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Abstract

In this note we at first briefly review iterative methods for effectively approaching a root of an
unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity
index m of the approached root. Next we present a second order, two-step method for iteratively
nearing a root of an unknown multiplicity. Subsequently, we introduce a novel chord, or a two-
step method, not requiring beforehand knowledge of the multiplicity index m of the sought root,
nor requiring higher order derivatives of the equilibrium function, which is quadratically conver-
gent for any m <4, and then reverts to superlinear.
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1. Introduction

The multiplicity index m of root x=a, f(a)=0 of equilibrium function f(x) may be a well latent
property of the root, not cursorily revealed, nor readily available, yet this multiplicity can profoundly affect the
behavior of the iterative approach [1]-[3] to the root. In this note, we briefly review the iterative methods [4]-[8]
for approaching a root of an unknown multiplicity, and present a first oder [9] as well as a second order estimate
for the multiplicity index m of the approached root. Then we present a novel chord, or a two-step method, not
requiring beforehand knowledge of m, nor requiring the higher derivatives of the equilibrium function, which is
quadratically convergent for any m <4, and then reverts to superlinear.

2. Assumed Nature of the Equilibrium Function

We assume that near root a, f'(a)=0, function f(x) has the power series representation
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f(x)=(x=a)" (4+B(x-a)+ C(x=a) +-), 4 0,m>1 (1)
where m is the multiplicity index of oot a, and where 4, B,C, etc. are, for m =1, the coefficients
A:f’(a),Bzzi!f”(a),C:%f’"(a) @
and 50 on.

3. The Newton-Raphson Method
The Newton-Raphson method

X =Xy — Uy, U= f'(x) 3)
(%)
is quadratic
B , 2(B*+4C 3 4
X, azz(xo a) +¥(x0—a) +O((x0—a) ) 4)
if m=1.However, if m >1, the method declines to mere linear
m—1 B 2 3
X —a= - (xo—a)+m2A(x0—a) +O((x0—a) ) %)
See also [10].
4. Extrapolation to the Limit
Let x,,x, =X, —u,,x, =X, —u, be already near root a. Then, if m =1
B 2 B 2
xl—azz(xo—a) andxz—azz(xl—a) 6)
nearly. Eliminating B/A4 from the two equations we obtain
(—Zx0 +3x, —xz)a2 + (xg —3x + 2x0x2)a + (x]3 - xgxz) =0 (7

which we solve for an approximate a, as

3+.41+4
_uuo (®)

2(2-p)

X, =a=Xx,

where
p=u,[u, zg(xo—a)+0((x0—a)2). 9)
The square root in Equation (8) may be approximated as
Ji+dp =1+2p-2p> +4p> —10p* +28p° —84p° + .. (10)
and for this extrapolated x, of Equation (8) we have

2(p2 _
x3—a:23 (11,4 AC)

(xo—a)5+0((x0—a)6). (11)

For example, for f(x)=x+x’+x’, and starting with x, =0.2, we compute x, =0.0368, x, =0.0135;
and then from Equation (8), x; =0.000112. Another such cycle starting with x, =x, produces a next

x, =-1.36x107.
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5. Always Quadratic Newton-Raphson Method
The modified Newton-Raphson method

X, =x0—mu0=x0—mL°' (12)
fo
converges quadratically to a root of any multiplicity m
1 B 2 1 B C 3 4
X, —a= ;Z(xo —a) —?[(m + 1)7— 2m;}(x0 —a) + 0((x0 -a) ) (13)
But for this we need to know m.
By Equation (1) we readily deduce that, for any x
2 2 _ap2
L 2f =m+2—B(x—a)+B 3BT+6Acm(x—a)2+O((x—a)3) (14)
f' _ff‘” A A m

obtained at the price of a second derivative. For finite-difference approximations of the needed derivatives see
[11]-[13]. Using u in Equation (14) for m in Equation (12) we obtain the method

x = xy (15)
So =Nk
which is quadratic for any, provided, m
1B 2 3
x, —a:—;z(xo—a) +0((x0—a) ) (16)

The method of Equation (15) is also obtained by applying Newton’s method not to £, but rather to u = f/f".
For f(x)=x"(3+x), we obtain by the method of Equation (15) that requires not only f’ but also f",
starting with x, =1.

For m=1

x= {1, ~0.176,-0.012,-4.6x1075,-6.98x107'*, —1.63 10"9}. (17a)
For m=7

x= {1, —0.027,-3.4%x107°,-5.6x107"",—1.47 x 10*22}. (17b)

Equation (15) may be written as

1 "
X =X~ LO,» ozfo,zo (18)
1-z, fy fo
and it is of interest to know that
_fofy) m-1 2 B B Y
z, __fo'z == +?Z(X a)+0((x a) ) (19)
For the price of a third derivative we may have the quadratic approximation
u' flz(f'z_ﬁp”) m+ B> +3B*m—64Cm 2
,Ll: 1?2 II: 14 12 pn 2 w2 2 riem = 2 (xO_a) +ee (20)
u”—uu” = =TS A'm

6. An Erroneous m
The method
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x, =x,—m(l+¢€)u, 201
produces the superlinear
B(1+
X, —a——e(xo—a)+ (Ame)(xo—a)2+0((xo—a)3) (22)
and if € >0, convergence is alternating.
7. Estimation of the Leading Term
We readily have that
2 " m 3(1+ 2
——mzu":—lm2 I +2f{ " _B —( m)(éj —6£ (x—a). (23)
2 2 I A m A A

For example, for f =x+10x”, we compute using Equation (23) the B/A approximations as depending on
the chosen x

(x,B/4) = {10*2,5.79},{10*3,9.42} ,{104‘,9.94},{10*5,9.994}. (24)

8. An Elementary Discrete Two-Step Newton Method for Roots of Any Multiplicity
If

xo,)clz)co—uo,)c2:)cl—ul,uzi (25)

f!

are already close to root a of multiplicity m >1, then according to Equation (5)

xl—az(l—ij(xo—a),and xz—a:(l—lj(xl—a) (26)

m m

nearly, from which we extract the approximation

2
a=—0"%% _ Xy — il Uy =x, — %o u,. 27)
—X, +2x, — X, u, —u, Uy, —u,
Setting a back into Equation (26) yields
X, — X, 1 u
p=te —— p (8)
u—u, l-p u,
and the two-step method
1 X, — X, 1 u
Ho = Hos g =200, Xy = X = lylhy, Uy :Ll,a p=t—=—— p=—t,x, = x — 4, (29)
fo A u—u, l-p U,

where u in Equation (28) is seen to be but the finite-difference approximation of x =dx/du in Equation
(14).

For example, for f (x):x3 +x*, and starting with x,=1,4, =1, we compute by Equation (29), the
successive approximations

X, =Ly =1x =071z =3.72,x,=-6.4x107 (30a)
X, =—0.064, 11y =3.72,x, =0.018, 14, =2.95,x, =4x107" (30b)
Xy =4x107, 14, =2.95,x, =6.9x10™°, 14, =3.0004,x, = —9.3x107" (30c)
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X, =—9.3x107", g, =3.0004, x, =1.26x107", g1, =3, x, =3.9x107>, (30d)
Generally, starting with
Hy=m+e€,X, =a+e, (31)

we have from the method of Equation (29) that

B € B
4, =m+z(l—;'jez+0(ezz),x2=a+me,622+0(623). (32)
The repeated classical Newton’s method, x, =x, — f,/fy,x, =x, — f,/ f;', we recall, is only linear if m > 1
1Y 2m—1)(m—-1) B
xz—a:(l—;j (xo—a)+(m¢z(xo—a)2+0((x0—a)3). (33)

See also [14] [15].

9, Derivation of the Chord Method

It is a rational two step method of the form

x, =x+(x —xo)ﬁ,x1 =X, +k%,f0 =1 (%) /i =f(x). (34)
With
P=6+11k+6k2+k3’Q= 9-2% _ 18+ 14k +5k" +4° (35)
—6+ 4k —3+2k 6—-4k
the method is quadratic for m=1,m=2 and m=3. In fact;
For m=1
X, —a= —%%(xo —a)2 + O((xo —a)3). (36a)
For m=2
X, —a= —%%(XO —a)2 +O((x0 —a)3). (36b)
For m=3

B 81+ 63k + 14k’ 2 3
xz—a——SA TFVTTIVTE (xo—a) +0((x0—a) ) (36¢)

For m =4 the method produces

(k-2)k i
e —a)+0((x - 37
o 576 + 352k + 46k* + 4k° (x—a)+ ((xo a)) (37)

and for k=2 the method is quadratic for m=4 as well.
According to Equation (36a), if m =1,k =-9/7 , then the method is higher than quadratic.

10. The Method is Further Superlinear

For k=2 we have:
For m=1

23B 2 914B° -1628AC 3 4
xz—a=—m(x0—a) +T(x0—a) +O((x0—a) ) (38a)

()
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For m=2
27B 1277B% —24144C
X,—a= —m(xo —a)2 + 7oL (x —a)3 + O((xo —a)4). (38b)
For m=3
263B 370334B* —715836AC
X, —a :—m(x0 —a)2 + AL (x, —a)3 +0((x0 —a)4). (38c)
For m=4
245B 435571B%* —851224AC
X, —a =—m(x0 —a)2 + 55950447 (xo —a)3 +0((x0 —a)4). (38d)
For m=5
1 1B
Y-a=gy 9(x0 —a)—zz(xo —a)2 +0(x, —a)3. (38¢)
For m=7
1 B 2 3
—a=——»(x,—a)- - —a) . 38
274 a7 (0 554 (0 ma) +O(x —a) (381)
For m=9
X —a—L(x - )— B (x —a)2+0(x —01)3 (38g)
AT A 7.944 """ ‘ ’ £
For m=11
X —a—L(x —a)—i(x —a)2+0(x —a)3 (38h)
> 4233V 9.974 """ 0 '
For m=17
cd=—(xy—a) -~ (x, ~a) + O(x, —a) (38k)
21714 1624""° 0 '
For m =27
1
X, a:ﬁ( o a)—27—A(x0—a)2+0(x0—a)3. (381)

11. Lowering the Value of k

We leave k in x, =x,+kf,/f, of Equation (34), free, and have by power series expansion, for multiplicity
index m=5,for f(x) inEquation (1), that

2k —125 + 55k + 4k )
_g=2 —a)+0((x, —a)). 39
s 025k 1 550K 528w e 0 Y ((x" a)) (39)

The linear term in the above expansion is annulled with
~125+ 55k +4k* = 0, k =1.9859043. (40)
We do this for higher values of m and find that
{m,k} ={4,2},{5,1.9859043},{7,1.9689621},{9,1.9591333} ,{11,1.9527133}. (41)

We try k£ =1.95, and get

(=)
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For m=1
Xy —a=-89x107 (x,—a) - 2B (1 —a) + o((x -a)') (42a)
For m=2
X, —a=66x10"(x,~a)~~L 2 (x, ~a) +0(x, ~a)). (42b)
For m=3
5 —a=—44x10" (x, ~a)~ 22 (5 4y +0((x, ~a)'). (420)
For m=4
Xy —a=—17712(x, — a) - 22208 (4 —aY +0((x,-a)). (42d)
For m=35
Xy —a=—13999(x, —a) - 228 (0 ay 4 o((x,-a)"). (42¢)
For m=7
Xy —a=—12799(x, —a) - 2188 (0 _ay 4 o((x,~a)"). (421)
For m=9
Xy —a=—13315(x, —a)~ 2278 (o Y +0((x,-a)). (429)
For m=11
Xy —a=—17608(x, —a)~ 1B (o a4 o((x -a)'). (42h)
For m=17
x—a=11312(x, —a)- 2088 () 4 0((x,~a)"). (42K)
For m=27
x—a=1358(x, —a) - 2088 (o _a) 4 O((x,-a)'). (421)
For m=37
Xy —a=1198(x, —a) - 22278 (1 —a) +0((x,~a)"). (42m)

The general form of the linear part of x, —a in Equations (42) is of the form ¢(m)(x, —a) with a constant
c(m) that is small if multiplicity index m is not much above 5. For instance, ¢(11)=-1/7608 , meaning that at
each iteration the error x, —a is reduced by this factor. Such convergence behavior we term superlinear. More
concretely, for f'(x)=x"(3+ x), we obtain by the above method, using k =1.95, starting with x, =1.

For m=1

x= {1,—0.26, —-0.066,-7.2x107°,-3.6x107™"", -9 x 10*22} (43a)

()
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For m=3
x={1,-0.76,-9.6x 10, ~1.44x107,-3.2x10"*,7.9x10™"'} (43b)
For m=7

x= {1,—0.03,—4.1 x107,1.47x107*,-5.2x107"*,1.88x107"°,-6.7x107"?,2.4 x 10‘22}. (43c¢)

12. Conclusions

The paper is predicated on the realistic assumption that the multiplicity index m of the iteratively targeted root is
unknown. We conclude that if one prefers to shun second order derivatives, then the quadratic two-step method
of Equation (29), that provides also ever better approximations for the multiplicity index m of the approached
root, is a practically appealing alternative.

Otherwise, one may use the rational two-step method of Equation (34) with a constant k that is only slightly
less than 2. Thus stating the method becomes superlinear, albeit, of a reduced speed of convergence for highly
elevated root multiplicities. For the sake of brevity, the present paper does not explore the possibility of esti-
mating the multiplicity index m of the sought root by the method of Equation (29), then applying this estimate to
the choice of an optimal & in the method of Equations (34) and (35).
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