
Open Access Library Journal 

How to cite this paper: Rauff, K.O. (2016) The Mathematical Representation of Turbulent Heat Fluxes Using Reynold’s De-
composition. Open Access Library Journal, 3: e2184. http://dx.doi.org/10.4236/oalib.1102184   

 
 

The Mathematical Representation of  
Turbulent Heat Fluxes Using  
Reynold’s Decomposition 
Kazeem O. Rauff 
Department of Physics, Federal University, Kashere, Nigeria 

    
 
Received 8 January 2016; accepted 23 January 2016; published 27 January 2016 

 
Copyright © 2016 by author and OALib. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
From a mathematical perspective, it is fundamental to develop a rigorous background upon which 
to study the physical quantities of a turbulent flow. The first problem in the mathematical theory 
is related to the deterministic nature of chaotic systems assumed in dynamical system theory and 
believed to hold inturbulence. This has actually not been proved for the Navier-Stokes equations. 
It is in fact one of the most outstanding open problems in mathematics to determine whether giv-
en an initial condition for the velocity field there exists, in some sense, a unique solution of the 
Navier-Stokes equations starting with this initial condition and valid for all later times. In a turbu-
lent atmosphere, a turbulent stress term, the Reynolds stress, must be applied. All the terms in the 
horizontal motion equations are the order of 10−4 - 10−3 m∙s2. Under certain condition, some terms 
are very small and can be neglected for example, the rotational term is insignificant in the equa-
tion of vertical motion and has been omitted, instead gravitational acceleration term appears in 
the equation for vertical motion [1]; for steady flow, the tendency can be neglected; in the centre 
of high and low pressure, gradient force can be neglected; at the equator of for small scale pro- 
cesses, the Coriolis force can be neglected, and above the atmospheric boundary layer the stress 
terms can be neglected. 
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1. Introduction 
The earth’s surface receives more radiation energy than that is lost. The surplus of supplied energy will be 
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transported back to the atmosphere due to two turbulent energy fluxes, the sensible heat flux ( )HQ  and the la-
tent heat flux ( EQ , evaporation) [2]. The sensible heat flux is responsible for heating the atmosphere from the 
surface up to some 100 m during the day, except for days with strong convection [2]. The heat exchange in the 
air due to turbulence is much more effective. This is because turbulent exchange occurs over scales of motions 
ranging from millimeters to kilometers [2]. Turbulent elements can be thought of as air parcels with largely uni-
form thermodynamic characteristics. Small-scale turbulence elements join to form larger ones and so on. The 
largest eddies are atmospheric pressure systems. The heated turbulent elements transport their energy by their 
random motion. The larger turbulent elements receive their energy from the mean motion, and deliver the ener-
gy by a cascade process to smaller elements. Atmospheric turbulence is a specialty of the atmospheric motion 
consisting in the fact that air volume (much larger than molecules: turbulent elements, turbulent eddy) achieves 
irregular and stochastic motions around a mean state. They are of different order with characteristic extensions 
and lifetimes ranging from centimeters and seconds to thousands of kilometers and days [2]. The characteristic 
distribution of turbulent elements (turbulent eddies) takes place according to their size and is represented by the 
turbulence spectrum: The turbulence spectrum is a plot of the energy distribution of turbulent elements (turbu-
lent eddies) according to their wavelength or frequency. Depending on the frequency, the distribution is classi-
fied as macro-, meso- or micro-turbulence [2]. Turbulence refers to the apparently chaotic nature of many flows, 
which is manifested in the form of irregular, almost random fluctuations in velocity, temperature, and scalar 
concentrations around their mean values in time and space [3]. 

The calculation of the heat fluxes (sensible and latent) caused by turbulent elements is analogous to ground 
heat flux using the vertical gradients of temperature T and specific humidity q respectively. The sensible heat 
flux, HQ , describes the turbulent transport of heat from and to the earth’s surface. The latent heat flux, EQ , 
describes the vertical transport of water vapor and the heat required for evaporation at the ground surface.  

2. Methodology 
In the turbulent heat flow, the fluxes of flow variables are caused by differing properties of air parcels’ moving 
in different directions relative to the mean flow (the mean flow usually being defined, from a practical perspec-
tive, as an average over a period of order an hour). For example if the rising air parcels are warmer that those 
descending, then there will be a vertical flux of heat HQ . This heat flux, HQ , is equal to pc w Tρ ′ ′′ , where 
ρ  and pc  are the density and specific heat capacity of air and w T′ ′′  is the covariance of w′  and T ′′ , the 
turbulent fluctuations in vertical velocity and in temperature about their means. Similarly, the covariance be-
tween the horizontal and vertical velocities gives rise to a downward vertical flux of horizontal momentum τ  
which is given by w uρ ′ ′− , where u′  is the horizontal component of velocity. Such a momentum flux is of-
ten referred to as a turbulent stress [4]. 

These turbulent fluxes have a major effect in the flow. For example, if one considers the average flow in a ho-
rizontally homogeneous boundary layer over an area of the Earth surface, the governing equation of the hori-
zontal momentum balance is given by the Navier-Stokes equations [1] [3] [5] [6]: 
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where u is the horizontal wind in the x-direction (east); v is the horizontal wind in the y-direction (north), and w 
is the vertical wind; p is the atmospheric pressure; f is the Coriolis parameter; g is the acceleration of gravity; ρ 
is the air density; ν  is the kinematic viscosity, and 2∇  is the Laplace operator. From left-to-right, the terms 
of the equation are the tendency, the advection, the pressure gradient force, the Coriolis force, and the (molecu-
lar) stress. 

In a turbulent atmosphere, a turbulent stress term, the Reynolds stress, must be applied. All the terms in the 
horizontal motion equations are the order of 4 3 210 -10 m s− − ⋅ . Under certain condition, some terms are very 
small and can be neglected for example, the rotational term is insignificant in the equation of vertical motion and 
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has been omitted instead gravitational acceleration term appears in the equation for vertical motion [1]; for 
steady flow, the tendency can be neglected; in the centre of high and low pressure gradient force can be neg-
lected; at the equator of for small scale processes the Coriolis force can be neglected, and above the atmospheric 
boundary layer the stress terms can be neglected. 

3. Results and Discussion 
The stress tensors are: 
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                                          (2) 

The direct stresses are: 
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where 
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where λ  and µ  (dynamic viscosity) are known as lame’s constants, ∆  is known as cubical dilatation and 
ν  is kinematic viscosity. 
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and 
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=                                           (6) 

The shear stresses are given as: 
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Under certain condition, some terms are very small and can be neglected for small scale processes the coriolis 
force can be neglected and above atmospheric boundary layer the stress terms can be neglected 

The first terms of Equation (1) become: 
1u pX
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                                     (8) 

using Equation (2), we have: 
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Using from Equations (2), (5), and (6) in Equation (9) we have: 
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where the cubical dilatation, ∆  is: 
u q∆ = ∇ ⋅ = ∇ ⋅                                     (11) 

Using (11) in (10), Equation (10) becomes: 
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from Maxwell identity, we have: 
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putting (15) in (14) we have: 
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Reynolds’s Decomposition 
This is the decomposition of all the variables into a mean part, x , and a random fluctuating part, x′ . This is 
represented by: 

x x x′= +                                       (18) 
The application of Reynolds’s decomposition requires some averaging rules for the turbulent values x′ , 

which are termed Reynolds’s postulates: 
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It is assumed that the postulates are universal, but for special spectral regions or for intermitted turbulence this 
is not valid [7]. The last postulate is the basis for the determination of turbulent fluxes according to the direct 
eddy covariance method. It is also assumed by [8] and [1]) that: 
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1ρ
ρ
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≤≤                                          (23) 

and 

1T
T
′
≤≤                                          (24) 

In micrometeorology, we are interested in forecasting the mean quantities such as u  and T , while u′  and 
T ′  are inherently random and the instantaneous values cannot be predicted. To determine the effect of the fluc-
tuations on an equation we can replace each variable by the sum of its mean and its fluctuation and solve. So all 
occurrences of x would be replaced using Equation (18). But by definition 0u′ = , no one might think that fluc-
tuations average to zero. However, where we have the one fluctuating quantity multiplied by another is not the 
case. For example: 

( ) ( )uw u u w w uw uw u w w u′ ′ ′ ′ ′ ′= + + = + + +                          (25) 

uw uw u w w u uw w u′ ′ ′ ′ ′ ′= + + + = +                               (26) 
When the average value of the product uw  is calculated, the terms uw′  and u w′  average out to zero, so: 

( ) ( )uw u u w w uw uw u w w u′ ′ ′ ′ ′ ′= + + = + + +                          (27) 

( ) ( )uw u u w w uw u w′ ′ ′ ′= + + = +                                (28) 

We are left with an extra term, the covariance of u and w. 
Applying Reynolds’s decomposition to Equation (28) above we have: 
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The equation above is called continuity equation. 

For all micrometeorological measurements steady state conditions are implied, 0
t
∂
=

∂
, and a mostly homo-

geneous surface is necessary, 0, 0
i jx x

∂ ∂
= =
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. Under these assumptions and including the components gu   

and gv  of the geostrophic wind velocity and the angular velocity of the earth’s rotation, Ω , the three equa-
tions of motion in Equation (1) becomes [2]: 
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Equations (31) and (32) are the basis of the so-called ageostrophic method for the determination of the com-
ponents of the shear stress tensor using differences between the wind velocity in the atmospheric boundary layer 
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and the geostrophic wind [9] [10]. 
The gas law with the specific gas constant for dry air LR  and the virtual temperature vT  completes the sys-

tem of equations [2]: 

L vp R Tρ=                                          (34) 

The covariance of the vertical wind velocity, w, and a horizontal wind component or a scalar x can be deter-
mined by: 
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The friction velocity is a generalized velocity, i.e., it is the shear stress divided by the density 
1 2
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The new system of equations is similar to the Boussinesq system but is now valid for the average flow: 

4. Conclusion 
In a turbulent atmosphere, a turbulent stress term, the Reynolds stress, must be applied. All the terms in the ho-
rizontal motion equations are the order of 4 3 210 -10 m s− − ⋅ . Despite the difficulties in the mathematical theory 
of the Navier Stoke Equation some successes have been collected such as estimates for the number of degrees of 
freedom in terms of fractal dimensions of suitable sets associated with the solutions of the Navier-Stokes equa-
tions, and partial estimates of a number of relations derived in the statistical theory of fully developed turbulence. 
It is concluded that in order to determine the effect of the fluctuations on an equation we can replace each varia-
ble by the sum of its mean and its fluctuation, and solve all occurrences of variables that would be replaced us-
ing Reynolds’s postulate. But by definition 0u′ = , no one might think that fluctuations average to zero. How-
ever, where we have the one fluctuating quantity multiplied by another is not the case. 
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