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Abstract 
 
Temperature is one of the most principle factors affects aquaculture system. The water temperature is very 
important parameter for shrimp growth. It can cause stress and mortality or superior environment for growth 
and reproduction. The required temperature for optimal growth is 34˚C, if temperature increase up to 38˚C it 
causes death of the shrimp, so it is important to control water temperature. Solar thermal water heating sys-
tem is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt as pre-
sented in this paper. This paper introduces a complete mathematical modeling and MATLAB SIMULINK 
model for the solar thermal aquaculture system. Moreover the paper presents the control of pond water tem-
perature using artificial intelligence technique. Neural networks are massively parallel processors that have 
the ability to learn patterns through a training experience. Because of this feature, they are often well suited 
for modeling complex and non-linear processes such as those commonly found in the heating system. They 
have been used to solve complicated practical problems. The simulation results indicate that, the control unit 
success in keeping water temperature constant at the desired temperature by controlling the hot water flow 
rate. 
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1. Introduction 
 
The shrimp farming is an important economical activity 
in many countries [1]. Intensive aquaculture is a modern 
cultivation way and it develops fast in many countries. 
Recently, People pay more and more attention on aqua-
culture for its advantages of high yield, no-time-limit, 
low-feed and high-utilization of water [2]. The purpose 
for applying process control technology to aquaculture in 
developed countries encompasses many socioeconomic 
factors, including variable climate. Anticipated benefits 
for aquaculture process control systems are to be in-
creased process efficiency, reduced energy and water 
losses, reduced labor costs, reduced stress and disease, 
improved accounting, improved understanding of the 
process [3]. 

The study of artificial neural networks (ANN) is one 
of the two major branches of intelligence control, which 
is based on the concept of artificial intelligence (AI). AI 
can be defined as computer emulation of the human 
thinking process. During the last ten years, there has been 

a substantial increase in the interest on artificial neural 
networks. During the last ten years, there has been a sub-
stantial increase in the interest on artificial neural net-
works. The ANNs are good for some tasks while lacking 
in some others. Specifically, they are good for tasks in-
volving incomplete data sets, fuzzy or incomplete infor-
mation and for highly complex and ill-defined problems, 
where humans usually decide on an intuitional basis 
[4-6]. In this paper the control of water temperature of 
aquaculture system is achieved. ANN control is chosen 
to this task due to high efficiency in control application. 
 
2. Mathematical Model of Solar Thermal 

System 
 
Storage tank temperature is an important parameter which 
influences the system size and performance. Energy bal-
ance of a well mixed storage tank can be expressed as [7] 
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where  water density (kg/m3), Vs is is storage tank vol-
ume (m3), Tst is storage tank temperature (˚C), Cp is spe-
cific heat of water (4190 J/kg·˚C), qc is actual useful en-
ergy gain, ql is load energy, and qstl is storage tank losses. 
 
2.1. Flat Plate Collector Modeling 
 
Solar useful heat gain rate (qc) from the collector array is 
calculated by 

 c R c l i aq F A G U T T


              (2) 

where qc represents actual useful energy gain (W), FR the 
collector heat removal factor, G intensity of solar radia-
tion, in (W/m2), Ac collector surface area (m2), (α) is the 
transmittance absorptance product, Ul is collector overall 
heat transfer coefficient (W/m2·˚C), Ta is the ambient 
temperature (˚C), and Ti is the inlet temperature. Where 
+ sign indicates that only positive values of qc is consid-
ered in the analysis. This implies that hot water from the 
collector enters the tank only when solar useful heat gain 
becomes positive [7]. 
 
2.2. Mathematical Modeling of the Aquaculture 

Pond 
 
A numerical model based on energy balance was devel-
oped to simulate the thermal behavior of the open-pond 
system. Assumed uniform temperature for the entire 
pond, and thus applied a well-mixed model [8]. 
 
2.2.1. Evaporation Losses 
The evaporation heat loss is the largest loss component 
and is given 

  1 3
35 43e p a p a p aq A P V T T        

    (3) 

where qe is the evaporation loss (W), V is the wind speed 
in (m/s) in the vicinity of the pond, Pa the ambient air 
pressure (101.3 k·Pa). TP is the pond temperature, Ta is 
the ambient temperature, ωP is the saturation humidity 
ratio at the pond temperature, ωa is the humidity ratio of 
the ambient air above the pond, Ap is the area of the pond 
[8,9]. 
 
2.2.2. Convection Losses 
Heat losses due to convection to the ambient air can be 
expressed as [8,9] 
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            (4) 

 
2.2.3. The Net Radiation Losses 
Results from the surface of the pond to the sky which can 
be expressed as [8,9]: 

 4 4273r p pq A T T  s
     

        (5) 

where qr is the radiation loss, ε is the emissivity of the 
surface, σ is the Stefan-Boltzmann constant, TS is the sky 
temperature in degrees Kelvin, Tp is the pond tempera-
ture. 
 
2.2.4. Solar Radiation Heat Gain 
Heat gain due to the absorption of solar radiation by the 
pond is given by [8,9] 

s pq A G                 (6) 

where   is pond absorptance (0.9). 
 
2.3. The Control Thermostatic Valve Modeling 
 
The required characteristic of this valve must be linear, 
such that controlling the valve input signal, will directly 
control the mass flow rate of water. Therefore, the trans-
fer function of the used valve will be considered to be a 
first order one, as 

  1

1vG s
s


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                (7) 

 
3. Required Pond Design 
 
The pond is selected to be a rectangular shape as shown 
in Figure 1. The parameters of the pond are indicated in 
Table 1. 
 

 L 

 W

 
(a) 

1.22 m

2 m 
 

(b) 

Figure 1. Pond design (a) Pond dimension; (b) Pond cross 
section detail. 

 
Table 1. The pond dimension. 

Length (m) L 20 

Width (m) W 8 

Depth (m) d 1.22 

Volume (m3) V 168 

Area (m2) A 64 
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4. Neura rk Desc ption 

en suggested for 

l Netwo ri
 
n recent years, neural solutions have beI

many industrial systems using either feed-forward or 
recurrent neural networks. The ANN is usually made up 
of activation function neurons and training algorithm is 
normally used to train the network either online or off- 
line. Some applications use neurons with a radial base 
activation function. The ANN may play different roles: 
plant identification, non-linear controller, and fault sig-
naling. Typical neural networks used for identification 
purposes are multilayer feed-forward structures contain-
ing neurons with activation function. There are two con-
figurations for plant identification: the forward configu-
ration and the inverse configuration [10-12]. A neural 
network consists of a number of processing elements 
“neurons” each of which have many inputs but only one 
output. In a typical network there are three layers of 
neurons, which are input layer receives input from the 
outside world, hidden layer which receive inputs from 
the input layer neurons and the output layer which re-
ceives inputs from the hidden layers and passes its output 
to the outside world and in some cases back to the pre-
ceding layers. In a feed forward neural network, the 
value of each node in a particular hidden layer is the re-
sult of a non linear transfer function a whose argument is 
the weighted sum over all the nodes in the previous layer 
plus a constant term b which is referred to as the bias as 
presents in Equation (8) 

i j ij
j

x y W b                   (

The j subscript refers to a summatio
th

8) 

n of all nodes in 
e previous layer of nodes and the i subscript refers to 

the node position in the present layer. In order to solve 
for the weight and bias values of Equation (8) for all 
nodes, one requires a set of input patterns, representative 
of the system behavior. A variety of training algorithms 
are available but in general, to train a network, one be-
gins with a set of training data consisting of the input 
vector, and corresponding target vector. The internal 
weights are adjusted until the sum of differences between 
the neural network outputs and the corresponding target 
is minimized to a pre-determined level for all the training 
data. A sigmoidal function is usually used for the transfer 
function as it enables a finite number of nodes in a single 
hidden layer to uniformly approximate any continuous 
function 

1

1 ej xj
y 


                  (9) 

 
.1. The Error Back-Propagation Algorithm 

 the 

ne named “error back-propagation”, or simply “back- 

4
 
The most popular supervised training algorithm is

o
propagation”. It involves training a FFANN structure 
made up of activation function neurons. The back-pro- 
pagation algorithm is a gradient method aiming to mini-
mize the total operation error of the neural network. The 
process is intended to minimize the Error between the 
network output and the output actual output for the same 
input. The total error is a function defined by 

21

2 j jRMS t o        
j

     (10) 

where t is target value, and o is output 
 

ormation patterns 
within a multi dimensional information domain. 

 rep-

 

d vari-

to learn 

al methods. 

ide the system with 
e required control action. Thermostatic valve is used to 

ontrol 

rol after many trials, shown in 
igure 3, eventually employed three layers which are the 

value [10-14]. 

4.2. Neural Network Advantages 
 
 ANNs are able to learn the key inf

 The inherently noisy data do not seem to cause a 
problem, since they are neglected. ANN models
resent a new method in system prediction.  

 ANNs operate like a black box model and do not re-
quire detailed information about the system. 

 Instead, they learn the relationship between the input 
parameters and the controlled and uncontrolle
ables by studying previously recorded data, similar to 
the way a non linear regression might perform. 

 ANNs has the ability to handle large and complex 
systems with many interrelated parameters.  

 Artificial neural networks differ from traditional si- 
mulation approaches in that they are trained 
solutions rather than being programmed to model a 
specific problem in the normal way. 

 They are used to address problems that are intractable 
or cumbersome to solve with tradition

 
5. Proposed Control System 
 
The neural network is utilized to prov
th
adjust the hot water mass flow rate through the system to 
control the pond temperature at 34oC. The proposed con-
trol system consists of the ANN controller which is used 
to control water temperature. The control signal is used 
to control the operation of thermostatic valve to control 
the hot water flow rate added to the pond as depicted in 
Figure 2. 
 
6. ANN C
 
The proposed NN cont
F
input layer, hidden layer, and output layer. The input 
layer consists of three neurones which are the air tem-
perature, pond temperature and error, hidden layer con-
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sists of seven neurones, and output layer of one neurons 
as shown in Figure 3. The activation function used in 
this work is “logsig” for hidden layer, and “purelin” for 
output layer. The NN is trained using a back propagation 
with Levenberg-Marquardt algorithm. The Back propa-
gation is a form of supervised learning for multi-layer 
nets. Error data at the output layer is back propagated to 
earlier ones, allowing incoming weights to these layers to 
be updated. It is most often used as training algorithm in 
current neural network applications. Figure 4 presents 
the mean square error between the network output and 
the target. The network response analysis is depicted in 
Figure 5. As shown in the figure the regression “R” 
equal one which mean the output track the target in a 
correct way. 

 
 

Figure 3. Neural network controller architecture. 
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Figure 2. Block diagram of pond temperature control using 
NN control. Figure 4. Mean square error. 

 

 

Figure 5. Regression between the network output and target. 
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7. System Simulation 
 
The simulation model of the proposed thermal system is 
depicted in Figure 6. The system consists of solar ther-
mal subsystem to feed the system with the required hot 
water during the day, biogas subsystem is the auxiliary 
heater, pond subsystem, and finally the control subsys-
tem. MATLAB SIMULINK of NNC is depicted in Fig-
ure 7. Figure 8 indicates the weight block diagram of 
layer1. 
 
8. Results and Discussion 
 
The results of the MATLAB software indicate the high 

capability of the proposed technique in controlling the 
water temperature in the aquaculture pond, even in case 
of changing atmospheric conditions. The system has two 
input parameters they are air temperature, and solar ir-
radiance. Figure 9 and Figure 10 represent solar irradi-
ance in Mersa Matruh the site of consideration in sum-
mer and winter respectively. Figures 11 and 12 show the 
air temperature in summer and winter. 

Figures 13 and 14 indicate the pond temperature in 
summer and winter respectively. It is shown that the NN 
control has adjust the water temperature at 34˚C without 
any variation during the day. Any variation in water tem- 
perature will harm the shrimp life, so the NN control has 
successes in this process. 
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Figure 8. Block diagram of layer 1 weights. 
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Figure 9. Solar irradiance in summer. 
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Figure 10. Solar irradiance in winter. 
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Figure 11. Air temperature in summer. Figure 12. Air temperature in winter. 
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Figure 13. Pond temperature (˚C) in summer. Figure 14. Pond temperature (˚C) in winter. 
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Figure 15. Mass flow rate in summer. 
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Figure 16. Mass flow rate in winter. 

 
Figures 15 and 16 show the hot water flow rate varia-

tion over the day in summer and winter respectively. It i
clear that  tempera-
ture increase ses. 

uring the night hours the mass flow rate has high value 
rather than that the day hours. The mass flow rate in 
winter is higher than in summer because of low air tem-
perature in winter than in summer. The simulation results 
show the high efficiency of the proposed control system 
in control pond water temperature. 
 
9. Conclusiona 
 
The most important parameters to be monitored and con-
trolled in an aquaculture system are related to water 
quality, since they directly affect animal health. Neural 
networks offer one such method with their ability to map 
complex nonlinear functions. Neural networks are mas-
sively parallel processors that have the ability to learn 
patterns t e of this 

feature, they are often well suited for modeling complex 
and non-linear processes such as those commonly foun  
in the he  the NN 
technique to con uaculture 
pond. The air temperature, pond temperature, and error 
are used as inputs to NN control. Offline training applied 
with the BP has been used. The simulation results show 
that the feasibility of NN control in keeping water tem-
perature constant at the desired degree (34˚C) by adjust 
the mass flow rate of hot water to the pond. 
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