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ABSTRACT 

A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform 
DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been 
realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope 
extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, 
compared to that of DCHWT. 
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1. Introduction 

The wavelet transform (WT) provides signal compres-
sion, denoising and many more desirable processing fea-
tures. In spite of these advantages, the WT suffers from 
many major problems. The WT coefficients oscillate 
about the zero value around the singularities. This will 
reduce the magnitude of WT coefficients near singularity 
where their values are expected to be large, making the 
singularity extraction and signal modeling difficult. Fur-
ther, the WT is shift variant, i.e., around singularities, 
even for a small shift in input signal, there will be a large 
variation in the energy distribution among WT coeffi-
cients at different scales resulting in different WT pat-
terns which have to be considered for further processing 
[1]. This is due to aliasing caused by decimation at each 
wavelet level. Such a shift variant nature of WT not only 
affects detection of transients but also denoising as signal 
is reconstructed by decimated modified samples resulting 
in strong glitches [2]. Also at low signal to noise ratio 
like below 0dB, the conventional denoising fails. How-
ever the signal compression achieved by WT is not af-
fected by its shift variant property.  

The WT is realized by a perfect reconstruction filter 
bank which involves analysis filter bank, down sampling, 
interpolation and synthesis filter bank. Here the aliasing  

caused by the use of non-ideal filters is cancelled by the 
synthesis filter bank. However the reconstructed signal 
by such a filter bank is highly sensitive to coefficient 
errors and may get affected severely. Further such a WT 
suffers from poor directional selectivity for diagonal 
features. The WT filters being real, separable and their 
frequency response symmetric about zero in four quad-
rants in the 2D frequency space, cannot distinguish be-
tween two opposing diagonal directions, i.e.  and 

 edge orientations [3,4]. 

o45
o45

The undecimated WT solves the shift variance with 
additional computational load. However the directional-
ity problem remains unsolved as undecimated WT cannot 
distinguish the two opposing diagonals as it uses separa-
ble filters. This blindness to such a directionality makes 
the processing and modeling of image features like 
ridges and edges difficult. For separable filters to have 
proper directionality, their frequency responses should be 
asymmetric for positive and negative frequencies and can 
be achieved by using complex wavelet filters [4]. How-
ever the difficulty involved in the design of complex fil-
ters satisfying perfect reconstruction prohibits their use in 
image processing. 

The sinusoids in the Fourier transform in higher di-
mensions provide highly directional plane waves. The FT 
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magnitude does not oscillate and provides a smooth en-
velope. Further the FT magnitude is shift invariant and 
also it does not suffer from aliasing and the signal recon-
struction (inverse FT) does not involve any critical re-
construction criterion. These benefits are due to its com-
plex exponential basis instead of real basis of WT. Thus 
realization of complex/analytic WT has become impor-
tant.  This approach has been applied to image segmen-
tation, classification, deconvolution, image sharpening, 
motion estimation, coding, water marking [4,5], texture 
analysis and synthesis, seismic imaging and extraction of 
evoked potentials in EEG [6]. The analytic WT (AWT) 
has the features of both WT and FT and is appropriate for 
time-frequency analysis like STFT [7]. 

The complex/analytic WT been realized using dual 
tree filter bank structure and Hilbert transform (HT). 
Many variations of this structure have been achieved 
with various degrees of advantages and limitations. The 
absence of negative frequencies for an analytic signal not 
only reduces aliasing but also accounts for the decima-
tion by a factor of 2 at each DWT stage resulting in shift 
invariance. But the global nature of HT (infinite both 
time and frequency extent) converts the finite support 
wavelet function to that of an infinite support and this 
makes the shift invariance and alias free nature as ap-
proximate. The WT realized by a two channel perfect 
reconstruction filter bank is computationally expensive 
and complicated due to explicit decimation, interpolation, 
associated filtering and involved delay compensation in 
reconstruction. 

The harmonic wavelet transform (HWT) proposed by 
Newland [8] is simple and does not require explicit 
decimation, interpolation and associated filtering. The 
decimated components are achieved in the frequency 
domain by taking the inverse transform of each group of 
FT coefficients. The signal reconstruction is achieved by 
the inverse FT of properly concatenated FT coefficient 
groups. Here also, the WT coefficients become complex 
due to lack of DFT real symmetry. Further, the DFT val-
ues will be generally affected by the leakage due to sig-
nal truncation resulting in poor quality signal decomposi-
tion. To overcome these, the DCT based harmonic 
wavelet transform (DCHWT) has been proposed [9,10]. 
The real nature and the symmetrical signal extension of 
DCT respectively result in a real and more exact WT 
coefficients as the leakage is very much reduced [11]. 
The DCHWT has been used for signal/image compres-
sion and spectral estimation both with computational and 
performance advantage. For speech and image signals, 
the compression provided an adaptive wavelet packet 
algorithm based on DCHWT has been found to be not 
only better than that by DCHWT but also that by adap-

tive Daubechies-2 wavelet packet. Further it has been 
used for efficient and accurate signal decomposition to 
overcome the cross-terms in Wigner-Ville time fre-
quency distribution Also the DCTHWT has been extended 
to realize its shift invariant version. [12] which reduces 
the glitches when applied for denoising.  

In the present work, a new dual tree analytic wavelet 
transform based on DCHWT (ADCHWT) has been pro-
posed and is applied for signal and image denoising. The 
analytic DCHWT has been realized by applying DC- 
HWT to the original signal and its HT. The shift invari-
ance property of the ADCHWT has been illustrated and 
its contribution in association with its envelope extrac-
tion property has been found to be very effective in de-
noising compared to that of DCHWT [13]. 

2. Dual Tree Analytic Discrete Cosine 
Harmonic Wavelet Transform (ADCHWT) 

In this section, the discrete cosine harmonic wavelet tran- 
sform and the development of the new dual tree analytic 
discrete cosine harmonic wavelet transform (ADCHWT) 
will be considered. 

2.1. Discrete Cosine Harmonic Wavelet 
Transform (DCHWT) 

The filter bank realization of WT, involves down sam-
pling of the components obtained by the individual ban- 
dpass filters. The restoration of the processed signal cor-
responding to overall spectrum at the original sampling 
rate, involves summation of the components after their 
upsampling and image rejection filtering. The harmonic 
wavelet transform based on DFT (DFHWT) realizes the 
subband decomposition in the frequency domain by 
grouping the Fourier transform (FT) coefficients and the 
inverse of these groups results in decimated signals. Fur-
ther after processing, the FT of the subband signals can 
be repositioned in their corresponding positions to re-
cover the overall spectrum, with the original sampling 
rate. Therefore, this will not involve explicit decimation 
and interpolation operations. As a consequence, no band 
limiting and image rejection filters are necessary. Also, 
while reconstruction, there are no delay compensations 
as the subband groups are synthesized in frequency do-
main by repositioning them. In view of this, the harmonic 
subband decomposition is very attractive due to its sim-
plicity. However in the DFHWT, the grouping of the 
DFT coefficients with lack of conjugate symmetry makes 
the WT coefficients complex. For reconstruction after 
concatenation of the groups, the conjugate symmetry is 
restored to get the real signal. 

The DFHWT is very attractive as long as no process-
ing of the components is involved prior to inverse trans-
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

formation. However, for a signal segment obtained with-
out using any window function, there can be a severe 
leakage effect from one subband of the signal into an-
other. If different subbands have to be processed differ-
ently, this is not achieved as the signal energy from one 
to another has already leaked. The DFHWT may be tol-
erable for a signal with well-separated frequency com-
ponents of sufficiently high magnitude. But for closely 
spaced components of significantly different magnitudes, 
during the computation of the FT itself, the energy will 
leak from the higher amplitude component to the lower 
one (and vice versa). This results in a large bias in the 
spectral magnitude and may even totally eclipse smaller 
amplitude spectral peaks. In such a case, decomposing 
the signal based on DFHWT and processing the sub-
bands may not be very effective. Further leakage in 
DFHWT will also limit its use in signal or image com-
pression application. The reason for this is that it is not 
possible to get a good signal reconstruction by omitting 
the lower scales (corresponding to high frequencies) in 
WT as the leaked energy cannot be recovered unless all 
the scales are considered. Therefore to utilize the attrac-
tive features of the harmonic wavelet transform, DCT is 
used instead of DFT, which has a comparatively reduced 
leakage effect. This is due to symmetrical data extension 
which results in a smooth transition from one DCT pe-
riod to the other without any discontinuity.  

The wavelet transform  characterizes the 
correlation or similarity between the signal 

 ,xW a b
 x t


 to be 

analyzed and the wavelet function  t b a  . Such a 
correlation is given by  

    *
1 2

1
, dx

t b
W a b x t t

aa






   
          (1) 

where  is the prototype/mother wavelet. By shift-
ing and scaling 

 t
 t  by the parameters  and , 

respectively; all the basis functions  
b a

    t b 1 2t a a  ,a b  are obtained. Equation (1) 
can be realized in the frequency domain using Parseval’s 
theorem as  

     
1 2

*,
2π

j b
x

a
W a b X a e  d 





        (2a) 

Therefore the, the wavelet transform can be derived by 
windowing the spectrum  X   with * a   and 
inverse Fourier transforming the product. 

     1 2 1 *,xW a b a F X a            (2b) 

   and  X   are the FT of the mother wavelet 
 and the signal  t  x t . That is,  for a 

particular scale ‘a’ can be computed by the Equation (4b) 

using 

 ,xW a b

 X   and  a  by FFT algorithm.  
For a real symmetric signal  Sx t  and a real sym-

metric wavelet  tS  function, Equation (2a) becomes 
[9] 

   x sX    
1 2

, cos d
2π s

a
a bC a b     




    (3a)  

(x )S   and  S   are the Fourier transform of  Sx t  
and  S t  respectively. (Generally the wavelet func-
tion is a symmetrical one but to have consistency in the 
notation  S  is used). In other words, they are the 
cosine transforms of 

t
 Sx t  and the mother wavelet 

 S t .  ,bx  is the wavelet transform in cosine 
domain instead of Fourier domain. Hence the corre-
sponding equation for Equation (2b) is 

C a

     1 2 1,x sb a C X aC a s           (3b) 

Therefore the cosine wavelet transform coefficient 
 ,bx  for a particular scale “a” can be computed by 

the Equation (3b) using 
C a

 sX   and s a   by a fast 
cosine transform algorithm which indirectly uses FFT 
algorithm.  s 

 

 is very simple for the Harmonic 
cosine wavelet transform (CHWT), and it is zero at all 
frequencies except constant over a small frequency band. 

0 0

0 0

1, ,

,

0,  

c c

s c c
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    
     

   
       



     (3c) 

 

For this the wavelet  S t  is, 

  0

sin
cos

π
c c

S
c

t
t t

t
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

  

Representing 
sin c

c

t

t




 by  sin cc t , 

  0cos sin
π

c
S ct t c

 t          (3d) 

Hence the mother wavelet is a cosine modulated sinc 
function. Here the decomposition of the signal in the 
frequency domain is simple but suffers from the problem 
of poor time localization due to slow decaying of the sinc 
function. Though a spectral weighing other than rectan-
gular improves the localization in time it results in a 
non-orthogonal wavelet set. The type of spectral weigh-
ing will determine the wavelet as it is the cosine trans-
form of the wavelet. 

For the cosine harmonic wavelet transform, the spec-
tral weighing is a symmetrical rectangular function and 
for a discrete signal it is zero except over symmetrical 
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finite bands  π ,πp q  and  π , πp q  where  
can be real numbers, not necessarily integers. 

,p q

For an orthogonal CHWT, the wavelet function is 
fixed and corresponds to a rectangular weighing in the 
frequency domain which results in such a wavelet trans-
form.  

The Discrete cosine transform (DCT) enables the im-
plementation of the above cosine transform discussed as 
it forms the symmetric signals  Sx t  and  S t  by 
itself (for the given non-symmetric  x t  and  t ). 
For a sampled signal  x n , , the 
DCT of  points, is defined as the DFT of a  
point symmetrically extended signal 

 1n N 0,1, 2


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
N 2N

y n . 

 
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   
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1
 

 y n  is even symmetric with respect to the  
 1 2N    point . This leads to DCT and is given by 

     

 

1
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π 2 1
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2
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N
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x
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   




 (4) 

Using the above  S 

N

 in the CHWT, the subband 
decomposition is done in frequency domain unlike in 
time domain by a filter bank. This is achieved by group-
ing the  coefficients of a discrete cosine transform 
(DCT) of length  and this is equivalent to applying 
a window or weighing by a constant in the frequency 
domain.  

2N
2

The DCT coefficients can be grouped in a way similar 
to that of DFT coefficients and the DCT being real, there 
is no necessity to do the conjugate operation in placing 
the coefficients symmetrically [9]. The symmetrical 
placement is also not necessary due to the very definition 
of the DCT as it provides only half the number of coeffi-
cients and the inverse DCT definition takes care of the 
symmetry. The grouped coefficients for each band have 
to be treated as if they are the DCT coefficients of that 
subband.  

In the Figure 1 DCTHWT for a DCT size of 16 is il-
lustrated and the only one side of the symmetrical coeffi-
cient sequence is shown, i.e. (0 - 7). The last half part of 
the coefficients correspond to scale-  

. The lower half of the coefficients  

x x  are split into two groups and the upper 
group  correspond to scale-1, .  

   4 to 7x xC C
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 2 , 1

Further the group x  is split into two 
groups 2  and 3  each having single coefficients 

 and xC , respectively. The inverse DCT of 
each of the groups ; result in WT coeffi-
cients of the scales , respectively. For 

. .,i e C
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Reconstruction of input from scales
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Figure 1. DCHWT for a 1-D signal. 
 
the scales 0 1  correspond to grouping of 
coefficients as 

2 3 4, , , ,C C C C C
    8 1C 5x xC to ,     4 7x xC to C , 

    2 3x xo CC t ,   1xC , , respectively and 
this process continues. 

  0xC 

For the reconstruction, the DCTs of the subband sig-
nals are concatenated to get the DCT of the fullband 
signal. For the first stage of inverse DCHWT illustrated 
in Figure 1, the DCTs of the subband signals corre-
sponding to groups C3 and C4 are concatenated. The 
resulting group of coefficients is concatenated with the 
DCT of subband signal corresponding to group C2, in 
the next stage. Again, the resulting group of coefficients 
is concatenated with the DCT of subband signal corre-
sponding to group C1, to form the DCT of the fullband 
signal.  

2.2. Dual Tree Analytic Discrete Cosine 
Harmonic Wavelet Transform (ADCHWT) 

There are different methods of obtaining the AWT, 
which uses the DWT. The straight forward post filtering 
approach splits each filter bank output into positive and 
negative frequency components using a complex PRFB 
acting as a HT though looks simple suffers from nonzero 
values in the negative frequency region. 

The dual tree complex wavelet transform uses two 
DWT trees one for the real part of the analytic signal and 
the other for its imaginary part, the HT of the input. The 
corresponding scales of the two trees are combined to 
achieve the desired analytic WT. This does not require 
any complex filters and suffer from any performance 
limitation but its computational load is twice that of a 
DWT as two DWT trees. The proposed ACHWT is also 
realized by a dual tree approach and is shown in the Fig-
ure 2 for 4 scales. Here the DCHWT 4 scales for the 
original signal are obtained in the method explained in 
Subsection 2.1. The input signal is converted to its HT 
and again its DCHWT 4 scales are obtained. Thus the 
different scales and their HTs are obtained by simply  
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Figure 2. Schematic of the dual tree ADCHWT for a 1D 
signal. 
 
converting the input to its HT. Further, Hilbert trans-
formed scales are weighted by j and are combined with 
their corresponding scales by summation to get the ana-
lytic harmonic discrete cosine wavelet transform (AD- 
CHWT). For reconstruction, the real part of the AD- 
CHWT is taken and the procedure is same as given in 
Subsection 2.1. 

The HT forms an integral part of the ADCHWT and 
hence its quality determines the performance of AD- 
CHWT. The analytic signal can be realized in the fre-
quency domain by making the negative frequency com-
ponents of the original signal to zero and scaling the 
positive components by a factor 2and taking its inverse 
FT. The imaginary part of this analytic signal gives the 
desired HT of the signal. However, this method suffers 
from leakage problem of DFT as the energy from the 
negative frequency components would have leaked into 
the positive frequency region. Therefore, it is desirable to 
realize HT the signal in time domain by convolving the 
HT impulse response with the input signal [10]. The im-
pulse response  h n  of the HT is given by  

   2sin π 22

π

n
h n n

n

 
  

  
         (5) 

In practice the length of the impulse response is same 
as data length. Hence truncating the impulse response 
results in Gibbs ripple effect in the frequency response of 
the HT. This Gibbs ripple will introduce distortion due to 
variation in gain in the passband of the signal. To over-
come this, the HT impulse response has to be windowed 
by a smoothing window like Kaiser with an appropriate 
smoothing factor. 

The shift invariance performance for the proposed 
ADCHWT is illustrated for two types of signals viz., an 
impulse and a rectangular pulse. The magnitude differ-
ence of the WT coefficients (for different scales) be-
tween original signal and its shifted version are plotted 
(Figure 3). 
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Figure 3. Difference in WT indicating energy for Impulse 
and pulse. For impulse: (a) Scale-0, (b) Scale-1, (c) Scale-2 
(d) Scale-3 For pulse: (e) Scale-0, (f) Scale-1 , (g )Scale-2, (h) 
Scale-3 - - - DCHWT, _____ ADCHWT. 
 

It is seen that for the higher scales the magnitude of 
the difference between WT coefficients for the original 
and shifted inputs (by 4 samples) is higher for the 
DCHWT than for ADCHWT both for the impulse and 
pulse inputs. Also the energy of this WT difference is 
indicated in Table 1. It is seen that with the ADCHWT, 
this difference energy is significantly small compared to 
that of DCHWT as the latter gets affected by the shift 
due to its shift variant nature. 

2.3. Two Dimensional Dual Tree ADCHWT 

For a 2D signal, the DCT coefficients for the columns are 
split in to two groups and their inverse DCT results in 
DCTHWT coefficients for the columns. The DCT along 
the rows for each scale are taken and grouped. The in-
verse DCT of these groups will result in 2D DCTHWT 
(Figure 4(a)). This procedure is repeated for further 
scales considering the LL block as input. The procedure 
holds good for the real part of ADCHWT of an image. 

For the imaginary part of ADCHWT image on hand,  
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Table 1. Error energy between the WT of original and 
shifted signal. 

WT Type DCHWT ADCHWT 

Scale No. For Impulse For Pulse For Impulse For Pulse

0 1.0 0.916 1.0068 0.998 

1 0.527 3.29 0.210 0.442 

2 0.391 3.27 0.0037 0.231 

3 0.069 2.59 0.005 0.204 
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Figure 4. (a) Schematic for (a) the real part and (b) the 
imaginary part of 2D-ADCHWT. 
 
its HT has to be considered. For this to start with, prior to 
along the columns of the image are taken and for these 
Hilbert transformed columns, the DCTs are taken (Fig-
ure 4(b)). 

Further the DCT coefficients are grouped in to two 
groups and for each group, inverse DCT is applied to get 
the WT scales corresponding to the image columns. For 
each scale along the rows, the HTs are taken and for 
Hilbert transformed rows, the DCTs are taken. Again 
these DCT coefficients are grouped in to two groups and 
for each group inverse DCT is applied to get ADCHWT 
with scales HL, HH, LL and LH. As the HT has to be 
applied column and row wise only once, for higher scales, 
that is for splitting LL further, HT should not be applied 
and this is indicated in the Figure 3(b) which shows the 
absence column and row wise application of HT beyond 
LL scale. That is further LL scale decomposition is simi-
lar to that of the real part decomposition. 

3. Signal and Image Denoising Using 
ADCHWT 

Wavelet domain plays an important role in noise sup-
pression. This is because, unlike removal of frequency 
components in FT based methods, here no (higher) fre-
quency component is removed which results in smooth-
ing of fast changes or edges. But in wavelet domain, 
noise suppression is done in time domain and hence no 
scale/frequency is removed unless it is totally not con-
tributing to the signal. In wavelet denoising, in each scale, 
those values, which are below a certain threshold are 
made zero/modified and the signal is reconstructed with 
these modified scales. This is based on the assumption 
that the noise is distributed over all scales and their mag-
nitudes will be small. But the problem with wavelet de-
noising is shift variant nature of WT (already been ex-
plained). In WT domain as the signal is reconstructed 
with modified decimated scale samples, there will be 
glitches as in between samples are removed especially at 
higher scales. The solution to this is to use shift invariant/ 
undecimated WT but this is at the expense of additional 
computational load. In view of this, the analytic WT, 
which provides shift invariance due to its reduced band-
width by a factor of half, is an appropriate solution. Here 
in performing denoising, the threshold for each scale is 
found by considering the absolute values of ADCHWT 
coefficients. Further, the absolute values of ADCWT are 
compared with the estimated threshold to make a deci-
sion about whether a particular WT coefficient has to be 
retained/modified. This decision is applied to DCHWT 
(real domain) and the different modified scales are used 
for the signal reconstruction. In decision making not only 
the shift invariant nature of analytic WT but also its good 
envelope extraction property also contributes to it. Hence 
in some cases, the analytic WT based denoising performs 
better than those of shift invariant WT. 

4. Simulation Results 

The performance of the ADCHWT is shown for a dis-
continuous signal (SNR = 9 dB) of 2048 points, speech 
segment (SNR = 10 dB) and an image (SNR = 22 dB). 
The noise associated with these is zero mean white 
Gaussian noise. 

For the discontinuous signal, ADCHWT with 11 
scales is considered and the denoising is done for lower 5 
scales. For this, hard thresholding is done by using the 
standard deviation of the first scale scaled by a factor 6 
as the threshold. The hard thresholding is given by 

 
 real ,

0,           
HT

x x
f x

x





  
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where  HTf x  is the modified DCHWT for denoising, 
  is the threshold and x  is the analytic WT coeffi-
cient value which is complex. ADCHWT showed im-
proved performance as its O/P-SNR as 13.7 dB as against 
13.1 dB for DCHWT and the glitches are of reduced 
magnitude compared to that of DCHWT (Figures 5(c) 
and (d)). 

The speech, used is “Kaveriya Ugama Sthana Ko-
dagu” sampled at 22050 Hzand quantized with 16 bits. A 
length of 1024 samples is used to generate frames with 
50% overlap between successive frames. A 10 scale 
ADCHWT is considered for each frame. Further denois-
ing by hard thresholding is done for lower 5 scales using 
the standard deviation of the first scale scaled by a factor 
7 as the threshold. ADCHWT extracts the signal enve-
lope well (Figures 6 (a), (c) and (d), a typical signal part 
is shown by encircling in Figure 6(d)). This results in a  
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Figure 5. Denoising comparison for discontinuous signal (a) 
Clean, (b) Noisy (10 dB), (c) by DCHWT, (d) ADCHWT. 
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Figure 6. Denoising Comparison for speech (a) Clean, (b) 
Noisy (9dB), (c) DCHWT, (d) ADCHWT. 

better output. SNR by 4dB compared to that of DCHWT. 
From hearing point of view, both sound somewhat simi-
lar, however DCHWT is having some glitches. 

The image is decomposed into three scales with each 
scale consisting of four levels (LL, LH, HL and HH). So 
for three scales there are 12 levels. Denoising is carried 
out for all levels except scale-3, LL level assuming that it 
contains sufficiently large wavelet coefficients to repre-
sent the image. For image, a threshold value of 70 which 
corresponds to minimum error energy between the origi-
nal and reconstructed image, is found experimentally as 
indicated in Table 2. Further, as seen from the Table 2, 
the optimum threshold point for DCHWT and ADCHWT 
occur at 60 and 70, respectively The output SNR with 
threshold value 60 is 18.7128 and 19.2958 for DCHWT 
and ADCHWT, respectively. But the output SNR for 
threshold value 70 is 18.3551 and 19.50 for DCHWT and 
ADCHWT, respectively and for ADCHWT, the output 
SNR is better by 1.2 dB compared to that of DCHWT. 
This also evident from Figures 7(a), (c) and (d) as the 
overall denoising is better for ADCHWT specially in 
bringing out the details. 

5. Conclusions 

A new dual tree Analytic Cosine Harmonic Wavelet 
transform was proposed. The analytic DCHWT was re-
alized by applying DCHWT to the original signal and its 
Hilbert transform.  

For both impulse and pulse input signals, its shift in-
variant property was found to be superior to that of 
DCHWT. Its application to noisy discontinuous signal, 
speech and image; indicated that due to its shift invariant 
and envelope preserving properties in deciding the modi-
fication of WT has resulted in a superior denoising per-
formance than those of DCHWT. The real nature and the 
 

Table 2. Threshold selection criteria for image denoising. 

Threshold CHWT RMS Error AHWT RMS Error

10 0.1859 0.1874 

20 0.1745 0.1818 

30 0.1538 0.1660 

40 0.1323 0.1424 

50 0.1188 0.1207 

60 0.1160 0.1084 

70 0.1208 0.1059 

80 0.1281 0.1092 

90 0.1363 0.1146 

100 0.1428 0.1208 
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(a)                                               (b) 

 
(c)                                               (d) 

Figure 7. Comparison of DCHWT and ADCHWT for image with I/P – SNR = 22 dB. (a) Clean Image, (b) Noisy image, (c) 
DCHWT, (d) ADCHWT. 
 
built in decimation and interpolation without any explicit 
filtering and delay compensation; makes the new algo-
rithm simple and computationally efficient compared to 
other dual tree analytic algorithms. 
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