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Abstract 
A new variational method has been proposed for studying the equilibrium states of the interacting 
particle system to have been statistically described by using the density matrix. This method is 
used for describing conductivity electrons and their behavior in metals. The electron energy has 
been expressed by means of the density matrix. The interaction energy of two εkk′ electrons de-
pendent on their wave vectors k and k’ has been found. Energy εkk′ has two summands. The first 
energy I summand depends on the wave vectors to be equal in magnitude and opposite in direc-
tion. This summand describes the repulsion between electrons. Another energy J summand de-
scribes the attraction between the electrons of equal wave vectors. Thus, the equation of wave- 
vector electron distribution function has been obtained by using the variational method. Particu-
lar solutions of the equations have been found. It has been demonstrated that the electron distri-
bution function exhibits some previously unknown features at low temperatures. Repulsion of the 
wave vectors k and –k electrons results in anisotropy of the distribution function. This matter 
points to the electron superconductivity. Those electrons to have equal wave vectors are attracted 
thus producing pairs and creating an energy gap. It is considered the influence of magnetic field on 
the superconductor. This explains the phenomenon of Meissner and Ochsenfeld. We consider a 
new possibility of penetration of the external magnetic field into the superconductor. 
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1. Introduction 
Kamerlingh and Onnes were those who could discover the phenomenon of superconductivity in 1911 [1]. Ac-
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cording to the results obtained in 1933 it was found out that when a specimen was put in a relatively weak mag-
netic field, the superconductivity vanished. Such phenomenon was discovered by Meissner and Ochsenfeld [2]. 
Magnetic field strength Hc at which superconductivity is destroyed is known as the critical field. Temperature 
dependence on the critical field is described by the following empirical formula: 

( ) ( ) ( )20 1 ,c c cH T H T T = −                                   (1.1) 

where ( )0cH  is the magnetic field strength at absolute zero of temperature T = 0; Tc is a critical temperature. 
The dependence (1.1) is plotted in Figure 1. 

The plane (H, T) is represented by a superconductive state phase diagram. The substance in superconductive 
state S is found under the curve (1.1) and that to be in normal state N—above the curve. Any superconductor in-
troduced by such state diagram is known as the type-I superconductor. 

Brothers Fritz and Heinz London could develop the first macroscopic theory of superconductivity in 1935 [3]. 
They mathematically formulated the theory based on principal experimental factors: absence of resistance and 
the Meissner-Ochsenfeld effect: 

  00, .ρ = =B                                    (1.2) 

These facts were acknowledged a priori. For the superconductor magnetic field, the brothers obtained the fol-
lowing equation: 

2

1 0,
λ

∆ − =B B                                    (1.3) 

where 
2

24π
mc

ne
λ =  

Value λ is called a London length of the magnetic field penetration in a superconductor. 
Let us consider a superconductor occupying the half-space y > 0, then the region y < 0 is filled with vacuum 

where a magnetic field B0 can be found as directed along the boundary surface (see Figure 2). In this case, the 
Equation (1.3) can be expressed as follows: 

2

2 2

1 0.x
x

B
B

y λ
∂

− =
∂

                                 (1.4) 

The Equation (1.4) may be expressed as follows: 

( ) ( )0 expxB y B y λ= −                               (1.5) 

 

 
Figure 1. The H-T type-I superconductive state phase diagram.            
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Figure 2. The half-space filled by a superconductor in a 
magnetic field.                                        

 
It should be noted that such function does not agree with the Meissner-Ochsenfeld effect. When magnetic- 

field strength produced on conductor surface exceeds its critical value Hc(T), the superconductivity vanishes. 
But, on the whole, the function (1.5) does not depend on any critical field. 

The Meissner-Ochsenfeld effect is an experimental fact. If the function (1.5) does not depend on the critical 
field, then the Londons theory is not true. Moreover, the superconductivity shall be referred to equilibrium state 
of any matter, i.e. all values are not to be dependent on time t. But the very dependences can be used for deriv-
ing the London’s equation. 

2. Density Matrix 
Any quantum mechanics system can be much closely described by using the density matrix [4]-[12]. The single- 
particle density matrix αα′  meets the following normalizing condition: 

,Nααα =∑                                         (2.1) 

where αα  is the occupation probability for a particle to be in state α. 
The two-particle density matrix 12,1 2′ ′  with figures 1, 2, 1′, and 2′ denoting states 1 2 1, ,α α α′  and 2α′ , as to 

be referred to the fermion system, is an antisymmetric function, i.e. 

12,1 2 21,1 2 12,2 1 21,2 1′ ′ ′ ′ ′ ′ ′ ′= − = − =                                   (2.2) 

Taking into account the above equality let us use the following approximate expression named as the mean 
field approximation for the two-particle density matrix: 

12,1 2 11 22 12 21 .′ ′ ′ ′ ′ ′= −                                        (2.3) 

3. Energy of an N-Particle Fermion System 
Internal energy of the identical particle system may be exactly expressed through the use of the density matrices 

11′  and 12,1 2′ ′  as follows: 

11 1 1 12,1 2 1 2 ,121,1 1,2;1 ,2

1
2

E H H′ ′ ′ ′ ′ ′′ ′ ′= +∑ ∑  ,                         (3.1) 

where 11H ′  and 12,1 2H ′ ′  are matrix elements of the single-particle Hamiltonian ( )1Ĥ  and two-particle interac-
tion Hamiltonian ( )2Ĥ , respectively. Whereas the two-particle density matrix is antisymmetric, it follows from 
the expression (2.2) that the matrix elements 12,1 2H ′ ′  are to be antisymmetric, as well: 

12,1 2 21,1 2 12,2 1 21,2 1 .H H H H′ ′ ′ ′ ′ ′ ′ ′= − = − =                            (3.2) 

The coordinate representation to which the Hamiltonians commonly assigned passes to a certain α-represen- 
tation through the use of system of the orthonormal wave functions ( )qαϕ , where q = {r, ξ}, ξ is a particle spin. 
If we know these functions, we can calculate matrix elements for Hamiltonians by using the known formulas: 
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( )1* ˆ d ,H H qαα α αϕ ϕ′ ′= ∫                                    (3.3) 

( )2*
12,1 2 12 1 2 1 2

ˆ d d ,H H q q′ ′ ′ ′= Φ Φ∫                              (3.4) 

where the above sign of integration is a symbol of both the coordinate integration and spin variable summation; 
Φ12 is a Slater two-particle wave function: 

( ) ( ) ( ) ( ){ }12 1 1 2 2 1 2 2 1
1 .
2

q q q qϕ ϕ ϕ ϕΦ = −                          (3.5) 

On substituting such function in the formula (3.4), we can obtain an antisymmetric matrix as follows: 

( )12,1 2 12,1 2 21,1 2 12,2 1 21,2 1
1 ,
4

H V V V V′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − +                        (3.6) 

where 

( ) ( ) ( ) ( ) ( )* *
12,1 2 1 1 2 2 1 2 1 1 2 2 1 2, d d .V q q U q q q q q qϕ ϕ ϕ ϕ′ ′ ′ ′= ∫                    (3.7) 

( )1 2,U q q  is a potential dual-fermion interaction energy. 
With the expression (2.3) substituted in the formula (3.1), the following formula may be obtained: 

11 1 1 1,2;1 ,2 1 1 2 21,1 1,2;1 ,2E H H′ ′ ′ ′ ′ ′′ ′ ′= +∑ ∑                            (3.8) 

that agrees with the mean field approximation. 

4. Unitary Transformation 
Any single-particle density matrix may be represented by a diagonal element and, particularly, it can be formu-
lated as follows: 

nn n nnw δ′ ′=                                     (4.1) 

where n is a set of quantum numbers that defines state of newly represented single particle; nw  is a parameter 
of diagonal density matrix elements; nnδ ′  is a Kronecker symbol. Subject to the definition, function nw  is the 
probability that the state n can be occupied by one of the particles. Accordingly, function nw  describes the pat-
tern applicable to distribution of particles over various states and meets the following normalizing condition: 

.nn w N=∑                                     (4.2) 

The n-representation passes to the α-representation to which specific matrix elements of the Hamiltonians 
( )1Ĥ  and ( )2Ĥ  are assigned by means of the unitary transformation. 

* ,n n nnU w Uαα α α′ ′= ∑                                 (4.3) 

where nUα  is a unitary matrix; 
* .n n nnU Uα αα δ′ ′=∑                                  (4.4) 

Now, we transform the energy (3.8) by the formula (4.3) to obtain the expression below: 

1 ,
2n n nn n nn n nE w w wε ε ′ ′′= +∑ ∑ ∑                          (4.5) 

where 
*

n n nU H Uα αα αα αε ′ ′′= ∑ ∑                              (4.6) 

—n-state kinetic particle energy, 
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{ }
* *
1 2 12,1 2 1 22nn n n n nU U H U Uαε ′ ′ ′ ′ ′ ′ ′= ∑                       (4.7) 

—double-particle interaction energy containing one n-state particle and another n′-state particle; 

{ } 1 2 1 2, , ,α α α α α′ ′=  

, 0.nn n n nnε ε ε′ ′ ==                                  (4.8) 

5. Entropy 
If to use the distribution function nw , the following well-known approximate expression may be applied for the 
entropy of fermion systems: 

( ) ( ){ }ln 1 ln 1 .B n n n nnS k w w w w= − + − −∑                       (5.1) 

6. Variational Principle 
For finding the fermion state distribution function nw , we can formulate a particular extremum functional of the 
problem. And we can employ the Langrange method defined by its thermodynamic potential: 

,E ST NµΩ = − −                                 (6.1) 

where μ is a chemical potential. The variational principle may be expressed as follows for the distribution func-
tion nw : 

( )1
ln ,n

n
n

w
w

β ε µ
−

= −                               (6.2) 

where nε  is mean one-particle energy: 

.n n nn nn wε ε ε ′ ′′= +∑                                (6.3) 

7. Unitary Electron Matrix in the Crystal Lattice 
The arrangement of atoms within a given type of crystal can be described in terms of the Bravais lattice with lo-
cation of the atoms in an isolated unit cell specified. We will determine position of one of the atoms in the unit 
cell using vector R. Such description agrees with simple crystal lattices including those where type-I supercon-
ductivity can be observed. Let us consider s as a set of quantum numbers defining the wave function of one of 
the states of a valence electron located within the neighborhood of the atom, the position of which is determined 
by vector R. Now, we can write the orthonormal system of wave functions that describe localized electron states 
by using the form shown below: 

( ) ( ) ( ) ,sqα σϕ ϕ χ ξ≡ −r R                             (7.1) 

where { },q ξ= r , ( )sϕ −r R  is a Wannier coordinate s-function; ( )σχ ξ  is a spin function; { }, ,sα σ= R — 
is a set of quantum numbers defining state of an electron in the crystal lattice. The function (7.1) satisfies the 
normalizing conditions as follows: 

( ) ( )* d .q q qα α ααϕ ϕ δ′ ′=∫                               (7.2) 

The normalizing condition (7.2) may be expressed by: 

( ) ( )* – – d ,s s ssϕ ϕ δ δ′ ′ ′′ =∫ RRr R r R r                        (7.3) 

( ) ( )* .σ σ σσξ χ ξ χ ξ δ′ ′=∑                                (7.4) 

Should a system of electrons in metal be brought to a state of thermodynamic equilibrium, any of the States 
( )sϕ −r R  in site R may be occupied by an electron of equal probability and such electrons will be nearly un-
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iformly distributed among lattice sites. In this case, the density matrix will take the following form: 

.ssαα σσδ δ′ ′ ′ ′−= R R                                   (7.5) 

The probability wα  of the state ( )qαϕ  to be occupied by an electron is related to a diagonal matrix density 
element by the ratio of wα αα=  . In this case, 

const,sw w wα σ≡ = =R R                               (7.6) 

where wR  is the probability of filling of one state in site R. 
Let is assume that number of electron states localized in site R, as described by the Wannier functions 
( )sϕ −r R , is as follows: 1, 2, , ss n=  . As far as { }, ,sα σ= R , the normalizing condition 

w Nα
α

=∑  

is formulated as follows: 

2 ,s Ln N w N w υ= =R R                                 (7.7) 

where NL is number of crystal lattice sites, 

LN GNυ =                                     (7.8) 

—degree of state filling, 

2 sG n=                                        (7.9) 

—number of states within one site. 
Let us assume the density matrix ′RR  to be expressed in the form of complex Fourier series: 

( )1 e ,i

L

w
N

′−
′ = ∑ k R R

RR kk                               (7.10) 

where the summation is performed by using wave vectors k of the first Brillouin zone; wk is a wave-vector elec-
tron distribution function that satisfies the following normalizing condition: 

1or ;
L

G w N w
N

υ= =∑ ∑k kk k                            (7.11) 

It follows from the equalities (7.5) and (7.10) that the density matrix αα′  can be transformed to its diagonal 
form by applying the unitary matrix as follows: 

,
1 e .i

s s ss
L

U U
Nακ σ σ σσδ δ′ ′ ′ ′≡ = kR

R k                           (7.12) 

Thus, the density matrix αα′  is transformed to the following one: 

,sswκκ σσδ δ δ′ ′ ′ ′= k kk                                  (7.13) 

where { }, ,sκ σ= k . And the probability 
wκ κκ=   

that the state κ, as described by the wave function ( ) ( )s σψ χ ξk r , is occupied, may be expressed as: 

.w wκ = k                                     (7.14) 

8. Equation for the Electron Wave-Vector Distribution Function 
Let us write the Equation (6.2) for the electron wave-vector distribution function wk : 

( )1
ln ,

w
w

β ε µ
−

= −k
k

k

                               (8.1) 
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where εk  is a mean single electron energy to have the wave vector k: 

.wε ε ε ′ ′′= +∑k k kk kk                                  (8.2) 

The expression for two-electron and wave vector k and k′ interaction energy ε ′kk  has been derived in the 
paper [13]: 

I Jε δ δ′ ′ ′+ −= −kk k k k k ,                                 (8.3) 

herein, we use I and J that have particular dimension energy. Let us substitute this expression in the formula 
(8.2). Now, we will obtain as follows: 

Iw Jwε ε −= + −k k k k .                                 (8.4) 

Using the above formula (8.4) it is possible to transform the Equation (8.1) as follows: 

( )1
ln .

w
Iw Jw

w
β ε µ−

−
= + − −k

k k k
k

                           (8.5) 

This equation describes all superconductor properties [14]-[25]. 

9. Solution of the Equation for the Electron Wave-Vector Distribution Function  
when J = 3I 

The Equation (8.5) contains two unknown quantities—i.e. wk  and w−k . Let us interchange k and –k. 
Taking into account that any kinetic energy is an even function: –ε ε=k k , we can obtain the following equa-

tion: 

( )1
ln .

w
Iw Jw

w
β ε µ−

−
−

−
= + − −k

k k k
k

                          (9.1) 

As applies to the equations (8.5) and (9.1), the unknown functions wk and w−k are composite ones wherein the 
kinetic electron energy εk is used as an intervening variable: 

( ) ( )1 2and .w w w wε ε− = =k k k k                              (9.2) 

The functions 

( )1 1w w ε=  and ( )2 2w w ε=  

are solutions of the equations 

( ) ( )( )

( ) ( )( )

1
2 1

1

2
1 2

2

1 2ln 2 1 1 ,

1 2ln 2 1 1 ,

w f w f w
w

w f w f w
w

τ

τ

− = + − − + 
− = + − − +





                      (9.3) 

where 

4, ,
J I J I
ε µ θτ−

= =
+ +

                                 (9.4) 

is expressed by the I and J energy relation as defined by the following parameter: 

.J If
J I
−

=
+

                                    (9.5) 

In this Section, we will consider the case when parameter J = 3I. Wherein f = 1/2. 
Any solutions of the Equations (9.3) may be rapidly found by computation. A plot of the w(ε, τ) distribution 
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function is demonstrated in Figure 3 that satisfies τ = 0 and parameters J = 3I. Should the functions ( )1w ε  and 
( )2w ε  be unequal, an anisotropic solution is required. With temperature being increased, an anisotropic solu-

tion starts decreasing and thereafter it disappears but should such temperature be rated as equal to a critical value, 
than: 

.
4c

B

I JT
k
+

=                                     (9.6) 

10. Electron Energy Computation at T = 0 
As shown in Figure 3, the wave-vector electron equilibrium distribution function may be both anisochromic and 
multi-valued. The function with the electron energy to be of the least value may be only selected out of a num-
ber of other functions. Now, let us calculate the energy exhibited by electrons to be distributed both isotropically 
and anisotropically. For this purpose, we shall use the normalizing condition that may be expressed as: 

.G w N=∑ kk                                   (10.1) 

The electron system energy in approximation of a medium field takes the form as follows: 

( )21 2 .
2

E G w Iw w Jwε −= + −∑ k k k k kk                        (10.2) 

If the distribution function ω = ω(ε) is known, it is possible to find a chemical potential and electron energy at 
T = 0. Such computation results have been demonstrated in the papers [13]-[25]. The macrostate in which elec-
tron energy is minimized can be actually applied. At T = 0, energy drops down to its minimum rate as specified 
for the state formulated below: 

1 at ,
0 at .

w
I

ε µ
ε µ
≤

=  > −
k

k
k

                             (10.3) 

This function is featured with anisotropy at S Iµ ε µ⊆ − < ≤k . A pattern of this function is plotted in Fig-
ure 4. 

11. Electrons in the Superconductive State 
Taking into account normalizing conditions, we can express the average electron travel velocity as follows: 

.G w
mN

= ∑ kkv k

                                      (11.1) 

If the distribution function is isotropic, the average velocity of electron v will be zero. As applies to some 
anisotropic functions, the distributed formula (11.1) may produce nonzero electron directed motion velocity  
 

 
Figure 3. Anisotropic conduction electron energy distribution function in case 
when J = 3I and at τ = 0.                                                    
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Figure 4. Anisotropic conduction electron energy distribution function in case 
when J = 3I and at τ = 0.                                                 

 
values – i.e. such distribution functions are those that describe electric current. If current states are rather stable 
and can exist even in the absence of any external fields such traveling electron system states are to be considered 
as superconductive. 

Let us view the state of electron gas to be described by the anisotropic distribution function (10.3). Any value 
taken on by the average electron velocity function may be determined against the nature of initial electron gas 
state. The average velocity will be zero when pairs of free and occupied states (with vectors k and –k) are dis-
tributed over the layer S randomly, i.e. no supercurrent flow will be induced in a conductor at cT T< . For ex-
ample, let us consider the probability 1w =k  at 1=k k  when T = 0. Since vector 1k  is found in the region 
S Iµ ε µ⊆ − < ≤k , the probability 0ω− =k  at 1=k k . This also holds true for the probability 1w =k  and 

0w− =k  at 2=k k . Should vectors 1k  and 2k  be randomly distributed over the region S, the average elec-
tron velocity will be zero: max 0.v =  The wave vectors ik  and i−k , as randomly distributed over the region S, 
are shown in Figure 5 with probabilities 1

i
w =k  and 0

i
w− =k . 

When all the states to be considered in one half of the layer S (e.g. at 0xk > ) are occupied and those in 
another half (at 0xk < ) are free, the electron directed motion velocity will be brought to maximum maxv . If the 
anisotropic wave-vector electron distribution function remains stable against slight variation of external condi-
tions, the electron velocity value will be kept unchanged as long as it is can. This means that the metal becomes 
a superconductor. 

The distribution function should be single-valued. This means that a single distribution function value corre- 
sponds to a single energy value. As concerns the anisotropic distribution function, it shall be a double-valued 
one. It simultaneously defines two k and –k wave vector values that agree with two values of the distribution 
function ( )1w w ε− =k k  and ( )2w w ε=k k . But the matter is that such vectors may also agree with 

( )2w w ε− =k k  and ( )1w w ε=k k . This may be to say that it is the very superconduction phenomenon. 
For detecting any superconductivity, low current flow is supplied along a conductor. Then, temperature is de-

creased. A circuit should be closed when temperature drops below a specified value. Steady current is conserved 
and keeps flowing as long as it can. Let us consider that current flows along axis x. The pattern of the k 
wave-vector space electron distribution function at T = 0 is shown in Figure 6. 

12. Mean Electron Energy 
Dependence ( )ε ε ε=  of the electron mean energy ε  on the kinetic energy ε  can be found by the formula 
(8.4): 

( ) ( ) ( )0 1 2at , ,J I wε ε ε ε ε ε ε ε= − − ≤ ≥                            (12.1) 

( ) ( ) ( )1 2 1 2at .Iw Jwε ε ε ε ε ε ε ε= + − < <                            (12.2) 

Such dependence, as rated at various temperature τ values, is graphically represented in Figure 7. 
The above curves are featured with the following specific characteristics. A “well” is demonstrated on each 

curve of the dependence ( )ε ε ε=  at cT T<  wherein it agrees with values of the kinetic energy ε that satis-
fies the following inequalities: 
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Figure 5. Average electron velocity is zero when wave vec-
tors 1k  and 2k  are randomly distributed over the region 

Iµ ε µ− < <k .                                        
 

 
Figure 6. Electron distribution function for a substance sub-
ject to current flow.                                    

 
1 2ε ε ε< <k .                                   (12.3) 

Value 1ε  is specified as the least one of those of the kinetic electron energy ε wherefrom the functions 
( )1w ε  and ( )2w ε  can be determined. Value 2ε  satisfies the condition: 

( ) ( )1 2ε ε ε ε=                                    (12.4) 

according to which borders of the “well”, as demonstrated on the curve of dependence ( )ε ε ε= , are brought to 
the same level. The function is broken off at the right-hand border of the above well. This means that there is a 
certain “gap” in the spectrum of values of the electron energy ε . The gap width ∆ is extended from zero to 
value J when temperature falls down from Tc to zero. With the temperature decreased, the well width 

2 1δε ε ε= −                                      (12.5) 

is also extended from zero to value I at T = 0. 

13. Magnetic Field-Induced Behavior of the Wave Function 
Let us find the wave function ( )qαϕ  from the Schrödinger equation: 
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Figure 7. Dependence of the mean electron energy ε  
on the kinetic energy ε  at various temperature values τ: 
1—τ = 0; 2—τ = 0.75; 3—τ = 0.95.                           

 
( ) ( ) ( ) ( )1 1ˆ ,H q E qα αϕ ϕ=                                  (13.1) 

where ( )1Ĥ  is a single-particle Hamiltonian that describes motion of one electron less interaction with other 
electrons. As for us, we are interested in motion of a valence electron in the metal. 

Since an electron has a spin, the Hamiltonian ( )1Ĥ  in a magnetic field will be formulated as: 

( ) ( )
2 2

1ˆ ,
2

H U H
m

µ= +
∇

− −r                                (13.2) 

where Bµ µ ξ=  is a spin magnetic moment of an electron; 2B e mµ =   is a Bohr magneton; ξ = ±1/2 is an 
electron spin; U(r) is potential electron energy; H is magnetic-field strength. 

( ) ( ) ( ) ,sqα σϕ φ χ ξ= −r R                                  (13.3) 

where { },q ξ= r , ( )sφ −r R  is a coordinate function; R is a vector that defines an ion around which an elec-
tron moves; ( )σχ ξ  is a spin function, { }, ,sα σ= R . 

Let us write the Schrödinger equation for the wave function ( )qαϕ : 

( ) ( )
2 2

1 ,
2 BU H E

m α αµ ξ ϕ ϕ
 
− + − =



∇



r                           (13.4) 

and on substituting the product (13.3), we will obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

1

2 s s B sU r H E
mσ σ σχ ξ φ φ µ ξχ ξ φ χ ξ

 
− + − = 
 

∇ r r r  

If the coordinate function satisfies the equation 

( ) ( ) ( ) ( )
2 2

1
1 ,

2 s sU E
m

φ φ
 
− + = 


∇


r r r                             (13.5) 
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than a spin function shall be used for solving the following equation: 

( ) ( ) ( )1
2 ,B H Eσ σµ ξχ ξ χ ξ− =                               (13.6) 

where 

( ) ( )1 11
1 2 .E E E= +                                     (13.7) 

As follows from the Equation (13.6), the proper value ( )1
2E  will take up: 

( )1
2 .BE Hµ ξ= −                                      (13.8) 

As a result, we will obtain: 

( )11
1 .BE E Hµ ξ= −                                    (13.9) 

Now, we will accept the functions ( )sφ r  as equal to each other: 

( ) ( ) ,sφ φ=r r                                       (13.10) 

where 1,2, , ss n=  . The spin functions are different only. Therefore, we well have two functions: 

( ) ( ) ( ) ,qα σϕ φ χ ξ= −r R                              (13.11) 

where { }, ,sα σ= R . 
Let us consider the energies possessed by an electron when its spin is valued differently. As follows from the 

formula (13.9), when an electron spin is equal to -1/2, its energy is taken as 

( ) ( ) ( )1 1
11 2 2,BE E Hµ− = +  

and when an electron spin is equal to 1/2, its energy is taken as 

( ) ( ) ( )1 1
11 2 2.BE E Hµ= +  

Thus, 

( ) ( ) ( ) ( )1 11 2 1 2 .E E< −  

Therefore, the probability ( ) 2

1 2 1 2χ  when an electron has the spin taken as 1/2 exceeds the probability 
( ) 2

1 2 1 2χ− −  when an electron has the spin taken as −1/2: 

( ) ( )2 2

1 2 1 21 2 1 2χ χ− −> . 

14. Kinetic Energy of Electrons in the Crystal Lattice 
Let us consider that two values of electron energy, as determined by the formula (13.9), correspond to each of 
the states specified in site R. So, matrix elements of the single-particle Hamiltonian may be expressed as: 

( )

( ) ( ) ( ) ( ) ( )

1*

2 2

.

ˆ d

d
2 B ss

H H q

U H
m

αα α α

σ σ
ξ

ϕ ϕ

χ ξ µ ξ φ χ ξ δ

′ ′

′ ′

=

 
′= Φ − − + − − 

∇

 

∫

∑∫ r R r r R r

            (14.1) 

As a result, we will obtain: 

( ) ( ) ( )( ) ( ) ( )1
1 .dB ssH E Hαα σ σ

ξ
φ χ ξ µ ξ φ χ ξ δ′ ′ ′′= − − −∑∫ r R r R r  

Since 
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( ) ( ) ( )1
1 d ,Eφ φ ε ′−′− − =∫ R Rr R r R r                         (14.2) 

here ε ′−R R  is the particle energy produced when passing from site R to site R′. As applies to spin functions, the 
normalizing condition will take up the following form: 

( ) ( ) .σ σ σσξ χ ξ χ ξ δ′ ′=∑                                 (14.3) 

In this case 

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( )

d

d  

,

B

B

B

H

H

H

σ σ
ξ

σ σ
ξ

σ σ
ξ

φ χ ξ µ ξ φ χ ξ

φ φ χ ξ µ ξ χ ξ

δ χ ξ µ ξ χ ξ

′

′

′ ′

′− − −

′= − − −

= −

∑∫

∑∫

∑RR

r R r R r

r R r R r  

where 

( )( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2 .
2
B

B
HHσ σ σ σ σ σ

ξ

µ
χ ξ µ ξ χ ξ χ χ χ χ′ ′ ′− = − − −∑  

Thus, the following formula is obtained: 

( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2 .
2
B

ss ss
HHαα σσ σ σ σ σ

µ
ε δ δ δ χ χ χ χ δ′ ′ ′ ′ ′ ′ ′ ′−= + − − −R R RR          (14.4) 

15. Magnetic Field-Dependent Unitary Transformation 
As applies to the coordinate function (13.11) the normalizing condition will take up the following form: 

( ) ( )*
, d ,sss s ϕ ϕ δ δ′ ′′

′− − =∑ ∫ RRr R r R r                         (15.1) 

when a system of electrons in metal is at the state of thermodynamic equilibrium, any of the states ( )sϕ −r R  
in site R may be occupied by an electron of equal probability and such electrons will be nearly uniformly distri-
buted among lattice sites. Need to say that this is not absolutely true. As follows from the formula (14.4), the 
probabilities, as referred to those intended to occupy any states with various spin orientation, are different from 
each other. But we will ignore such differences. As a matter of fact the density matrix will take the following 
form: 

.ssαα σσδ δ′ ′ ′ ′−= R R                                      (15.2) 

As such, the density matrix αα′  is transformed to take the diagonal form through the use of the unitary ma-
trix: 

,
1 e ,i

s s ss
L

U U
Nακ σ σ σσδ δ′ ′ ′ ′≡ = kR

R k                            (15.3) 

where { }, ,sκ σ′ ′= k  and the density matrix αα ′  pass to the matrix as follows: 

δk kk sswκκ σσδ δ′ ′ ′ ′=                                     (15.4) 

The probability wκ κκ=   that state κ—i.e. that one described by the wave function ( ) ( )s σψ χ ξk r —is oc-
cupied can be expressed as: 

.w wκ = k                                           (15.5) 

16. The Energy of Electrons in the Wave Vector Space 
Let us substitute the formula (14.4) in the following expression for noninteracting electron energy: 
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( ) ( ) ( ) ( )( ) ( )

1

11 2 1 2 1 2 1 2 e
2

iB
ss ss

L

E H

H w
N

αα α α
α α

σ σ σ σ σσ
α α

µε δ χ χ χ χ δ δ δ

′ ′
′

′−
′ ′ ′ ′ ′ ′ ′−

′

=

= + − − − 
  

∑∑

∑∑ ∑ k R R
R R RR k

k



 

Upon simple transformation we can obtain the formula shown below: 

( ) ( )( )2 2
1

1 1 2 1 2 .
4 BE G w G H w σ σσε µ χ χ= − − −∑ ∑ ∑k k kk k                     (16.1) 

Now, we write: 

( )1 ,
4 B Hfµ τΛ =                                    (16.2) 

where 

( ) ( ) ( )( )2 21 2 1 2 .f σ σστ χ χ= − −∑                            (16.3) 

Let us write the energy E1 as follows: 

( )1 .E G wε= −Λ∑ k kk                                  (16.4) 

The interacting electron energy will take up the below form: 

int
1 ,
2

E w wε ′ ′′= ∑ ∑ kk k kk k                                 (16.5) 

where an appropriate electron interaction energy will be formulated as: 

.I Jε δ δ′ ′ ′+ −= −kk k k k k  

On summing up the energies (16.4) and (16.5), we will obtain the following electron energy expression: 

( ) ( )21 .
2

E G w Iw w Jwε −
 = −Λ + −  

∑ k k k k kk                      (16.6) 

17. Equation for the Electron Wave-Vector Distribution Function 
On minimizing the thermodynamic potential Ω, as referred to the energy (16.6), we obtain the following nonli-
near equation to be applied for finding the distribution function wk  of wave-vector conduction electrons: 

( )1
ln .

w
Iw Jw

w
β ε µ−

−
= −Λ + − −k

k k k
k

                        (17.1) 

Let us consider 
.ε ε′ = −Λk k                                     (17.2) 

than the Equation (17.1) will take up its previous solution: 

( )1
ln

w
Iw Jw

w
β ε µ−

− ′= + − −k
k k k

k

                            (17.3) 

Let us consider, for example, ε µ′ =k . As follows from (17.2), we will obtain the expression ε µ= Λ +k .  
This means that a curve of the electron wave-vector distribution function is displaced on its right by value Λ 

as compared with the graphical representation without a magnetic field. As follows from the Equation (17.3), the 
critical temperature is equal to: 

.
4c

I JT
k
+

=  
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18. Electron Energy Calculation at T = 0 
As provided by computational results, the equilibrium distribution function applicable in a wave-vector region is 
multiple-valued. For selecting a real distribution function, it is necessary to find the least electron energy. Now, 
we shall consider the case when a magnetic field destroys the superconductivity at T = 0. Let us 

IΛ = .                                        (18.1) 

The graphical representation of the distribution function is displaced on its write by the above value (see Fig-
ure 8). 

We can bring the upper integration level to ∞ since the probability of occupancy of states with the energy ε to 
be at a ceiling of the conductivity zone is virtually equal to zero. Now, the normalizing condition (10.1) may be 
expressed as: 

( )
0

d 1.A w ε ε ε
∞

=∫                                    (18.3) 

In such a case any energy of electrons (10.2) distributed isotropically may be expressed as: 

( ) ( ) ( ) ( )
0

1 d
2

iE AN I J w wε ε ε ε ε
∞  = + − 
 ∫  

The superconductivity disappears when the distribution function is taken as: 

1 at ,
0 at .

k
k

k

w
ε µ
ε µ

≤
=  ≥

                                    (18.4) 

As a result, we can obtain the following normalizing condition: 

0
d 1,A

µ
ε ε =∫                                       (18.5) 

Thus 

,Fµ ε=                                         (18.6) 

where Fε  is a Fermi energy. Any valence electron energy specified at J = 3I may be calculated as: 

( ) ( )
0

2 d ,mE AN I
µ
ε ε ε= −∫                                (18.7) 

On calculating the above integral we will obtain: 

( )
0

22 4 .
5 3

mE AN I µε ε ε ε = − 
 

 

 

 
Figure 8. Real conduction electron distribution over ener-
gies at τ = 0. The superconductivity-affected magnetic 
field is in active state.                                   
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As a result, the following formula is derived: 

( ) 3 2 .
5

m
F

F

IE Nε
ε

 
= − 

 
                                   (18.8) 

But such superconducting state may in any way survive and the distribution function takes up the form as: 

1 at ,
1 at , 0;
0 at , 0;
0 at  .

x
k

x

I k
w

I k
I

ε µ
µ ε µ
µ ε µ
ε µ

≤
 < < + >=  < < + <
 ≥ +

k

k

k

k

                          (18.9) 

As applies to the normalizing condition, the equation takes up the form as: 

1

0

1d d 1.
2

A A
µ µ

µ
ε ε ε ε

+
+ =∫ ∫                             (18.10) 

The equation gives the following chemical potential: 
2

21 .
2 16F

F F

I Iµ ε
ε ε

 
= − − + 

 
                             (18.11) 

An electron energy may be calculated by the formula: 

( ) 1

0

1 1 1( ) d d .
2 2 2

sE AN J I AN J
µ µ

µ
ε ε ε ε ε ε

+   = −Λ − − + −Λ −   
   ∫ ∫  

Let us suppose that J = 3I and Λ = I. And the following form will be obtained: 

( ) ( ) 1

0

1 52 d  d .
2 2

sE AN I A N I
µ µ

µ
ε ε ε ε ε ε

+  = − + − 
 ∫ ∫                    (18.12) 

As provided by the above equation, we can obtain: 

( )
2

3 3 32 .
5 20 16

s
F

F F

I IE Nε
ε ε

    = − − − +  
    

                         (18.13) 

Now, we can find the difference in energy: 

( ) ( ) 3 51 0.
20 4

m s

F

IE E NI
ε

 
− = − − + < 

 
                            (18.14) 

As we can see, the energy of state ( )mE  to be induced under the superposition of the superconductivi-
ty—affected magnetic field occurs to be less than the superconductivity state energy ( )sE : 

( ) ( ) .m sE E<                                       (18.15) 

This means that the superconductivity can vanish under magnetic field effect when its strength, as defined on 
a surface of a superconductor, is equal to a critical field. This condition meets Meissner-Ochsenfeld effect. 

19. Meissner-Ochsenfeld Effect 
Let us consider that parameter Λ is equal to I. In this case, the distribution pattern is displaced on its right. Now, 
we can find the critical magnetic-field strength, as rated at T = 0, through the use of the formulas (16.2) and 
(18.1): 

( ) ( )1 0 0 .
4 B cH f Iµ =                                   (19.1) 
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If temperature τ exceeds zero, the critical magnetic-field strength subject to the formula (16.2) is formulated 
as: 

( ) ( ) ( )1 .
4 B cH fµ τ τ δε τ=                                 (19.2) 

where ( )δε τ  is a width of the potential well (12.5) on the mean electron energy dependence of its kinetic 
energy. 

With the graphical representation of the mean electron energy dependence applied against its kinetic energy 
shown in Figure 7, it is possible to plot the critical magnetic-field dependence of temperature. For the above 
graphical representation (refer to Figure 1). If to compare the plots demonstrated in Figure 1 and Figure 9 with 
the dependence of the critical-field strength considered against that of the theoretical one it can be seen that they 
match to each other. 

By what way does the width of the energy well behave at constant temperature (τ = const), provided that the 
external magnetic-field strength jumps from zero to value H? In case of absence of the magnetic field, the width 
of a well will be rated at ( )δε τ . When the magnetic field of the strength H is produced on a superconductor 
surface, the kinetic energy (17.2) is displaced on its right by a certain value. In this case, energy wells are not 
subject to variation but displaced on their right. It is possible to assume that the electron energy will take up the 
least value when some portion of a well is displaced by value ( ) 4B H fµ τ . Thus, the superconducting well 
width is represented by the formula: 

( ) ( ) ( )1  
4 B H fε τ δε τ µ τ∆ = −                               (19.3) 

Let us substitute ( )δε τ  in the Equation (19.3) by using the formula (19.2). Now, we will obtain: 

( ) ( ) ( )1 .
4 B cf H Hε τ µ τ τ∆ = −                               (19.4) 

When the magnetic-field strength H is equal to the critical value ( )cH τ , the superconducting well width will 
be brought to zero. 

20. Supercurrent 
Any superconductor current flow is featured with its density matrix shown in Figure 6. Mean electron velocity 
is: 

.v w
mN

= ∑ kk k

                                     (20.1) 

 

 
Figure 9. Meissner-Ochsenfeld effect.               
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Now, we substitute the sum (20.1) for the following integral: 

3
3

 d .
8π

G Vv w k
mN

= ∫ kk

                                (20.2) 

Using the above formula, we calculate mean velocity for T = 0 with the formula (18.2) considered as true. 
This formula makes it possible to find radii k1 and k2 of the spheres shown in Figure 6: 

2 2 2 2
1 2, .

2 2
k k I
m m

µ µ= = +
   

As a result, we will obtain as follows: 

( )
1 2

22
, .

m Im
k k

µµ +
= =

 

 

The layer thickness, as specified in Figure 6, will be approximately equal to: 

2 1 .
2 F

I mk k kδ
ε

= − ≅


                               (20.3) 

In case of absence of external magnetic fields, when an electron distribution pattern is described by the for-
mula (18.9), the largest value of mean electron velocity produced in the flow of supercurrent will be formulated 
as: 

( )
max max

3 03 or .
4 2 4 2F F

Iv v
m m

δε

ε ε
= =                         (20.4) 

As it is follows the respective electric current density vector can be expressed as: 

max max .j env=                                    (20.5) 

With the external magnetic field applied while its strength is kept on the level of less than the critical value, 
the following mean electron velocity can be obtained: 

( ) ( )3
.

2 F

v
m
ε τ

τ
ε

∆
=  

If to substitute the formula (19.4), we will obtain the expression shown below: 

( ) ( ) ( )
3

.
16 2

B
c

F

f
v H H

m
µ τ

τ τ
ε

= −                               (20.6) 

Now, the current flowing along the superconductor will have the density determined by the current velocity 
(20.6): 

( ) ( ).j envτ τ=  

As a result, we obtain the formula expressed as: 

( ) ( ) ( )
3

,
16 2

B
c

F

en f
j H H

m
µ τ

τ τ
ε

= −                               (20.7) 

where ( )cH H τ≤ . When the external field strength exceeds its critical value, the superconductivity vanishes 
and the density vector will be determined by the substance conductivity ρ. 

21. Magnetic Field in the Superconductor 
It is need to remind that we investigate equilibrium state of the superconductor. Time independent functions are 
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to be considered only in this state. These functions satisfy the equations expressed as: 

4πrot ,
c

=H j                                       (21.1) 

div 0.=B                                          (21.2) 

Let us consider the magnetic field effect produced on a planar border of the superconductor, provided that the 
magnetic field vector H runs parallel to the border. We arrange axes x lengthwise the conductor border and pa-
rallel to vector H and axis y—perpendicularly to the border (see Figure 10). 

In this case, the Equation (21.1) takes up the form as: 

d 4π .
d

x
z

H
j

y c
− =                                    (21.3) 

Since any superconducting current is produced by a negative component zj  of vector J: 

,zj j= −  

substituting the value (20.7) in this equation we will obtain the formula expressed as: 

( ) ( )d
,

d
x

c x
H

g H H
y

τ τ= −                                (21.4) 

where 

( ) ( )3π
.

4 2
B

F

en f
g

c m
µ τ

τ
ε

=                                  (21.5) 

In view of the superposition principle, the magnetic field vector H can be considered as equal to the sum of 
the external and magnetic fields to be created by supercurrents: 

( ) ( )external .c= +H H H                                  (21.6) 

Let us consider that any supercurrent flowing along axis z, as demonstrated in Figure 10, is produced in a 
substance with the external magnetic field absent: 

( )external 0.=H  

Such current may flow along the superconductor as long as it can. As concerns to electrons, they achieve their 
mean velocity. The supercurrent produces am self-magnetic field featured with the strength of ( )c

xH  that satis-
fies the equation as: 
 

 
Figure 10. Layout of the coordinate axes lengthwise the planar 
border of the superconductor. Currents produced by supercon-
ducting electrons are graphically represented here.                   
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( )
( ) ( ) ( )d

.
d

c
cx

c x
H

g H H
y

τ τ = −                               (21.7) 

Any strength produced by the supercurrent will be equal to zero at the superconductor border: 

( ) ( )0 0.c
xH =                                      (21.8) 

Since the strength satisfies the very condition it can be expressed as: 

( ) ( ) ( ) ( )1 e .c g y
x cH y H ττ − = −                               (21.9) 

For the graphical representation of this function (see Figure 11). 
Now, we create the external magnetic field running lengthwise axis x with its strength represented by  
( ) ( )external
xH y . It is evident that the above field strength may have any alternate mark: ( ) ( )external 0xH y <  or  
( ) ( )external 0xH y > . The self-magnetic field of the superconductor is added to a just created field as specified by 

the principle of superposition. Therefore, the complete field will be formulated as: 

( ) ( ) ( ) ( ) ( )external .c
x x xH y H y H y= +                           (21.10) 

Let us substitute the complete field (21.10) in the Equation (21.4). We will obtain the formula shown below: 
( ) ( )

( ) ( ) ( ) ( )externald d
d d

external c
cx x

c x x
H H

g H H H
y y

τ τ + = − −  .                   (21.11) 

We subtract the Equation (21.7) from the Equation (21.11). And the following external field equation is ob-
tained: 

( )
( ) ( )

external
externald

.
d
x

x
H

g H
y

τ= −                              (21.12) 

The external field strength, as determined at the border of the superconductor, will be equal to the given value 
±H0 to be subject to change throughout an experiment: 

( ) ( ) 00 .external
xH H= ±                                  (21.13) 

Since the function ( ) ( )external
xH y  satisfies the starting condition it can be formulated as follows: 

( ) ( ) ( )
0e .external g y

xH y H τ−= ±                                (21.14) 

This function is graphically represented in Figure 12. Here the value (21.14) is positive: 

( ) ( )external 0.xH y >  

Thus, we could obtain the strength of the external magnetic field going down inside the superconductor. The 
 

 
Figure 11. The self-magnetic field produced by supercurrent.       

http://dx.doi.org/10.4236/oalib.1102418


B. V. Bondarev 
 

OALibJ | DOI:10.4236/oalib.1102418 21 February 2016 | Volume 3 | e2418 
 

 
Figure 12. External magnetic field penetrating inside the superconductor.      

 
complete field (21.10) is equal to the magnetic field produced by supercurrent and to the external field, provided 
that ( ) ( )external 0xH y >  takes up the form as follows: 

( ) ( ) ( ) ( )
0e 1 e .g y g y

x cH y H Hτ ττ− − = + −                        (21.15) 

When the external field strength takes up the following form 

( )0 ,cH H τ=                                     (21.16) 

the function (21.15) will be equal to the critical field: 

( ) ( ).x cH y H τ=                                   (21.17) 

With 0H  subsequently increased, the self-magnetic field vanishes and the complete field strength will be 
equal to that of the external field: 

( ) 0 .xH y H=                                      (21.18) 

So, it is proved that when value H0 belongs to the interval 

( )00 ,cH H τ≤ <                                    (21.19) 

the superconductivity will be applicable in the conductor under the Meissner-Achsenfeld effect. But if value 
0H  exceeds the critical one: 

( )0 ,cH H τ≥                                       (21.20) 

the superconductivity vanishes. 
We have viewed in details the case when the strengths ( )externalH  and ( )cH  of the external and self-magnetic 

fields runs in the same direction. And this is time to consider the strengths being directed differently. So we can 
obtain the following formula: 

( ) ( ) ( ) ( )
0e 1 e .g y g y

x cH y H Hτ ττ− − = − + −                         (21.21) 

At ( )0 cH H τ= , this function will take up the form: 

( ) ( ) ( )1 2e g y
x cH y H ττ − = −  . 

As follows from the above, the Meissner-Ochsenfeld effect cannot be applicable. To remedy such condition, 
it is necessary to specify the external field as that changing direction of supercurrent flow. Thus, the direction 
of the superconductor self-magnetic field vector is considered as that matching the direction of the exter-
nal magnetic field strength. As provided by the given calculations, the external magnetic field goes down in-
side the superconductor thanks to presence of the magnetic field produced by supercurrent. 
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Using the formula (20.7), let us find the supercurrent density as dependent on coordinate y. We substitute the 
formula (21.15) in the formula (20.7). As a result, we will obtain the following formula: 

( ) ( ) ( ) ( )
0 0, , e ,g y

cj y H K H H ττ τ τ −= −                        (21.22) 

where 

( ) ( )3
.

16 2
B

F

en f
K

m
µ τ

τ
ε

=  

As follows form the above formula, the density of current goes down from the superconductor border to an 
exponent. In case when the external magnetic field is absent (H0 = 0), the density will be equal to 

( ) ( ) ( ) ( ), ,0 e .g y
cj y K H ττ τ τ −=                            (21.23) 

At ( )0 cH H τ= , the supercurrent density vanishes: 

( )( ), , 0.cj y Hτ τ =                                (21.24) 

22. Magnetic Field in the Spherical Superconductor 
Let us now consider behavior of the magnetic field both inside and outside a spherically shaped superconductor. 
The superconductor at T > Tc, in case of absence of the superconductivity, is demonstrated in Figure 13. 

In case when the temperature is brought to the level of below the critical value – i.e. T < Tc, superconductivity 
is created in the superconductor. This very case is shown in Figure 14. Such a pattern exists till an external field 
has the strength less than that of the critical field. If the strength exceeds that of the critical field, the supercon-
ductivity vanishes and the pattern shown in Figure 13 is applied. Both the self-magnetic field and external 
field vectors have the same orientation. 

Now, we will deactivate the external magnetic field in the state when temperature is less than the critical one: 
T < Tc. In this case, the superconductivity it is not vanished. The supercurrent is not changed but remains the 
same as before. And the structure of self-magnetic field lines is to be changed just a little (see Figure 15). 

23. Quantum Capture and Quantum Levitation 
Let is consider the quantum capture effect. Such capture effect is produced by any permanent magnet fixed at 
the constant height level. A disk-shaped superconductor is positioned below it less any supports. For a graphical 
layout (see Figure 16). 

Let us assume that the external field vector H(external), superconductor self-magnetic field vector H(c) and su-
perconductor magnetic moment vector Pm have the same orientation. According to the physical theory it is 
 

 
Figure 13. External magnetic field produced in the 
superconductor at T >Tc.                               
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Figure 14. Magnetic field in the conductor at T < Tc; 
the external magnetic field is forced out of the su-
perconductor and its strength gets less than that of 
the critical field: ( )external

cH H< .                    
 

 
Figure 15. Self-magnetic field in the conductor pro- 
duced by supercurrent at T < Tc; no external mag-
netic field is applied.                             

 

 
Figure 16. Quantum superconductor capture at T < Tc.         

 
known that in this case the potential superconductor energy produced in an external field will be equal to the 
following: 
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( ) ( ) ( ) ( )extenral external .p mU x p B x= −                             (23.1) 

The superconductor obtains the capacity to move in the space. The strength that makes effect on the super-
conductor is coupled with its potential energy formulated as follows: 

( )
( ) ( )extenrald

.
d

p
x

U x
F x

x
= −                                (23.2) 

The external magnetic field is not homogeneous by nature and it has excess magnetic induction near a per-
manent magnet. Any force acting on the superconductor will make it move to those space regions wherein the 
energy (23.1) is reduced. If we direct the external magnetic field oppositely, it makes the supercurrent flow be-
ing reoriented to another direction along with the self-magnetic field. Thus, the external magnetic field, self- 
magnetic field and vector Pm will have the same orientation with the strength remained unchanged. 

As provided by (23.1), the superconductor has the energy reduced at those areas where magnetic induction is 
exceeded. Therefore, the superconductor will be pulled into the region where an external field is stronger than 
that in other regions at x > x0, where x is a distance from a permanent magnet to the superconductor, x0 is an 
equilibrium position of the superconductor. 

According to the formula (21.22) the supercurrent density will be approximately equal to as follows: 

( )( ) ( ) ( ) ( ) ( )0 0 0, , exp ( ) .cj r H x K H H x g r rτ τ τ τ= − − −                      (23.3) 

where 0r  is a distance from the superconductor center to its edges; r is a radial coordinate; ( )0H x  is a exter-
nal magnetic field strength on the superconducting disk surface edge. The external field strength ( )0H x  is in-
creased while approaching to the permanent magnet till to the condition when it may be even equal to the critical 
field ( )cH τ . In this case, the current density will be equal to zero. As a matter of fact, the superconductivity 
vanishes, the superconductor self-magnetic field is also brought to zero, and the superconductor fails pulling to 
the magnet but falls down. Therefore, the potential superconductor energy U(x) may have the approximate pat-
tern demonstrated in Figure 17. While the superconductor is spaced off the permanent magnet, its potential 
energy exhibits an increasing function. On approaching it the permanent magnet its potential energy exhibits a 
decreasing function. The dependence of strength on the distance is graphically represented in Figure 18. 

The graph in Figure 18 explains thequantum trappingof the superconductor. As can be seenfrom Figure 18, 
the strength of the superconductorreturnsto the position where ox x= . This is thepositionof stable equilibrium 
superconductor, when heis in a stateof quantumtrapping. 
Now consider thequantumlevitation, when the superconductoris located above thefixedpermanent magnet (see. 
Figure 19). 

The potential energy when ox x> , which has a superconductor in an external field is determined by formula 
(23.1). The graphpotential energy are shown in Figure 20. Now let’s see how it will behave in a superconductor, 
when ox x< . Superconducting current is equal to (23.3). When the superconductor close to a permanent mag- 
 

 
Figure 17. Potential superconductor energy.                 
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Figure 18. Superconductor acting force.                              

 

 
Figure 19. Quantum levitation of a superconductor at T < Tc.              

 

 
Figure 20. The potential energy of a superconductor.                          

 
net, the value of ( )0H x  decrease of xincreases and tends to the critical value of the ( )cH τ .  But until the 
moment when the current is zero, the magnetic moment of the superconductor mp  decreases. Consequently, 
the potential energy is the largest magnitude and becomes an increasing  
function (see Figure 20). 

Differentiating the potential energy in xand from (23.2), we construct a graph of the power of location. The 
graphpower is shown in Figure 21. The strength of the superconductor is always striving to return to the position 

ox , where the force is zero. This is the position of stable equilibrium. 

24. Conclusions 
The electron model in metal, as described in this paper, may be used as a basis of an alternative superconductiv-
ity theory. Such model significantly varies from those ones applied in the modern superconductivity theory.  
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Figure 21. The force acting onthe superconductor.           

 
Here, the superconductivity is caused by repulsion of k and −k wave vector electrons but electron pairs and 
energy gap—by attracting of equal wave vector electrons. Such electrons are statically described in scope of a 
particular density matrix formalism featured with its simplicity typical for the appearance of mathematical for-
mulas and their physical content. The problem under consideration demonstrates advantages of the density ma-
trix method. 

Influence of magnetic field effects on the superconductor has been studied in the context of this theory. The 
following aspects have been proved: 

1. Any magnetic field is able to displace the electron wave vector distribution function pattern towards in-
creased kinetic energy values. 

2. The critical magnetic field ( )cH τ  is directly proportional to the energy well width δ ε. 
3. It has been found that there are dependences on penetration of the supercurrent external field strength and 

self-magnetic field strength into the superconductor. 
4. The dependence of the supercurrent density on the depth of penetration, temperature, and strength of ex-

ternal and critical fields has been found. 
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