$\left\{C_{k}, P_{k}, S_{k}\right\}$-Decompositions of Balanced Complete Bipartite Multigraphs

Jenq-Jong Lin ${ }^{1}$, Min-Jen Jou ${ }^{2}$
${ }^{1}$ Department of Finance, Ling Tung University, Taiwan
${ }^{2}$ Department of Information Technology, Ling Tung University, Taiwan
Email: jlin@teamail.Itu.edu.tw, mjjou@teamail.Itu.edu.tw

Received 16 June 2016; accepted 11 July 2016; published 14 July 2016
Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Let $L=\left\{H_{1}, H_{2}, \cdots, H_{r}\right\}$ be a family of subgraphs of a graph G. An L-decomposition of G is an edgedisjoint decomposition of G into positive integer α_{i} copies of H_{i}, where $i \in\{1,2, \cdots, r\}$. Let C_{k}, P_{k} and S_{k} denote a cycle, a path and a star with k edges, respectively. For an integer $\lambda \geq 2$, we prove that a balanced complete bipartite multigraph $\lambda K_{n, n}$ has a $\left\{\boldsymbol{C}_{k}, P_{k}, S_{k}\right\}$-decomposition if and only if k is even, $4 \leq k \leq n$ and $\lambda n^{2} \equiv 0(\bmod k)$.

Keywords

Balanced Complete Bipartite Multigraph, Cycle, Path, Star, Decomposition

1. Introduction

Let F, G and H be graphs. A G-decomposition of F is a partition of the edge set of F into copies of G. If F has a G-decomposition, we say that F is G-decomposable. Let $L=\left\{H_{1}, H_{2}, \cdots, H_{r}\right\}$ be a family of subgraphs of a graph G. An L-decomposition of G is an edge-disjoint decomposition of G into positive integer α_{i} copies of H_{i}, where $i \in\{1,2, \cdots, r\}$. If G has an L-decomposition, we say that G is L-decomposable.

For positive integers m and $n, K_{m, n}$ denotes the complete bipartite graph with parts of sizes m and n. A complete bipartite graph is balanced if $m=n$. A k-cycle, denoted by C_{k}, is a cycle of length k. A k-star, denoted by S_{k}, is the complete bipartite graph $K_{1, k}$. A k-path, denoted by P_{k}, is a path with k edges. For a graph G and an integer $\lambda \geq 2$, we use λG to denote the multigraph obtained from G by replacing each edge e by λ edges each of which has the same ends as e.

How to cite this paper: Lin, J.-J. and Jou, M.-J. (2016) $\left\{C_{k}, P_{k}, S_{k}\right\}$-Decompositions of Balanced Complete Bipartite Multigraphs. Open Journal of Discrete Mathematics, 6, 174-179. http://dx.doi.org/10.4236/ojdm.2016.63015

Decompositions of graphs into k-stars have also attracted a fair share of interest (see [1]-[3]). Articles of P_{k} decompositions of interest include [4] [5]. Decompositions of some families of graphs into k-cycles have been a popular topic of research in graph theory (see [6] [7] for surveys of this topic). The study of $\{G, H\}$-decomposition was introduced by Abueida and Daven in [8]. Abueida and Daven [9] investigated the problem of $\left\{K_{k}, S_{k}\right\}$-decomposition of the complete graph K_{n}. Abueida and O'Neil [10] settled the existence problem for $\left\{C_{k}, S_{k-1}\right\}$-decomposition of the complete multigraph λK_{n} for $k \in\{3,4,5\}$. In [11], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of a $\{G, H\}$-factorization of λK_{n} where $G, H \in\left\{C_{n}, P_{n-1}, S_{n-1}\right\}$. Furthermore, Shyu [12] investigated the problem of decomposing K_{n} into paths and stars with k edges, giving a necessary and sufficient condition for $k=3$. In [13], Shyu considered the existence of a decomposition of K_{n} into paths and cycles with k edges, giving a necessary and sufficient condition for $k=4$. Shyu [14] investigated the problem of decomposing K_{n} into cycles and stars with k edges, settling the case $k=4$. Recently, Lee [15] [16] established necessary and sufficient conditions for the existence of a $\left\{C_{k}, S_{k}\right\}$-decomposition of a complete bipartite graph and $\left\{P_{k}, S_{k}\right\}$-decomposition of a balanced complete bipartite graph. Lin and Jou [17] investigated the problems of the $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition of the balanced complete bipartite graph $K_{n, n}$. It is natural to consider the problem of the $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition of the balanced complete bipartite multigraph $\lambda K_{n, n}$ for $\lambda \geq 2$. In this paper, the necessary and sufficient conditions for the existence of such decomposition are given.

2. Preliminaries

Let G be a graph. The degree of a vertex x of G, denoted by $\operatorname{deg}_{G} x$, is the number of edges incident with x. The vertex of degree k in S_{k} is the center of S_{k}. For $A \subseteq V(G)$ and $B \subseteq E(G)$, we use $G[A]$ and $G-B$ to denote the subgraph of G induced by A and the subgraph of G obtained by deleting B, respectively. When $G_{1}, G_{2}, \cdots, G_{m}$ are graphs, not necessarily disjoint, we write $G_{1} \cup G_{2} \cup \cdots \cup G_{m}$ or $\bigcup_{i=1}^{m} G_{i}$ for the graph with vertex set $\bigcup_{i=1}^{m} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{m} E\left(G_{i}\right)$. When the edge sets are disjoint, $G=\bigcup_{i=1}^{m} G_{i}$ expresses the decomposition of G into $G_{1}, G_{2}, \cdots, G_{m} . n G$ is the short notation for the union of n copies of disjoint graphs isomorphic to G. Let H be a subgraph of $K_{n, n}$ with vertex set $V(H)$ and edge set $E(H)$, and let r be a nonnegative integer. We use H_{+r} to denote the graph with vertex set $\left\{a_{i}: a_{i} \in V(H)\right\} \cup\left\{b_{j+r}: b_{j} \in V(H)\right\}$ and edge set $\left\{a_{i} b_{j+r}: a_{i} b_{j} \in E(H)\right\}$ where the subscripts of b are taken modulo n. For any vertex x of a digraph G, the outdegree $\operatorname{deg}_{G}^{+} x$ (respectively, indegree $\operatorname{deg}_{G}^{-} x$) of x is the number of arcs incident from (respectively, to) x. A multistar is a star with multiple edges allowed. We use \bar{S}_{k} to denote a multistar with k edges. Let G be a multigraph. The edge-multiplicity of an edge in G is the number of edges joining the vertices of the edge. The multiplicity of G, denoted by $m(G)$, is the maximum edgemultiplicity of G.

Lemma 1. ([3]) For integers m and n with $m \geq n \geq 1$, the graph $K_{m, n}$ has an S_{k}-decomposition if and only if $m \geq k$ and

$$
\begin{cases}m \equiv 0(\bmod k) & \text { if } n<k \\ m n \equiv 0(\bmod k) & \text { if } n \geq k\end{cases}
$$

Lemma 2. ([18]) Suppose that $m\left(\bar{S}_{\lambda k}\right) \leq \lambda$. Then $\bar{S}_{\lambda k}$ is S_{k}-decomposable.
Let $a^{(s)} b^{(s)}$ denote the edge $a b$ in the s-th copy $K_{n, n}$ of $\lambda K_{n, n}$ for $0 \leq s \leq \lambda-1$.
Lemma 3. If k is an even integer with $k \geq 4$, then there exist $\lambda k / 2$ edge-disjoint $2 k$-cycles in $\lambda K_{k, k}$.
Proof. A decomposition of $\lambda K_{k, k}$ into $2 k$-cycles is given by the following $\lambda k / 2$ cycles: $C_{+2 r}^{(s)}$, where $0 \leq s \leq \lambda-1, \quad 0 \leq r \leq k / 2-1 \quad$ and $C^{(s)}=\left(b_{0}^{(s)} a_{0}^{(s)} b_{1}^{(s)} a_{1}^{(s)} \cdots b_{k-2}^{(s)} a_{k-2}^{(s)} b_{k-1}^{(s)} a_{k-1}^{(s)}\right)$.

Note that $C_{+2 r}^{(s)}$ can be decomposed into two copies of k-paths:
$P_{+2 r}^{(s, 0)}: b_{2 r}^{(s)} a_{0}^{(s)} b_{1+2 r}^{(s)} a_{1}^{(s)} \cdots b_{k / 2-2+2 r}^{(s)} a_{k / 2-2}^{(s)} b_{k / 2-1+2 r}^{(s)} a_{k / 2-1}^{(s)} \quad$ and $\quad P_{+2 r}^{(s, 1)}: b_{k / 2+2 r}^{(s)} a_{k / 2}^{(s)} b_{k / 2+1+2 r}^{(s)} a_{k / 2+1}^{(s)} \cdots b_{k-2+2 r}^{(s)} a_{k-2}^{(s)} b_{k-1+2 r}^{(s)} a_{k-1}^{(s)}$, that is, $\lambda K_{k, k}$ can be decomposed into λk copies of k-paths.

Lemma 4. ([4]) There exists a P_{k}-decomposition of $K_{m, n}$ if and only if $m n \equiv 0(\bmod k)$, and one of the following (see Table 1) cases occurs.

Lemma 5. ([19]) For positive integers m, n and k, the graph $K_{m, n}$ has a C_{k}-decomposition if and only if m, n and k are even, $k \geq 4, \min \{m, n\} \geq k / 2$, and $m n \equiv 0(\bmod k)$.

Table 1. The conditions of a P_{k}-decomposition of $K_{m, n}$.

Case	k	m	n	Conditions
1	even	even	even	$k \leq 2 m, k \leq 2 n$, not both equalities
2	even	even	odd	$k \leq 2 m-2, k \leq 2 n$
3	even	odd	even	$k \leq 2 m, k \leq 2 n-2$
4	odd	even	even	$k \leq 2 m-1, k \leq 2 n-1$
5	odd	odd	$k \leq 2 m-1, k \leq n$	
6	odd	odd	even	$k \leq m, k \leq 2 n-1$
7	odd	odd	$k \leq m, k \leq n$	

3. Main Results

With the results ([17]) of the $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition of the balanced complete bipartite graph $K_{n, n}$, it is assumed that $\lambda \geq 2$ in the sequel. In this section, we will prove the following result.

Main Theorem. Let k and n be positive integers. The graph $\lambda K_{n, n}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition if and only if k is even, $4 \leq k \leq n$ and $\lambda n^{2} \equiv 0(\bmod k)$.

We first give necessary conditions for a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition of $\lambda K_{n, n}$.
Lemma 6. If $\lambda K_{n, n}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition, then k is even, $4 \leq k \leq n$ and $\lambda n^{2} \equiv 0(\bmod k)$.
Proof. Since bipartite graphs contain no odd cycle, k is even. In addition, the minimum length of a cycle and the maximum size of a star in $\lambda K_{n, n}$ are 4 and n, respectively, we have $4 \leq k \leq n$. Finally, the size of each member in the decomposition is k and $\left|E\left(\lambda K_{n, n}\right)\right|=\lambda n^{2}$; thus $\lambda n^{2} \equiv 0(\bmod k)$.

Throughout this paper, let (A, B) denote the bipartition of $\lambda K_{n, n}$, where $A=\left\{a_{0}, a_{1}, \cdots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \cdots, b_{n-1}\right\}$. We now show that the necessary conditions are also sufficient. The proof is divided into cases $n=k, k<n<2 k$, and $n \geq 2 k$, which are treated in Lemmas 7, 8 , and 9, respectively.

Lemma 7. For an even integer $k \geq 4$, then $\lambda K_{k, k}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition.
Proof. Note that $\lambda K_{k, k}=2 K_{k / 2, k} \cup(\lambda-1) K_{k, k}$. By Lemmas 1 and 4, $2 K_{k / 2, k}$ has a S_{k}-decomposition and a P_{k}-decomposition. In addition, by Lemma 5, $(\lambda-1) K_{k, k}$ has a C_{k}-decomposition. Hence $\lambda K_{k, k}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition.
Lemma 8. Let k be a positive even integer and let n be a positive integer with $4 \leq k<n<2 k$. If λn^{2} is divisible by k, then $\lambda K_{n, n}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition.

Proof. Let $n=k+r$. From the assumption $k<n<2 k$, we have $0<r<k$. Let $t=\lambda r^{2} / k$. Since $k \mid \lambda n^{2}$, we have $k \mid \lambda r^{2}$, which implies that t is a positive integer. The proof is divided into two cases according to the values of t.

Case 1. $t \geq 2$.
Let $G=\lambda K_{n, n}\left[\left\{a_{0}, a_{1}, \cdots, a_{k-1}\right\} \cup\left\{b_{0}, b_{1}, \cdots, b_{k-1}\right\}\right], H_{1}=\lambda K_{n, n}\left[\left\{a_{0}, a_{1}, \cdots, a_{k-1}\right\} \cup\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}\right]$,
$H_{2}=\lambda K_{n, n}\left[\left\{a_{k}, a_{k+1}, \cdots, a_{k+r-1}\right\} \cup\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}\right]$ and $F=\lambda K_{n, n}\left[\left\{a_{k}, a_{k+1}, \cdots, a_{k+r-1}\right\} \cup\left\{b_{0}, b_{1}, \cdots, b_{k-1}\right\}\right]$.
Clearly $\lambda K_{n, n}=G \cup H_{1} \cup H_{2} \cup F$. Note that G is isomorphic to $\lambda K_{k, k}, H_{1}$ is isomorphic to $\lambda K_{k, r}, H_{2}$ is isomorphic to $\lambda K_{r, r}$ and F is isomorphic to $\lambda K_{r, k}$, which can be decomposed into λr copies of S_{k} by Lemmas 1 and 2. In the following, we will show that $G \bigcup H_{1} \cup H_{2}$ can be decomposed into $t-1$ copies of P_{k}, one copy of C_{k} and $\lambda(k+r)$ copies of S_{k}.

Let $p=\lfloor t / 2\rfloor=c(k / 2)+d$, where $0 \leq c \leq \lambda-2$ and $0 \leq d \leq k / 2-1$. Define a subgraph W of G as follows:

$$
W= \begin{cases}\left(\bigcup_{s=0}^{c-1} \bigcup_{s=0}^{k / 2-1} C_{+2 r}^{(s)}\right) \cup\left(\bigcup_{r=0}^{d-1} C_{+2 r}^{(c)}\right), & \text { if } t \text { is even }, \\ \left(\bigcup_{s=0}^{c-1} \bigcup_{r=0}^{k / 2-1} C_{+2 r}^{(s)}\right) \cup\left(\bigcup_{r=0}^{d-1} C_{+2 r}^{(c)}\right) \cup P_{+2 d}^{(c, 0)}, & \text { if } t \text { is odd, }\end{cases}
$$

and the subscripts of b are taken modulo k. Note that $\lambda k-2 p=\lambda k-t>0$ for t is even, and $\lambda k-2 p-2=\lambda k-(t-1)-2=\lambda k-t-1>0$ for t is odd, this assures us that there are enough edges for W.

Note that a $C_{2 k}$ can be decomposed into 2 copies of P_{k}. In addition, $2 p=t$ for t is even as well as $2 p+1=t$ for t is odd, it follows that W can be decomposed into t copies of P_{k}. Since $t=\lambda r^{2} / k<\lambda k-1$, we interchange two edges $a_{k / 2-1}^{(0)} b_{k / 2}^{(0)}$ in $P^{(0,0)}$ and $a_{k / 2-1}^{(\lambda-1)} b_{0}^{(\lambda-1)}$ in $P_{+2\lfloor\lfloor(k+2) / 4\rfloor}^{(\lambda-1,0)}$, then we obtain a new cycle $\left(b_{0}^{(0)} a_{0}^{(0)} b_{1}^{(s)} a_{1}^{(0)} \cdots b_{k / 2-2}^{(0)} a_{k / 2-2}^{(0)} b_{k / 2-1}^{(0)} a_{k / 2-1}^{(0)}\right)$. Hence $W \backslash\left\{a_{k / 2-1}^{(0)} b_{k / 2}^{(0)}\right\} \cup\left\{a_{k / 2-1}^{(\lambda-1)} b_{0}^{(\lambda-1)}\right\}$ can be decomposed into $t-1$ copies of P_{k} and one copy of C_{k}.

Let G^{\prime} be the graph obtained from G by deleting the edges in W. For the case of t is even, we have that

$$
\operatorname{deg}_{G^{\prime}} a_{i}=\lambda k-2 p .
$$

The other case of t is odd, we have that

$$
\operatorname{deg}_{G^{\prime}} a_{i}= \begin{cases}\lambda k-2 p-2, & \text { if } i=0,1, \cdots, k / 2-1, \\ \lambda k-2 p, & \text { if } i=k / 2, k / 2+1, \cdots, k-1,\end{cases}
$$

Let $X_{i}=G^{\prime}\left[\left\{a_{i}\right\} \cup\left\{b_{0}, b_{1}, \cdots, b_{k-1}\right\}\right]$ for $i=0,1, \cdots, k-1$. Then for t is even $X_{i}=\bar{S}_{\lambda k-2 p}$, and for t is odd

$$
X_{i}= \begin{cases}\bar{S}_{k k-2 p-2}, & \text { if } i=0,1, \cdots, k / 2-1 \\ \bar{S}_{k k-2 p}, & \text { if } i=k / 2, k / 2+1, \cdots, k-1\end{cases}
$$

with the center at a_{i}.
In the following, we will show that H_{1} can be decomposed into r copies of $\bar{S}_{\lambda(k-r)}$ with centers in $\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}$, and into k copies of $\bar{S}_{2 p}$ with centers in $\left\{a_{0}, a_{1}, \cdots, a_{k-1}\right\}$ for t is even as well as $k / 2$ copies of $\bar{S}_{2 p+2}$ with centers in $\left\{a_{0}, a_{1}, \cdots, a_{\frac{k}{2}-1}\right\}$ and $k / 2$ copies of $\bar{S}_{2 p}$ with centers in $\left\{a_{\frac{k}{2}}, a_{\frac{k}{2}+1}, \cdots, a_{k-1}\right\}$ for t is odd, that is, there exists an orientation of H_{1} such that

$$
\begin{equation*}
\operatorname{deg}_{H_{1}}^{+} b_{j}=\lambda(k-r) \tag{1}
\end{equation*}
$$

where $j=k, k+1, \cdots, k+r-1$, and for t is even

$$
\begin{equation*}
\operatorname{deg}_{H_{1}}^{+} a_{i}=2 p \tag{2}
\end{equation*}
$$

where $i=0,1, \cdots, k-1$, and for t is odd

$$
\operatorname{deg}_{H_{1}}^{+} a_{i i}= \begin{cases}2 p+2, & \text { if } i=0,1, \cdots, k / 2-1 \tag{3}\\ 2 p, & \text { if } i=k / 2, k / 2+1, \cdots, k-1\end{cases}
$$

We first consider the edges oriented outward from $\left\{a_{0}, a_{1}, \cdots, a_{k-1}\right\}$. If t is even, then the edges
$a_{i} b_{(2 p)_{i+k}}, a_{i} b_{(2 p)^{i+k+1}}, \cdots, a_{i} b_{(2 p)^{i+k+2 p-1}}$ are all oriented outward from a_{i} where $i=0,1, \cdots, k-1$. If t is odd, for $i=0,1, \cdots, k / 2-1$, the edges $a_{i} b_{(2 p+2)_{i+k}}, a_{i} b_{(2 p+2)_{i+k+1}}, \cdots, a_{i} b_{(2 p+2) i+k+2 p+1}$ and
$a_{i} b_{(p+2) k+(2 p) i}, a_{i} b_{(p+2) k+(2 p) i+1}, \cdots, a_{i} b_{(p+2) k+(2 p) i+2 p-1}$ are all oriented outward from a_{i}, where the subscripts of b are taken modulo r in the set $\{k, k+1, \cdots, k+r-1\}$. In both of the cases the subscripts of b are taken modulo r in the set of numbers $\{k, k+1, \cdots, k+r-1\}$. Since $2 p=t<\lambda r$ for t is even, and $2 p+2=(t-1)+2=t+1<\lambda r$ for t is odd, this assures us that there are enough edges for the above orientation. Finally, the edges which are not oriented yet are all oriented from $\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}$ to $\left\{a_{0}, a_{1}, \cdots, a_{k-1}\right\}$.

From the construction of the orientation, it is easy to see that (2) and (3) are satisfied, and for all $b_{j}, b_{j^{\prime}} \in\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}$, we have

$$
\begin{equation*}
\left|\operatorname{deg}_{H_{1}}^{-} b_{j}-\operatorname{deg}_{H_{1}}^{-} b_{j^{\prime}}\right| \leq 1 \tag{4}
\end{equation*}
$$

So, we only need to check (1).
Since $\operatorname{deg}_{H_{1}}^{+} b_{j}+\operatorname{deg}_{H_{1}}^{-} b_{j}=\lambda k$ for $b_{j} \in\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}$, it follows from (4) that $\left|\operatorname{deg}_{H_{1}}^{+} b_{j}-\operatorname{deg}_{H_{1}}^{+} b_{j^{\prime}}\right| \leq 1$ for $b_{j}, b_{j^{\prime}} \in\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}$. Note that t is even, $\sum_{i=0}^{k-1} \operatorname{deg}_{H_{1}}^{+} a_{i}=(2 p) k=t k$, and t is odd,

$$
\sum_{i=0}^{k-1} \operatorname{deg}_{H_{1}}^{+} a_{i}=k / 2(2 p+2)+k / 2(2 p)=(2 p+1) k=t k .
$$

Thus,

$$
\sum_{j=k}^{k+r-1} \operatorname{deg}_{H_{1}}^{+} b_{j}=\left|E\left(\lambda K_{k, r}\right)\right|-\sum_{i=0}^{k-1} \operatorname{deg}_{H_{1}}^{+} a_{i}=\lambda k r-t k=\lambda k r-\lambda r^{2}=\lambda r(k-r) .
$$

Therefore $\operatorname{deg}_{H_{1}}^{+} b_{j}=\lambda(k-r)$ for $b_{j} \in\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}$. This proves (1). Hence, there exists the required decomposition \mathscr{F} of H_{1}. Let X_{i}^{\prime} be the star with center at a_{i} in \mathscr{F} for $i=0,1, \cdots, k-1$. Then $X_{i}+X_{i}^{\prime}$ is an $\bar{S}_{\lambda k}$. Since $m\left(X_{i}+X_{i}^{\prime}\right) \leq \lambda$, by Lemma 2, we obtain that $X_{i}+X_{i}^{\prime}$ can be decomposed into λ copies of S_{k} for $i=0,1, \cdots, k-1$.

Let U_{j} be the $\lambda(k-r)$-multistar with center at b_{j} in \mathscr{F} for $j=k, k+1, \cdots, k+r-1$. Let $U_{j}^{\prime}=H_{2}\left[\left\{a_{k}, a_{k+1}, \cdots, a_{k+r-1}, b_{j}\right\}\right]$ for $k \leq j \leq k+r-1$. Then H_{2} is decomposed into $U_{k}^{\prime}, U_{k+1}^{\prime}, \cdots, U_{k+r-1}^{\prime}$, and each $U_{j}^{\prime}=\bar{S}_{\lambda r}$. It follows that $U_{j}+U_{j}^{\prime}=\bar{S}_{\lambda k}$. Since $m\left(U_{j}+U_{j}^{\prime}\right) \leq \lambda$, by Lemma 2 , we obtain that $U_{j}+U_{j}^{\prime}$ can be decomposed into λ copies of S_{k} for $j=k, k+1, \cdots, k+r-1$. Recall that $\lambda K_{n, n}=G+H_{1}+H_{2}+F$, we have that $\lambda K_{n, n}$ is $\left(C_{k}, P_{k}, S_{k}\right)$-decomposable.

Case 2. $t=1$.
Let $G_{0}^{\prime}=K_{n, n}\left[\left\{a_{0}, a_{1}, \cdots, a_{k / 2-1}\right\} \cup\left\{b_{0}, b_{1}, \cdots, b_{k-1}\right\}\right], G_{1}^{\prime}=K_{n, n}\left[\left\{a_{k / 2}, a_{k / 2+1}, \cdots, a_{k-1}\right\} \cup\left\{b_{0}, b_{1}, \cdots, b_{k-1}\right\}\right]$,
$H=\lambda K_{n, n}\left[\left\{a_{0}, a_{1}, \cdots, a_{k+r-1}\right\} \cup\left\{b_{k}, b_{k+1}, \cdots, b_{k+r-1}\right\}\right]$ and $F=\lambda K_{n, n}\left[\left\{a_{k}, a_{k+1}, \cdots, a_{k+r-1}\right\} \cup\left\{b_{0}, b_{1}, \cdots, b_{k-1}\right\}\right]$.
Then $\lambda K_{n, n}=(\lambda-1) K_{k, k} \cup G_{0}^{\prime} \cup G_{1}^{\prime} \cup F \cup H$. By similar arguments as in the proof of Case 1 , we have that $G_{0}^{\prime} \cup G_{1}^{\prime} \cup F \cup H$ can be decomposed into one copy of P_{k} and $k+2 \lambda r$ copies of S_{k}. On the other hand, by Lemma 5, $(\lambda-1) K_{k, k}$ has a C_{k}-decomposition. Hence $\lambda K_{n, n}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition.

Lemma 9. Let k be a positive even integer and let n be a positive integer with $4 \leq k \leq n / 2$. If λn^{2} is divisible by k, then $\lambda K_{n, n}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition.

Proof. Let $n=q k+r$ where q and r are integers with $0 \leq r<k$. From the assumption of $k \leq n / 2$, we have $q \geq 2$. Note that

$$
\lambda K_{n, n}=\lambda K_{q k+r, q k+r}=\lambda K_{(q-1) k,(q-1) k} \cup \lambda K_{k+r,(q-1) k} \cup \lambda K_{(q-1) k, k+r} \cup \lambda K_{k+r, k+r}
$$

Trivially, $\left|E\left(\lambda K_{(q-1) k,(q-1) k}\right)\right|,\left|E\left(\lambda K_{k+r,(q-1) k}\right)\right|$ and $\left|E\left(\lambda K_{(q-1) k, k+r}\right)\right|$ are multiples of k. Thus $\lambda(k+r)^{2} \equiv 0(\bmod k)$ from the assumption that n^{2} is divisible by k. By Lemmas 1 and $2, \lambda K_{(q-1) k,(q-1) k}$, $\lambda K_{k+r,(q-1) k}$ and $\lambda K_{(q-1) k, k+r}$ have S_{k}-decomposition.
In the case of $r=0$, by Lemma 7, we obtain that $\lambda K_{k, k}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition. In addition, by Lemma 8, $\lambda K_{k+r, k+r}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition for $0<r<k$. Hence there exists a $\left\{C_{k}, P_{k}, S_{k}\right\}$-de composition of $\lambda K_{n, n}$.

Now we are ready for the main result. It is obtained by combining Lemmas 6, 7, 8 and 9.
Theorem 1. Let k and n be positive integers. The graph $\lambda K_{n, n}$ has a $\left\{C_{k}, P_{k}, S_{k}\right\}$-decomposition if and only if k is even, $4 \leq k \leq n$ and $\lambda n^{2} \equiv 0(\bmod k)$.

Remark. Let m and n be positwe integers with $m \geq n$. Since bipartite graphs contain no odd cycle, k is even. In addition, the minimum length of a cycle and the maximum size of a star in $\lambda K_{m, n}$ are 4 and m, respectively, we have $4 \leq k \leq m$. Moreover, each k-cycle in $\lambda K_{m, n}$ uses $k / 2$ vertices of each partite set, which implies that $k / 2 \leq n$. Finally, the size of each member in the decomposition is k and $\left|E\left(K_{m, n}\right)\right|=\lambda m n$, thus
$\lambda m n \equiv 0(\bmod k)$. Hence the obvious necessary conditions for the graph $\lambda K_{m, n}$ to have a $\left\{C_{k}, P_{k}, S_{k}\right\}$-de composition are: 1) k is even, 2) $4 \leq k \leq \min \{m, n / 2\}$, and 3$) \lambda m n \equiv 0(\bmod k)$. It is natural to ask whether they are sufficient.

Acknowledgements

The authors are grateful to the referees for the helpful comments.

References

[1] Tazawa, S. (1985) Decomposition of a Complete Multipartite Graph into Isomorphic Claws. SIAM Journal on Algebraic Discrete Methods, 6, 413-417. http://dx.doi.org/10.1137/0606043
[2] Ushio, K., Tazawa, S. and Yamamoto, S. (1978) On Claw-Decomposition of Complete Multipartite Graphs. Hiroshima Mathematical Journal, 8, 207-210.
[3] Yamamoto, S., Ikeda, H., Shige-Ede, S., Ushio, K. and Hamada, N. (1975) On Claw Decomposition of Complete Graphs and Complete Bipartie Graphs. Hiroshima Mathematical Journal, 5, 33-42.
[4] Parker, C.A. (1998) Complete Bipartite Graph Path Decompositions. PhD Dissertation, Auburn University, Auburn.
[5] Shyu, T.W. (2007) Path Decompositions of $\lambda K_{n, n}$. Ars Combinatoria, 85, 211-219.
[6] Bryant, D. and Rodger, C.A. (2007) Cycle Decompositions. In: Colbourn, C.J. and Dinitz, J.H., Eds., The CRC Handbook of Combinatorial Designs, 2nd Edition, CRC Press, Boca Raton, 373-382.
[7] Lindner, C.C. and Rodger, C.A. (1992) Decomposition in Cycles II: Cycle Systems, In: Dinitz, J.H. and Stinson, D.R., Eds., Contemporary Design Theory: A Collection of Surveys, Wiley, New York, 325-369.
[8] Abueida, A. and Daven, M. (2003) Multidesigns for Graph-Pairs of Order 4 and 5. Graphs and Combinatorics, 19, 433-447. http://dx.doi.org/10.1007/s00373-003-0530-3
[9] Abueida, A. and Daven, M. (2004) Mutidecompositons of the Complete Graph. Ars Combinatoria, 72, 17-22.
[10] Abueida, A. and O'Neil, T. (2007) Multidecomposition of λK_{m} into Small Cycles and Claws. Bulletin of the Institute of Combinatorics and Its Applications, 49, 32-40.
[11] Priyadharsini, H.M. and Muthusamy, A. (2009) $\left(G_{m}, H_{m}\right)$-Multifactorization of λK_{m}. Journal of Combinatorial Mathematics and Combinatorial Computing, 69, 145-150.
[12] Shyu, T.W. (2010) Decomposition of Complete Graphs into Paths and Stars. Discrete Mathematics, 310, 2164-2169. http://dx.doi.org/10.1016/j.disc.2010.04.009
[13] Shyu, T.W. (2010) Decompositions of Complete Graphs into Paths and Cycles. Ars Combinatoria, 97, 257-270.
[14] Shyu, T.W. (2013) Decomposition of Complete Graphs into Cycles and Stars. Graphs and Combinatorics, 29, 301313. http://dx.doi.org/10.1007/s00373-011-1105-3
[15] Lee, H.C. (2013) Multidecompositions of Complete Bipartite Graphs into Cycles and Stars. Ars Combinatoria, 108, 355-364.
[16] Lee, H.C. and Chu, Y.-P. (2013) Multidecompositions of the Balanced Complete Bipartite Graph into Paths and Stars. ISRN Combinatorics, 2013, Article ID: 398473. http://dx.doi.org/10.1155/2013/398473
[17] Lin, J.J. and Jou, M.J. (2016) $\left\{C_{k}, P_{k}, S_{k}\right\}$-Decompositions of Balanced Complete Bipartite Graphs. (Submitted)
[18] Lin, C., Lin, J.J. and Shyu, T.W. (1999) Isomorphic Star Decomposition of Multicrowns and the Power of Cycles. Ars Combinatoria, 53, 249-256.
[19] Sotteau, D. (1981) Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into Cycles (Circuits) of Length $2 k$. Journal of Combinatorial Theory, Series B, 30, 75-81.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, Linkedin, Twitter, etc
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing a 24 -hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work
Submit your manuscript at: http://papersubmission.scirp.org/

