDgeyeng in Neurodegenera-
tive disease group, was also much more than that of control group. These results indicate that the magnitude of
stride-to-stride variability in ALS, PD, and HD patients is significantly increased by neurodegenerative diseases.
It is important to note that little difference in fluctuations of left-foot and right-foot time series and their vari-
ability is a typical feature of healthy motor system. This is necessary to accommodate some adaptability to ex-
ternal perturbations (e.g. change in direction and speed, obstacle avoidance). From the results it is found that
both left-foot and right-foot time series in the control group show only very small differences in fluctuation
magnitude of stride variability which reflect functional differences in the contribution of each limb to propulsion
and control during walking. This is because of the fact that the data was collected through hall-way usual
straight walking (without any obstacles). The same, however, is not true in regard to patients from neurodegen-
erative disorder groups. This implies that the degenerative effect of the neurodegenerative disorder on the fluc-
tuation magnitude variability of left-foot and right-foot strides is not the same. This conclusion is in agreement
with those of the earlier studies [23]. More details on assessment of asymmetry indices are discussed below.
Kruskal-Wallis tests are performed to evaluate the statistical differences between the different measures of four
groups. The test detected significant group differences (In the case of CV, p = 0 and chi-square > 159.40 for
left-foot stride analysis while p = 0 and chi-square > 170.05 for right-foot stride analysis; In the case of SDge.
wrended, P = 0 and chi-square > 159.52 for left-foot stride analysis while p = 0 and chi-square > 167.63 for right-
foot stride analysis).

Now, we investigate dynamic features of particularly short stride-to-stride sequences in the order of 60 con-
secutive stride intervals by means of symbolic dynamics. For this, each gait record (left and right) is divided into
segments each with 60 samples, in the case of healthy controls as well as neurodegenerative disorder gait re-
cords. We carefully avoided nonstationary segments of the gait records, since stationarity is a requirement for
symbolic analysis. Symbolic dynamics is applied to each of these different segments to decide whether a par-
ticular segment belongs to normal, ALS, Parkinson, or Huntington group. Equation (1) is applied on each seg-
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Table 1. Gait rhythm variability parameters of healthy control and neurodegenerative disease groups.

Stride time Tgyige (MS) Stride time CV (%) Stride time SDetrended (MS)

erow Right Left Right Left Right Left
Control 1066.00 +23.52  1066.00 + 23.78 2.67 +0.68 2.62 +£0.65 31.98 £5.62 30.89 +5.52
ALS 1284.00 £ 102.60 1283.00 + 101.00 443 +£1.59 477 £1.53 65.24+ 2284 71.00 + 22.26
Parkinson 1114.20 £ 136.02 1116.20 + 142.11 743+2.25 442 +1.37 85.98 + 27.32 49.96 + 16.25
Huntington 1300.80 £ 172.81 1114.6 +116.84 454 +1.37 6.68 + 1.93 49.11 £15.72 76.61 + 23.70

ment to arrive at a symbol string with a range of six possible symbols {0, 1, 2, 3, 4, 5}. From this symbolization
we compute words/symbolic codes of length L = 3. As mentioned above, with a number of symbols & = 6 in the
alphabet and a word length L = 3, there shall be a maximum of ¢ (6° = 216) words/symbolic codes.The relative
frequencies of each of the words/symbolic codes are computed for each segment and averaged over all the re-
cords of each group and the symbolic sequence histogram is plotted for each group. Also, for each segment the
symbolic entropy is computed and averaged over all the records of the respective group. Figure 2(a) through
Figure 2(d) compares these averaged symbolic sequence histograms for normal and neurodegenerative disorder
subjects. The relative frequency distribution of patterns for the four cases is found to be distinctly different. This
indicates that there is a difference in the dynamics governing the gait time series of normal and neurodegenera-
tive disorder subjects. The corresponding distribution of symbolic entropy is portrayed in Figure 3(a) using
Box-whisker plots and a comparison statistics (mean £ SD) is shown (left and right) in Table 2. Kruskal-Wallis
tests are performed to evaluate the statistical differences among the symbolic entropy measures of four groups.
The test detected significant group differences (p = 0 and chi-square >148.66 for right-foot stride analysis while
p = 0 and chi-square >93.43 for left-foot stride analysis). Healthy controls show comparatively high entropy
values and neurodegenerative groups indicate low entropy values. This implies that there is loss of complexity in
disease states with ALS group affected the maximum and Huntington the least. Next, multiple Wilcoxon rank-
sum tests are performed to compare two groups at a time. The Wilcoxon rank-sum test is equivalent to a Mann-
Whitney U-test. Descriptive group results are shown (for right-foot stride time series) in Table 3. The test de-
tected significant group differences as is evident from the Table 3. This implies that symbolic entropy of sym-
bolic dynamics is readily able to distinguish between healthy control from neurodegenerative disorder groups, as
well as separate one neurodegenerative disorder group from the other.

Now, we evaluate the diagnostic capacity of symbolic entropy in different discriminations using ROC analy-
sis. The corresponding ROC plots are shown in Figure 3(b) for the case of right-foot. The group results of
evaluation of diagnostic parameters of the symbolic entropy in separating neurodegenerative disorder and con-
trol groups for the right-foot stride time series is summarized in Table 4. It is found that the entropy performs
very well in its diagnostic ability, in separating healthy control subjects from those suffering from ALS, Parkin-
son, and Huntington diseases. The percentage frequency distribution of the nine ordinal patterns from the al-
phabet {0V, 1V1, 1V2, 1V3, 1V4, 2V1, 2V2, 2V3 and 2V4} for the healthy control and neurological disease
groups are summarised in Table 5. Compared to the ordinal patterns in the healthy controls the change in vari-
ability in the corresponding patterns of the neurological groups are indicated by upward (1) or downward () ar-
rows representing respectively an increase or a decrease. The following inferences can be drawn. While the 0V%
patterns increase, the 1V2% and 1V4% patterns decrease in the disorder cases relative to healthy control group.
All the four 2V% patterns decrease in ALS and Parkinson patients, while these increase in Huntington patients.
An increase in 0V% signifies that gait variability becomes more periodic and predictable in the neurodegenera-
tive disordered groups. The changes in other patterns (increase or decrease) imply that the self adaptability of
gait variability decreases or becomes disordered from that of normal in neurological patients. To arrive at a more
comprehensive picture we investigate the frequency distribution of each of the variability patterns from the al-
phabet {0V, 1V, and 2V} and plot the percentage of ordinal patterns which provides a visual compact presenta-
tion to recognize the hidden patterns in the gait signal. The plots of the bar graph for the percentage of symbolic
indices in the case of healthy control and neurodegenerative disorder groups are displayed in Figure 4(a)
through Figure 4(d). The following conclusions can be drawn. The 0V% patterns increase in the neurological
disorder cases relative to healthy control group, with the highest increase seen in the case of ALS. The 1V%
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Figure 2. Averaged symbolic sequence histograms of the (a) Healthy control; (b) ALS; (c) Parkinson; (d) Huntington groups.
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Figure 3. (a) Distribution of symbolic entropy of the Healthy control, ALS, Parkinson, and Huntington groups using box-
whisker plots; (b) ROC analysis of symbolic entropy between control and ALS groups, between control and Parkinson
groups, and between control and Huntington groups.
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Figure 4. Plots of the bar graph for the percentage of symbolic indices {0V, 1V, and 2V} in the case of (a) Healthy control;
(b) ALS; (c) Parkinson; and (d) Huntington groups.

Table 2. Distribution of Shannon entropy of control and neurodegenerative disease right-foot and left-foot gait data (All
values are expressed as mean + SD).

Group Right Left
Control 0.3675 £ 0.0156 0.2938 £+ 0.0231
ALS 0.1547 £ 0.0291 0.1351 £ 0.0124
Parkinson 0.2462 £ 0.0093 0.2378 £ 0.0274
Huntington 0.2954 + 0.0682 0.3006 + 0.0293

patterns decrease in the neurological disorder cases, with the maximum decrease found again in ALS. The 2V%
patterns exhibit a decrease in ALS and Parkinson, while an increase in the case of Huntington disease. In the
healthy control, 1V% (small-variation) and 2V% (large-variation) patterns dominate with almost equal weight
compared to 0V% (no-variation) patterns. This implies that the stride dynamics supports more variability pat-
terns than no-variability patterns indicating an adaptation in stride variability. In the ALS patients, 0V% patterns
increase at the cost of 1V% and 2V% patterns so that all the three patterns exhibit almost an equal weight. This
means that the stride dynamics supports more no-variability patterns than small and large variability patterns in-
dicating a loss of variability. In the case of Parkinson disorder, with 1V% maintained compared to normal, 0V%
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Table 3. Descriptive results of Wilcoxon rank-sum tests for comparison of Shannon entropy of two groups at a time (right-
foot stride time series). ranksum is the value of the rank sum test statistic.

— Group? p-Value and
ranksum
6.5133 x 1078
Control ALS 2.5110 x 10
. 1.3301 x 107
Control Parkinson 23860 x 10%
. 43553 x 10°%
Control Huntington 22265 x 10%
. 28622 x 1078
ALS Parkinson 0.9690 x 10%
. 8.7348 x 10"
ALS Huntington 0.9880 x 10%
—-05
Parkinson Huntington ERA

1.3150 x 10%

Table 4. Results of evaluation of diagnostic quality of Shannon entropy in separating healthy control and neurodegenerative
disease groups (right-foot stride time series) using ROC plots.

Performance

P Control and ALS Control and Parkinson Control and Huntington
arameter

AROC 0.9582 0.8856 0.8005
Accuracy 95.2% 92.8% 81.9%
Specificity 92.7% 92.7% 82.9%
Sensitivity 97.6% 92.9% 81.1%
Precision 93.2% 92.9% 82.9%

Table 5. Comparison of percentage of nine ordinal patterns in the four groups. A relative increase or decrease of the pattern
in a disease group with respect to that of healthy control is shown by 1 or |, respectively.

Pattern # Control ALS Parkinson Huntington
0V% 17.3 34.51 2571 1741
1V1% 10.8 103 ] 11.11 10.6 |
1V2% 9.63 7.02 | 8.99 | 7.96 |
1V3% 9.21 7.47] 8.99 | 8.00 |
1V4% 11.4 9.94 ] 110} 10.5 |
2V1% 4.16 3.66 | 324 5211
2V2% 15.2 104 ] 126 1581
2V3% 17.0 135 149 ] 1831
2V4% 5.17 324 | 345 6.12 1

increases at the cost of 2V% so that 0OV% and 1V% patterns dominate compared to 2V% patterns. This means
that the gait dynamics sustains no-variability and small variability patterns indicating loss of large variability.
Finally in the Huntington disorder, the 0V% patterns are maintained compared to healthy controls, while 2V%
patterns increase at the cost of 1V% patterns. This shows that in the Huntington case the gait dynamics supports
no-variability and large variability patterns, indicating rigidity in small variability.

The important findings of this work can be summarised as below. Symbolic dynamic analysis with 6 parti-
tions can discern healthy controls from neurodegerative disordered subjects with higher accuracy since patterns

OALibJ | DOI:10.4236/0alib.1101496 10 May 2015 | Volume 2 | e1496


http://dx.doi.org/10.4236/oalib.1101496

C. Kamath

with 2-variations cannot be identified with binary-partition. The plot of the percentage of ordinal patterns from
the alphabet {0V, 1V, and 2V} provides a visual compact presentation and a more comprehensive picture to
recognize the hidden patterns in the gait signal. The healthy control exhibit 1V% (small-variation) and 2V%
(large-variation) patterns dominance with almost equal weight compared to 0V% (no-variation) patterns. Thus,
the healthy stride dynamics supports more variability patterns than no-variability patterns, indicating an adapta-
tion in stride variability. Unlike healthy subjects, 0V% patterns considerably dominate at the cost of 1V% or/and
2V% patterns in ALS and Parkinson patients, implying loss of small and large variability patterns in these pa-
tients. On the other hand, in Huntington patients, 2V% patterns considerably dominate at the cost of 1V% pat-
terns, implying loss of small variability patterns.

A limitation of this study is the small sample size. Factors like high variance, age differences, and differing
male-to-female ratios between groups will have an impact on the results when statistical analyses are carried out
on small sample sizes. However, it has been shown that the effect of gender on usual gait patterns is considera-
bly small [24]. Though the effect of age on gait is complex, the effect of neurodegenerative disorders considera-
bly predominates over the aging effects. This implies that the discrimination using this method stands irrespec-
tive of the above limitations.

4. Conclusion

The main objective of this study is to show that a symbolic dynamic analysis with six partitions captures stride
dynamics better than that with a binary-partition and can discern healthy controls from neurodegerative disor-
dered subjects with higher accuracy. The plot of the percentage of ordinal patterns from the alphabet {0V, 1V,
and 2V} provides a visual compact presentation and a more comprehensive picture to recognize the hidden
variability patterns in the gait signals. This new perspective might be useful in the evaluation of other neuropa-
thological situations of the locomotor system as well.
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