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Abstract

Let L= {Hqu,“'aHr} be a family of subgraphs of a graph G. An L-decomposition of G is an edge-
disjoint decomposition of G into positive integer «; copies of H,, where ie {1,2,---,r}. Let C,,
P, and S, denote a cycle, a path and a star with k edges, respectively. For an integer 1>2, we

prove that a balanced complete bipartite multigraph AK,, has a {C,,P,,S,}-decomposition if

and only if kiseven, 4<k<n and Ant = O(modk).
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1. Introduction

Let F, G and H be graphs. A G-decomposition of F is a partition of the edge set of F into copies of G. If F has a
G-decomposition, we say that F is G-decomposable. Let L={H,H,,---,H,} be a family of subgraphs of a
graph G. An L-decomposition of G is an edge-disjoint decomposition of G into positive integer «; copies of
H,, where ic {1,2, . --,r} . If G has an L-decomposition, we say that G is L-decomposable.

For positive integers m and n, K, , denotes the complete bipartite graph with parts of sizes m and n. A
complete bipartite graph is balanced if m=n. A k-cycle, denoted by C, , is a cycle of length k. A k-star,
denoted by S, , is the complete bipartite graph K, , . A k-path, denoted by F, , is a path with k edges. For a
graph G and an integer 4>2,weuse AG to denote the multigraph obtained from G by replacing each edge e
by A edges each of which has the same ends as e.
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Decompositions of graphs into k-stars have also attracted a fair share of interest (see [1]-[3]). Articles of F, -
decompositions of interest include [4] [5]. Decompositions of some families of graphs into k-cycles have been a
popular topic of research in graph theory (see [6] [7] for surveys of this topic). The study of {G,H } -decom-
position was introduced by Abueida and Daven in [8]. Abueida and Daven [9] investigated the problem of

K k,Sk} -decomposition of the complete graph K, . Abueida and O’Neil [10] settled the existence problem for

Ck,S,H} -decomposition of the complete multigraph AK, for ke {3,4,5}. In [11], Priyadharsini and Muth-
usamy gave necessary and sufficient conditions for the existence of a {G,H } -factorization of AK, where
G,H e{C,,P,,,S,} . Furthermore, Shyu [12] investigated the problem of decomposing K, into paths and
stars with £ edges, giving a necessary and sufficient condition for £ =3.In [13], Shyu considered the existence
of a decomposition of K, into paths and cycles with k edges, giving a necessary and sufficient condition for
k=4 . Shyu [14] investigated the problem of decomposing K, into cycles and stars with k edges, settling the
case k=4. Recently, Lee [15] [16] established necessary and sufficient conditions for the existence of a
{Ck,Sk} -decomposition of a complete bipartite graph and {Pk,Sk} -decomposition of a balanced complete bi-
partite graph. Lin and Jou [17] investigated the problems of the {Ck,ﬂ,Sk} -decomposition of the balanced
complete bipartite graph K, , . It is natural to consider the problem of the {C,,F,,S,} -decomposition of the
balanced complete bipartite multigraph AK,, for A >2. In this paper, the necessary and sufficient conditions
for the existence of such decomposition are given.

2. Preliminaries

Let G be a graph. The degree of a vertex x of G, denoted by deg x, is the number of edges incident with x.
The vertex of degree k in S, is the center of S,. For AcV(G) and Bc E(G), we use G[4] and
G — B to denote the subgraph of G induced by A and the subgraph of G obtained by deleting B, respectively.

When G,,G,, ,G

m

are graphs, not necessarily disjoint, we write G, UG, U---UG, or ULGI' for the

graph with vertex set | J"V(G,) and edge set | E(G,). When the edge sets are disjoint, G=|]J"G,

expresses the decomposition of G into G,,G,,---,G,,. nG is the short notation for the union of n copies of
disjoint graphs isomorphic to G. Let H be a subgraph of K, , with vertex set ¥ (H) and edge set E(H),
and let » be a nonnegative integer. We use H,, to denote the graph with vertex set
{a,. ta; € V(H)} U {bm b, e V(H)} and edge set {al.bﬁ, tab; e E(H)} where the subscripts of b are taken
modulo n. For any vertex x of a digraph G, the outdegree deg, x (respectively, indegree deg x) of x is the
number of arcs incident from (respectively, to) x. A multistar is a star with multiple edges allowed. We use S,
to denote a multistar with k edges. Let G be a multigraph. The edge-multiplicity of an edge in G is the number of
edges joining the vertices of the edge. The multiplicity of G, denoted by m(G) , is the maximum edge-
multiplicity of G.

Lemma 1. ([3]) For integers m and n with m>n =1, the graph K, , has an S, -decomposition if and only

if m>k and
m=0(modk) if n<k,
mn=0(modk) if n>k.

Lemma 2. ([18]) Suppose that m(SM) <A.Then EM is S, -decomposable.

Let a'b") denote the edge ab in the s-th copy K,, of AK, for 0<s<A-1.
Lemma 3. If k is an even integer with k >4, then there exist Ak/2 edge-disjoint 2k-cycles in AK, .
Proof. A decomposition of AK,, into 2k-cycles is given by the following Ak[2 cycles: Ci;i , where

0<s<i-1, 0<r<k/2-1 and C") =(pal’ba---b{"hal pal) ). 0
Note that C') can be decomposed into two copies of k-paths:

+2r
5,0) . 7.(s) (s)p(s s s s s s s1) Lo (s s)g(s s s s s s
P+(2r ) bgr)a(() )bl(-#;ral( ) "'bl(c/g—2+2ral(c ;—Zblg/g—l-#Zral(c ;-1 and P+(2r) : blg/g+2ral(c/;bl(c/;+l+2ral(c ;+1 ”‘b/(c—)2+2ral(c—)2b15—)l+2ral(c—)l , that

is, AK,, canbe decomposedinto Ak copies of k-paths.

Lemma 4. ([4]) There exists a B, -decomposition of K, , if and only if mn EO(mod k) , and one of the
following (see Table 1) cases occurs.

Lemma 5. ([19]) For positive integers m, n and k, the graph K, , has a C, -decomposition if and only if
m,n and k are even, k>4, min{m,n} >k/2,and mn= O(modk).

(=)
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Table 1. The conditions of a F, -decomposition of K, , .

Case k m n Conditions
1 even even even k <2m,k <2n , not both equalities
2 even even odd k<2m-2,k<2n
3 even odd even k<2m,k<2n-2
4 odd even even k<2m-1,k<2n-1
5 odd even odd k<2m-1,k<n
6 odd odd even k<m,k<2n-1
7 odd odd odd k<m,k<n

3. Main Results

With the results ([17]) of the {Ck ,Pk,Sk} -decomposition of the balanced complete bipartite graph K, , , it is
assumed that 4 >2 in the sequel. In this section, we will prove the following result.

Main Theorem. Let k and n be positive integers. The graph AK,, hasa {C,,F,,S,}-decomposition if and
only ifkis even, 4<k<n and An’= O(modk).

We first give necessary conditions fora {C,,P,,S, } -decomposition of 1K, .

Lemma 6. If AK,, hasa {C,,P,S,}-decomposition, then kis even, 4<k<n and An* =0(modk).

Proof. Since bipartite graphs contain no odd cycle, k is even. In addition, the minimum length of a cycle and
the maximum size of a star in AK,  are 4 and n, respectively, we have 4 <k <n . Finally, the size of each
member in the decomposition is & and |E(/1Kn ) )| =An’; thus An’ =0(modk). O

Throughout this paper, let (4,B) denote the bipartition of AK,,, where A4={a,a,-,a,,} and
B ={b,,b,---,b, ,} . We now show that the necessary conditions are also sufficient. The proof is divided into
cases n=k, k<n<2k,and n2>2k,which are treated in Lemmas 7, 8, and 9, respectively.

Lemma 7. For an even integer k >4, then AK,, hasa {C,,F,S,}-decomposition.

Proof. Note that 1K, , =2K;,, U( )Kkk By Lemmas 1 and 4, 2K, ,, hasa S, -decomposition and a
P, -decomposition. In addition, by Lemma 5, (A-1)K,, has a C,-decomposition. Hence AK,, has a
{Ck,ﬂ,Sk} -decomposition. O

Lemma 8. Let k be a positive even integer and let n be a positive integer with 4<k <n<2k.If An® is
divisible by k, then AK,, hasa {C,,F,,S,}-decomposition.

Proof. Let n=k+r. From the assumption k <n <2k, we have O0<r<k.Let t= /1r2/k Since k|An*,
we have k| Ar*, which implies that ¢ is a positive integer. The proof is divided into two cases according to the
values of 7.

Casel. t22.

Let G:ﬂ“Kn,nI:{aoﬂal’“'ﬂak—l}U{bO’blﬂ.nﬂbk—l}]5 Hl:AKn,n[{aO’aI"'.ﬁak—l}U{bkvbkﬂﬂ.“’bkﬂ'—]}}5

H2:/lKn,n[{akﬂakH’“"akw—l}U{bk’bkﬂv'“’bkﬂ'—l}} and F://LKn,n[{ak’akﬂ"“’akﬂ*l}U{bo’bl’.“’bkfl}]'

Clearly AK,,=GUH,UH,UF . Note that G is isomorphic to AK,,, H, isisomorphic to AK,, , H, is
isomorphic to 1K, , and F is isomorphic to AK,,, which can be decomposed into Ar copies of S, by
Lemmas 1 and 2. In the following, we will show that GUH,UH, can be decomposed into ¢#—1 copies of
P, , one copy of C, and /1(k+r) copies of S, .

Let p=|t/2]=c(k/2)+d , where 0<c<A-2 and 0<d <k/2-1. Define a subgraph W of G as
follows:

3 (U Uk/21 +2r) (Uro +2,), if ¢ is even,
. (U U ICS),) (Uro +2,)UPM), if £ s odd,

and the subscripts of b are taken modulo k. Note that Ak —2p=Ak—¢>0 for¢iseven, and
Ak—-2p—-2=2k— (t - 1) —2=Ak—-t—-1>0 for ¢ is odd, this assures us that there are enough edges for W.
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Note that a C,, can be decomposed into 2 copies of P,. In addition, 2p =t for ¢ is even as well as
2p+1=t for tis odd, it follows that /¥ can be decomposed into ¢ copies of B, . Since ¢ = /lrz/k <Ak-1,we

interchange two edges a,({?;_lb,%) in P and a,(j;fb(()l_l) in 1{;[(1’:)2) /4 J,then we obtain a new cycle

(b(o)a(o)b(“')a(o)~--b(°) a9 ) al)) ) Hence W\{a,(f/’;_,bio)}U{a,(‘/iz‘_ll)béﬁ_])} can be decomposed into -1

o 4o O G k/2-2%k/2-20k/2-1% /21 /2
copies of B, and one copy of C, .

Let G' be the graph obtained from G by deleting the edges in W. For the case of ¢ is even, we have that

deg, a, = Ak —2p.
The other case of ¢ is odd, we have that
Ak-2p-2, ifi=0,1-,k/2-1,

degg a; = o
Ak —2p, ifi=k/2,k/2+1,--, k-1,

Let X,.=G'[{a,.}U{bo,b,,---,b,H}J for i=0,1,---,k—1.Then fortiseven X, = SM ,,»and for 71is odd

X = ‘?i/c—prZ’ %fizO,l,---,k/2—1,
1fi=k/2,k/2+1,-~~,k—1

1
S p?

with the center at a, . _
In the following, we will show that H, can be decomposed into r copies of S, kr) with centers in
{bsbysyse++sby,,, } » and into k copies of §, , Wwith centers in {ay,a,,---,a,_,} fortis even as well as k/2 copies

of S

2p+2

with centers in {ao,al,-“,ak } and k/2 copies of §2p with centers in {ak ,a, ,---,akl} for ¢
1 = Za
2 2 2
is odd, that is, there exists an orientation of /, such that
degy, b, = A(k—r), (D)
where j=k,k+1,---,k+r—1, and for ¢ is even
deg}, @, =2p, @)
where i=0,1,---,k—1, and for ¢is odd

ot 2p+2, ifi=0,1-, k/2—1, )
(] =
8 %=\ 0p, i i=k/2,k/24 1 k-1,

We first consider the edges oriented outward from {a,,a,,---,a,_,} . If t is even, then the edges
abm”k, b}zp)ﬂkﬂ, “3@by )40, 8 all oriented outward from 4, where i=0,1,---,k~1.If ¢ is odd, for
i= 091! k 2-1, the edges a; b (2p+2)i+k > a; b (2p+2) z+/c+1’ 4 b (2 p+2)i+k+2 p+1 and
@b a2y GO piaesapyins 2 G paryis(2ppivap AT€ all oriented outward from g, , where the subscripts of b are

taken modulo 7 in the set {k,k +1,-k+r— 1} . In both of the cases the subscripts of b are taken modulo 7 in

the set of numbers {k,k+1,---,k+r—1}.Since 2p=t<Ar fortiseven,and 2p+2=(t—1)+2=1+1<Ar
for # is odd, this assures us that there are enough edges for the above orientation. Finally, the edges which are not
oriented yet are all oriented from {b,,b,,,,--,b,,,,} to {ay,a,---,a,}.

From the construction of the orientation, it is easy to see that (2) and (3) are satisfied, and for all
b;.b, €{b,b, by, } » We have

[deg,, b, —deg;, by| <1. @)

So, we only need to check (1).
Since degy, b, +deg, b, =Ak for b, €{b.,b,,,",b,,, ,}, it follows from (4) that |deg;, b, —deg;, b,|<1

for b,,b, € (bbb, .} . Note that tis even, Y deg), a,=(2p)k =tk and tis odd,

()



J.-J. Lin, M.-]. Jou

k-1
2 degy a,=k/2(2p+2)+k/2(2p) = (2p+ 1)k =tk.

i=0
Thus,

k+r—1 k-1

> deg;, b, =|E(2K,, )|~ Y. deg}, a, = Akr —th = Ay — Ar” = 2r (k= ).

J=k i=0

Therefore degj, b, = A(k—r) for b , €{by.byyyse b, | - This proves (1). Hence, there exists the required
decomposition ./~ of H,.Let X/ be the star with center at a, in ./~ for i=0,1,---,k—1. Then X, + X/
isan S, .Since m(X,+X/)<A,byLemma 2, we obtain that X, + X/ can be decomposed into A copies
of §, for i=0,1,---,k-1.

Let U, bethe l(k - r) -multistar with centerat b, in ./~ for j=k,k+1,---,k+r—1.Let
U =H2[{ak,am,---,akﬂ_l,bjﬂ for k<j<k+r-1. Then H, is decomposed into U;, U, Ui, >
and each U =S, . It follows that U, +U’ =S, . Since m(Uj +U;.)S/1, by Lemma 2, we obtain that
U, + U;. can be decomposed into 4 copies of S, for j=k,k+1,---,k+r—1.Recall that
AK,,=G+H, +H,+F,wehavethat AK, 6 is (C,,F,,S,)-decomposable.

nn

Case2. t=1.
Let G(,)=Kn,n|:{a0=al’”"ak/2—l}U{bO’bl"“’bk—l}:|’ G{:Kn,n|:{ak/2’ak/2+1"”’ak—l}U{b()’bl’.“’bk—l}:|’

H:iKn,n[{aoﬁalﬁ.nﬂakﬂ‘—l}U{bkﬂbkﬂ’“"blﬁr—l}] and F:/?’Kn,n[{ak’alﬁ]"“’alﬁr—l}U{boﬂblﬂ'nﬂbk—l}]'

Then AK,, :(l—l)Kk!k UG, UG/UFUH . By similar arguments as in the proof of Case 1, we have that
G, UG/UFUH can be decomposed into one copy of P, and k+2Ar copies of S, .On the other hand, by
Lemma 5, (A-1)K,, hasa C,-decomposition. Hence AK,, hasa {C,,P,,S,}-decomposition. O
Lemma 9. Let k be a positive even integer and let n be a positive integer with 4<k<n/2. If An® s
divisible by k, then AK,, hasa {C,,F,,S,}-decomposition.
Proof. Let n=qgk+r where q and r are integers with 0<r <k . From the assumption of k <n/2, we have
q > 2. Note that

j’I<n,r1 = ﬂ’qu+r,qk+V = /’i'K(q—l)k,(q—l)k U lKkﬂ',(qfl)k U AK( U iKk

l]*l)k,k"’}‘ +rk+r”

Trivially, ‘E (iK(qfl)k,(q—l)k)

and ‘E(/IK(CF]

, ‘E (/IK ,W’(qfl)k) )k,,w) are multiples of k. Thus

l(k+r)2 =0(modk) from the assumption that n* is divisible by k. By Lemmas 1 and 2, AK .
AK and AK ol

k+r,(q71)k ( )k,k+r

1k (g-1)k *

have S, -decomposition.

In the case of =0, by Lemma 7, we obtain that AK,, hasa {C,,B,sS,}-decomposition. In addition, by
Lemma 8, AK,, ., has a {C,,P,S,}-decomposition for 0<r<k. Hence there exists a {C,,F,,S,}-de
composition of AK, . U

Now we are ready for the main result. It is obtained by combining Lemmas 6, 7, 8 and 9.

Theorem 1. Let k and n be positive integers. The graph AK,, hasa {C,,P,,S,}-decomposition if and only
ifkiseven, 4<k<n and An’ = O(modk).

Remark. Let m and n be positwe integers with m > n . Since bipartite graphs contain no odd cycle, & is even.
In addition, the minimum length of a cycle and the maximum size of a star in AKW are 4 and m, respectively,
we have 4 <k <m. Moreover, each k-cycle in AK, , uses k/2 vertices of each partite set, which implies

that k/2 < n. Finally, the size of each member in the decomposition is k and |E (Km) = Amn , thus

Amn=0(modk). Hence the obvious necessary conditions for the graph AK, , to have a {C,,P,.S,}-de
composition are: 1) k is even, 2) 4 <k <min{m,n/2}, and 3) Amn=0(modk). It is natural to ask whether
they are sufficient.
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