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Abstract 
 
The run-out of high speed granular masses or avalanches along mountain streams, till their arrest, is analyti-
cally modeled. The power balance of a sliding granular mass along two planar sliding surfaces is written by 
taking into account the mass volume, the slopes of the surfaces, the fluid pressure and the energy dissipation. 
Dissipation is due to collisions and displacements, both localized within a layer at the base of the mass. The 
run-out, the transition from the first to the second sliding surface and the final run-up of the mass are de-
scribed by Ordinary Differential Equations (ODEs), solved in closed form (particular cases) or by means of 
numerical procedures (general case). The proposed solutions allow to predict the run-up length and the speed 
evolution of the sliding mass as a function of the involved geometrical, physical and mechanical parameters 
as well as of the simplified rheological laws assumed to express the energy dissipation effects. The corre-
sponding solutions obtained according to the Mohr-Coulomb or Voellmy resistance laws onto the sliding 
surfaces are recovered as particular cases. The run-out length of a documented case is finally back analysed 
through the proposed model. 
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1. Introduction 
 
Great attention receives in scientific community the study 
of kinematic mechanisms of the flow of viscous fluid [1] 
or the chaotic movement of granular masses [2], because 
their destroying effects, often related to increasing an- 
thropization of piedmont areas. It is necessary to identify 
hazardous areas for the propagation of high-speed mov- 
ing masses. To this purpose, reliable criteria must be for- 
mulated and applied. 

Interstitial pressures at the base of the mass can vary 
from null or hydrostatic value to high values, due to 
possible water pressure excess, related to very rapid 
changes of pore volumes, often localized along a thin 
layer in proximity of the sliding surface [3]. 

Several models assume the validity of the Mohr-Cou- 
lomb (M-C) shear resistance criterion [4] along the slid- 
ing surface of the high-rate moving mass. To match ex- 
perimental observations of the run-out length with theo- 
retical results, small shear resistance angles must be 
assumed. The M-C law usually describes limit equili- 

brium (static) or simple sliding of blocks along rough 
surfaces (dynamic condition). More complex resistance 
laws should be taken into account [5] to describe the 
rapid sliding of granular masses because high speed 
relative motion and collisions between solid grains take 
place within a basal shear layer, causing a fluidification 
effect coupled with energy dissipations [6]. Therefore, it 
is not conceptually justifiable the reduction of the shear 
resistance angle, due to the high mobility of the grains [7] 
if the corresponding energy dissipation is not taken into 
account. Moreover, in situ observations show that the 
run-out length strongly depends on the mobilized volume 
of the mass [8-11]. 

In the paper, the rapid sliding of a granular mass along 
two planar surfaces is analytically modelled by account- 
ing for the effects of grain collisions. 

In section 2 the main features of the model and the 
assumed simplifying hypotheses are introduced; the go- 
verning equations are formulated (section 3), by intro- 
ducing the parameters which take into account the gra- 
nular temperature and the collisional dissipated energy. 
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Closed form or numerical solutions of the ODEs are then 
obtained (section 4). After an estimate of the model para- 
meters, in section 5 some parametric results of run-out 
length are represented and compared to solutions ob- 
tained according to the M-C or Voellmy (V) resistance 
criteria along the base of the sliding mass. The schematic 
back analysis of a case is carried out through the model 
in section 6. Some concluding remarks close the paper. 
 
2. Analytical Model 
 
2.1. Basic Assumptions 
 
Three phases roughly characterize rapid landslides mo-
tion, after their detachment (avalanches) or trigger (de-
bris flow): 1) the mass runs along the first sliding surface 
(s.s.) (run-out), 2) the initial portion of the mass slides 
along the counterslope s.s. while the remaining portion 
still moves along the first one, 3) the whole mass runs up 
along the counterslope s.s., till its stop (Figure 1). 
Moreover: 
 Planar sliding surfaces are assumed (Figure 1): the 

slope angles of the first and second s.s. are  > 0 and 
 0, respectively. The run-out length along the first 
surface is L; 

 

 

Figure 1. (a) Phases of rapid landslides or avalanches mo- 
tion: I - detachment and initial conditions; II - run-out; III - 
transition of the moving mass from the first to the second 
inclined planar surface; IV - run-up; V – final position; (b) 
shear layer in proximity of the basal sliding surface;, fluc- 
tuations of particles velocity around their average value, 
occur; (c) problem setting for computations; (d) transition 
from the first to the second sliding plane. 

 the sliding granular mass is schematized as a paral-
lelepiped (length l, height H and depth D) whose 
geometry doesn’t vary; erosion or deposition proc-
esses are not considered; 

 a “shear layer” at the base of the mass takes place 
during the rapid sliding. This small thickened layer 
(compared to H) is composed by particles that move 
at high velocity and collide each with others. Colli- 
sions induce appreciable fluctuations of their veloci- 
ties (granular temperature); 

 the energy dissipation due to the mass straining cou- 
pled with the mass displacements, is neglected. 

 
2.2. Governing Equations  
 
The power balance of the sliding mass holds: 

1 2
d d d d

0
d d d d

p c na na
E E E E

t t t t
        (1) 

Ep being the potential energy, Ec the kinetic energy of the 
sliding mass. The dissipated energy (Ena), not more avai- 
lable for the motion, is schematically splitted in two 
components: Ena1, lost due to the (Coulomb’s) friction 
along the sliding surface; Ena2, transferred from the block 
to the basal “shear layer” [2,7,12]. The (1) is in the fol-
lowing rewritten for each phase of the motion. 
 
2.3. Transfer and Dissipation of Energy  
 

Ena1 is a function of the weight W of the sliding mass, 
the resultant U of the interstitial fluid pressures, the shear 
resistance angle b at the base of the block, reduced with 
respect to the shear resistance angle ’ of the involved 
material, due to the peculiar physical conditions (high 
speed, collisions) along the s.s., the path x. 

The energy Ena2 transferred to the “shear layer” [2,7, 
12], is lost by the granular mass during its running along 
the first s.s.;, Ena2 may be partially recovered by the mass 
and correspondingly lost by the “shear layer”, along the 
run-up (counterslope). The analytical expression of Ena2 
is not a priori known: it is hypothesized its dependence 
upon the rate v of the granular mass. As stated by [6], the 
maximum value of the function dEna2/dt is obtained if the 
rate )(1 txv  attains a constant value, whatever be its 
value. Therefore, dEna2/dt has been defined as follows: 

 2

max

d d

d d
na naE E

v
t t

   
 

2       (2) 

the adimensional function depending on v.  0 v 1
If   0v  , the energy is not transferred from the 
mass to the shear layer (granular temperature) or vice-
versa; the limit case   1v   implies that the energy 
transfer is maximized, being v = const. 
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H

2.4. Effects of Interstitial Pressures 
 
The interstitial pressure w (x) at the base of the mass 
affects the run-out length; w (x) simply assumes the 
constant value (nil value as limit case) through the 
relation: w w  (Figure 1), w being the spe-
cific weight of the water; d = 0 if the whole mass is 
saturated; d = H if the mass is dry; w may exceed the 
hydrostatic value due to the mechanical effects associ- 
ated with the rapid change of intergranular volumes of 
the voids and the corresponding growth of interstitial 
water pressures excess [3,6]. To simulate this effect, d < 
0 values must be assigned. The length d thus lies in the 
range: 

p

H d

p

wp
 p

p

min maxd d d             (3) 

If the sliding granular mass always transmits positive 
normal stresses to the s.s., through the shear layer, the 
minimum value min  can be deduced by imposing the 
equilibrium along the direction orthogonal to the sliding 
plane: 

d

min min cos 1 ; cos 1t t

w w

d H
 

 
 

          
  

H



 
   (4) 

t being the unit weight of the sliding mass and dmin a 
negative real number. 
 
2.5. Sliding along the First Slope 
 
The potential energy pE  in the power balance (1) is 
rewritten in function of the abscissa x1 (Figure 1) as fol-
lows: 

 0 1 sinpE mg h x            (5) 

h0 being the initial elevation of the centre of mass with 
respect to a reference plane; g the gravity acceleration 
and m the mass of the sliding granular body. 

The dissipated energy  1 1naE x  is then rewritten as 
follows: 

   
 

1

1 1 0

1

cos tan d

              cos tan

x

na b

b

E x W U s

W U x

 

 

 

 

       (6) 

U < Wcos being the global force associated with the 
pressure w at the base of the mass, W the mass weight 
and b the reduced shear resistance angle at the base of 
the mass. 

p

The dissipated energy Ena2 (2) depends upon the rate v 
of the granular mass.  

According to (5), (6), the equation (1) is rewritten as: 

   

   

2
1

1

2
1

d1
sin

2
d

        + cos tan
d

na
b

x t
mg x t m

dt
E

W U x t
t



 



 





  (7) 

The maximum value for dEna2/dt is gained if 
 1v x t   assumes a constant value [6]. It may be writ-

ten: 

 2
1

max

d
sin cos tan

d
na

b

E
W W U x

t
         t   (8) 

Recalling the (2), dEna2/dt becomes: 

     2
1

d
sin cos tan

d
na

b

E
v W W U x t

t           (9) 

the function  0 v 1   being previously introduced. 
By replacing the (9) in (7), it is obtained: 

  

   

2
1

1

1

2

sin cos tan 1b

d x t

dt

U
g v x t

W                




 (10) 

The ratio U/W is rewritten as: 

 
1w w

t t

H d lDU d

W HlD

 
 

   
 H

        (11) 

So, the Equation (11) becomes: 

  

 

2
1

1

1

2

tan
tan tan 1 1 ( )

cos
w b

b
t

d x t

dt

d
g v x t

H 
 

  
 

             




 

(12) 

Let be 

 , , 1 1
cos

w

t

d
R R d H

H 



 

   
 

    (13) 

The derivative of equation (12) gets: 

     1 cos tan tan 1bx t g R v           (14) 

According to the assumed hypotheses, the time deriva-
tive of the energy component Ena2, for unit mass, is: 

   2d
cos tan tan

d
na

b

E
g R v

t          (15) 

Through the (15), the discriminant value * for which 
dEna2/dt = 0 may be determined, by solving the equation: 

   *
* *cos tan tan 0bg R 

    v     (16) 

If the slope angle < *, dEna2/dt < 0: the sliding 
mass receives energy from the shear layer. If > *, 
dEna2/dt > 0: the sliding mass provides energy to the 
shear layer. 

Being interesting only the conditions  and *cos 0 
 * 0v


  , according to the (13), the (16) becomes: 
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*
*

tan 1 tan 0
cos b




     
          (17) 

Through the (17), * is obtained: 

*
2

2 4 2 4

2

tan
arccos cot tan

1 (tan )

(tan ) (tan ) (tan )

1 (tan )

b
b b

b

b b b

b

 
   



   


 
  

 
  
 

 (18) 

 1w t d H    



           (19) 

In the simple case d = H (no interstitial fluid pressure), 
it results  = 0 and the equation (18) gets * = b. 

The sign of the derivative dEna2/dt depends on the sign 
of the expression  tan tan bR  , the other terms 
being positive. This sign is positive along the first planar 
s.s. (otherwise, the motion cannot take place), while is 
negative along the second s.s., because we must replace 
 > 0 with < * (reduced slope) or  ≤ 0 (counter-
slope). 

 
2.6. Sliding along the Counterslope Surface 

 
The motion law along the counterslope s.s. is obtained by 
substituting in the (14) the angle  > 0 with  ≤ 0; cor-
respondingly, the function (v) must be replaced by 
(v): 

     2 cos tan tan 1bx t g R v          (20) 

where: 

1 1
cos

w

t

d
R

H


 
  
 




0

        (21) 

The ODE (20) must be solved taking into account the 
following initial conditions: 

   2 20 0;      0x x v   

v0 being the velocity of the mass after the full transition 
from the first to the second sliding planar surface. 

 
2.7. Transition from the First to the Second Slope 

 
By neglecting the additional lost of energy coupled with 
peculiar strains associated with the slope change of the 
s.s., the ODE expressing the motion during the transition 
phase may be approximated through the linear combina-
tion of (14) and (20): 

        

     
12 1

12 2

cos tan tan 1

cos (tan tan ) 1 0

b

b

x t g R v l t

x t g R v l t

 

 

   

   

    

    



 



 

(22) 

l1(t) being the length of the portion of the granular 
mass resting on the first surface and l2(t) = x12(t) the 
length of the remaining part running up along the second 
plane (run-up). So, l1(t) + l2(t) = l, neglecting second or-
der geometrical aspects and accounting for the consider-
able length of the sliding granular mass (Figure 1(d)). 

After some algebra, Eqution (22) can be written as: 

       

     

12 12

12

cos tan tan 1

cos tan tan 1

b

b

g
x t R v l

l
g

R v x t
l

 

 

   

   

       

    

 x t 
 

(23)  

The second term figuring in the expressions R and R 
represents the contribution due to interstitial pressures; it 
is always positive because d  H. By decreasing d (the 
free surface moves towards the top of the mass) R and 
R decrease; the terms  tan tan bR   and 
 tan tan bR   consequently increase. So, all other 
factors assuming constant values, the acceleration will be 
as greater as smaller is d.  
 
2.8. Acceleration and limit rate 
 
Referring to the acceleration along each sliding surface, 
equations (14) and (20) can be rewritten as follows: 

     cos tan tan 1bx t g R v          (24) 

where: 

1 1
cos

w

t

d
R

H


 
  
 


          (25) 

0     for 0

0    for 

x L

x L l





 

 


  
         (26) 

The term   cos 1r v g v  


 



 0 1v

 is always posi-
tive along both sliding surfaces ( ). If the 
increase of the function (v) with the rate v of the mass 
is assumed, the function r(v) will decrease if v increases. 
Equation (24) can be thus rewritten as: 

    tan tan bx t r v R         (27) 

Coefficient 1R   is equal to one if the interstitial 
pressures are equal to zero. Along the first surface, 
tan tanR 0b   , otherwise, the initial conditions 
   1 10 0,x 0 0x   would not allow the motion begin-

ning; thus, the acceleration will be positive, the sliding 
rate will increase, r(v) will decrease and, consequently, a 
decrease of acceleration, always positive, will occur 
along the path. The acceleration will vanish if the rate 
approaches its limit value, for which , or  lim 0r v 

 lim 1v  . 
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Along the second inclined plane, tan tan 0bR   : 
therefore, the acceleration now assumes negative values, 
the sliding rate will decrease, r(v) will increase and, 
consequently, the absolute value of acceleration (which 
is, however, negative) will increase. 
 
3. Mathematical Model 
 
3.1. The (v) Function 
 
The function (v) governs both transfer and dissipation 
of energy taking place near the sliding surfaces, due to 
multiple collisions between particles, as well as rotations 
of each particle around an axis [6]. The function 

   0,1v   has been analytically represented through 
a second order, rate increasing polynomial function: 

  2
0v v       v        (28) 

0 being an adimensional constant;  and  are con-
stants whose dimensions are the inverse of velocity and 
the inverse of square velocity, respectively (=  or ). 

If , it is obtained . The limit 
value of the rate corresponding to  of the slid-
ing mass may be obtained by imposing: 

 lim 1v   1 0x t 
 1 0x t 

2
0 lim lim 1v v              (29) 

The (29) gets: 

 2
0

lim

4 1

2
v

  



   


   
      (30) 

The negative solution of (30) is not significant. 
Coefficients 0,  and  cannot assume arbitrary 

values; they must respect the conditions deriving from 
the inequalities as well as from the definition domains of 
the integration constants (see sections 3.3 and 3.4), re-
ported in Table 1. 
 
3.2. Equations of Motion 
 
After substitution of (28) in (14), (20) and (22), the equa-
tions of motion, are written as follows: 
 
Table 1. Imposed conditions on the coefficients of the model, 
(v) being expressed by (28). 

Condition 

0   

 2
04 1 0       

 
0

2
0

2
1

4 1

v  

 

 

  




 
 

     2
1 1 1 0x t A Bx t Cx t            (31) 

     2
2 2 2 0x t D Ex t Fx t            (32) 

       

       

       

12 12 12 12

2
12 12 12 12 12

2
12 12 12 12 0

A
x t A Bx t Cx t x t

l
B C D

x t x t x t x x t
l l l
E F

x t x t x t x t
l l

   

  

 

  

 

  

  (33) 

where 

  0cos tan tan 1bA g R        (34a) 

 cos tan tan bB g R           (34b) 

 cos tan tan bC g R           (34c) 

  0cos tan tan 1bD g R        (34d) 

 cos tan tan bE g R           (34e) 

 cos tan tan bF g R           (34f) 

 
3.3. Analytical Solution: Sliding along the First 

Slope 
 
The integration of Equation (31) gets: 

  
 

2
1 2

2
1

1
4

2

4
             tanh

2

x t BC C B AC
C

B AC C Ct

C

    

     
  



    (35) 

   

 

2
1 1 22

2
1

1
2

2

4
2 ln cosh

2

x t B C Ct C C
C

B AC C Ct
C

C

   

           

   (36) 

The unknown constants C1 and C2 are determined 
through the initial conditions:  

   1 10 0,      0 0x x   

1 2 2

2
arctanh

4 4

C B
C

B AC B AC

 
     

 (37a) 

2 2 2

2

arctanh
4 4

1 1 4
       ln

2

B B
C

C B AC B AC

B AC

C AC

 
     

 
 
 
 

 (37b) 

 
3.4. Analytical Solution: Sliding along the 

Second Slope 
 
The analytical integration of (32) (counterslope) gets: 
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  
 

2
2 2

2
3

1
4

2

4
             tanh

2

x t EF F E DF
F

E DF C Ft

F

    

    



 





   (38) 

   

 

2
2 32

2
3

1
2

2

4
2 ln cosh

2

x t E C Ft F C
F

E DF C Ft
F

F

  

   

4

   

 

0

   (39) 

By imposing the conditions:  
   2 20 0,      0x x v   

the unknown constants are determined: 

0
3 2 2

22
arctanh

4 4

Fv EF
C

E DF E DF

 
   


 

  (40a) 

 

0
4 2 2

2

22
0

2
arctanh

4 4

1 1 4
          ln

2 4 2

Fv EE
C

F E DF e DF

E DF

F E DF Fv E

 
     

 
   






 (40b) 

 
3.5. Transition from the First to the Second 

Slope 
 
The integration of (33) is carried out by means of a nu- 
merical procedure, by assigning initial conditions: 

   12 12 10 0,      0 fx x v   

v1f being the rate of the sliding granular mass at the end 
of the first inclined planar s.s. To this aim, the fourth 
order Runge-Kutta method with adaptive step size has 
been implemented in MathCad. 

It is worth observing that the proposed analytical solu-
tions have been found referring to the trinomial formula 
(v) (28). If (v) is simply expressed by assuming (v) 
= 0 or (v) = 0 or both, it is possible to express the ana-
lytical solution in closed form, also for the transition 
from the first towards the second s.s. 

 
4. Characterization of the (v) function 

 
4.1. Premise 

 
The limits of the function (v) (Eqution (20)) are the 
same as those assumed for the function (v). Part of the 
energy is given back to the sliding mass by the shear 
layer, whose granular temperature gradually decreases, 
due to the corresponding decrease of the average run-up 

rate. If the inequalities  are taken into 
account, the maximum negative variation of lost energy, 
as well as the maximum variation of energy recovered by 
the sliding granular mass, cannot exceed the maximum 
value corresponding to the limit case v = cost. The time 
variation of energy lost due to granular temperature then 
assumes negative values along the second sliding surface; 
thus, the granular mass recovers energy by the shear 
layer. The function (v) modulates the part of energy 
unavailable for the motion; it incorporates the effects due 
to granular temperature and collisional dissipations along 
the first inclined plane; (v), the part of energy given 
back to the sliding granular mass, net collisional dissipa-
tions; then, (v) cannot be equal to (v): the inequality 

 0 v 1

   v   v  must always hold. 
 

4.2. Coefficients 
 

To estimate the parameters 0, ,  (function (v)), it 
is first analyzed the simpler case 0  .  is linearly 
related to the sliding rate and it is roughly correlated to 
the macro-viscous regime [14,15] that takes place only 
for small velocities of the granular mass; for a long and 
rapid sliding path, it does not seem prevalent. 

Attention is so focused to , by assuming that 0 as-
sumes the same value along both the sliding surfaces. 
 cannot assume the same value along the two s.s. 

Along the first surface ( = ),  modulates the power 
subtracted to the granular mass, not available for the mo-
tion. A part, here defined  , is stored as power related to 
granular temperature; the remaining part, , is lost due to 
the collisions associated to the granular temperature. 
Therefore,  analytically expresses the sum of the pow-
ers related both to the granular temperature and colli-
sional dissipation: 

1
   


 
   

 
         (41) 

Along the counterslope plane ( = ), the “stored” 
power   is partly given back to the sliding mass ( 
and partly dissipated through collisions. Therefore,  
represents the power given back to the granular mass; it 
must express the difference between the power previ-
ously “stored” (  ) and the power again dissipated (): 

1
   


 
   

 
         (42) 

/   represents the ratio between the powers (Ecoll) lost 
due to collisions and (Egt) stored through the granular 
temperature: 

coll

gt

E
k

E



 


              (43) 
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To better express the ratio /  , the additional hy-
nstant average mass potheses of binary collisions and co

mg of the grains composing the sliding mass are assumed. 
It 13]: is possible to express Ecoll

 
as [

 2 21
1 e

4coll g cE m N v         (44) 

 between two colliding v is the relative velocity grains, 
e is their restitution coefficient, falling in the
and Nc is the number of collisions.  

 range 0 - 1, 

The energy related to the granular temperature can be 
expressed, in turn, as [12]: 

2

2gt gE m N v
1            (45) 

N, number of grains, v, average value of the modulus of 
the velocity fluctuation vector. If all gr
N/2; v and the relative velocity v may be related each 

ains collide, Nc = 

other through the relation: 

v v                (46) 

being 0 2  ; if = 0, the relative velocities of all 
grains are null: therefore, no collisi
contrary, = 2 means that, for ea

g grains

ons take place. On the 
ch collision, the two 

collidin , moving along the same direction, as-
sume opposite velocity vectors; their relative velocity 
doubles the absolute velocity of each grain. 

By further assuming 0cN N   , (43) becomes: 

 2 21
1 ek

4
              (47) 

parameter  (Figure 2). 
Theref is obtained: 

]1,0[k
ore, it 

 k             (48) 

th ssumed if = , while the 
negative one if = . The ratio r ≥ 1

1 

e positive sign must be a
 is finally defined: 

1

1

k
r

k









 


            (49) 

If energy dissipation after collisions doe
place (k = 0), along the whole path, it 

To estimate parameters 0, , it may be observed that, 
if 

s not take 
results r = 1. 

0  , the limit rate along the first s.s. is: 

0
lim

1
v







            (50) 

Let us consider the high speed granula
terized by typical maximum velocitie
preliminary range for parameters 0, 

r mass charac-
s 20 - 40 m/s; a 
  

 

Figure 2. Parameter k vs. coefficient e, for some values of . 
 

 

χ μ0Figure 3. Couples  values, vs. k; vlim∈[20,40] m/s. 

 

 

 ;Figure 4. Range of admissible values for 0 and k=0 or 

k=1; 20 ≤vlim≤40. 
 

zed volume V, the ratio f(V) = h/Lp. 
Through an empirical relationship, for a given sliding 

ry 
kn

through the empirical criteria, which express, as a func-
tion of the mobili

corresponding 
to these values of limit velocity is below obtained (Fig-
ure 3 and 4): 4 35 10 10     , 0 0.2 0.4   . 

The mobilized friction angle mob ca e estimated  n b

volume, it is possible to find the ratio f(V) and the total 
sliding length path LT. Being the problem geomet

own, the values of L (run-out length along the first 
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sliding surface), (corresponding slope angle), x2f the 
run-up length along the counterslope surface, l (length of 
the mass), LT will depend upon , as follows: 

  
2

sin cos

cos sinT f

L l f
L L l x L

f

 
 

 
    


 (51) 

By this way, at the base of the sliding granular m
simultaneously frictional and collisional dissipation
last ones are represented by the term r) occur. 

 obtained 
ac

 sliding mass.  

em
sures at the base 

of

ncep ally ad-
m

 

Ta
 

ob ined through the Corominas’ relation f(V) = 10 

ass, 
s (the 

It is possible to relate to each value of f(V), computed 
through an empirical criterion, a couple of values r, b, 
allowing to estimate the total run-out length

cording to the empirical criterion. Referring to Coro- 
minas’ criterion [8], b values are reported in Table 2 for 
given r, angles , mobilized volume V. 

The limit value r= 1 gets conventional run-out 
lengths values according to the Mohr-Coulomb shear 
resistance law b(r= 1) at the base of the

If r>1, energy dissipation, due to collisions localized 
in the basal shear layer [2,7,12], occurs. 

To recover the run-out length estimated through the 
pirical law, it is necessary to assign a reduced friction 

angle, also depending by interstitial pres
 the mass (not considered in the empirical criterion). 
For high values of r (e.g. r= 3), a friction angle al- 

lowing to estimate the same length forecasted by the em- 
pirical relationship cannot be determined. 

Therefore, the mobilized friction angle b, smaller 
than the shear resistance angle ’ (static or almost static 
conditions), at the base of the mass, is co tu

issible only if, contextually, collisional dissipations, 
due to granular temperature, are taken into account. 

Values of b, for some r and  values and dry (d/H = 1)
or saturated (d/H = 0) conditions, are drawn in Figure 5. 

 
ble 2. Reduced shear resistance angle b values vs angle , 

for assigned r allowing to estimate the same run-out length
ta

–0.85logV+0.047; V = 106 m3, = 30˚, L = 1000 m, l = 100 m, t = 
20 kN/m3,  = 10–3 s2/m2,  =  0, 0 = 0.2. 

b[˚] 
[°] LT[m] r 

d/H = 1 d/H = 0 

0 1645 

 

Figure 5. Values of reduced shear resistance angle acting at 
the base of the block with the a-dimensional factor r. 

 
It is possible to highlight the existence of b ranges for 

different r values. It is worth observing that high cou

 
5.

.1
 = 3.75; further, for each case,

n-
terslope values (e.g. = –15˚) narrow the range of b(r); 
small rvariations cause appreciable b variations. 

 Results 
 
The run-out length, velocity and dissipated energy along 
the path, computed through the model (r = 1, r=1  and 
r  0  , 0  , 

0 0.2  ), ar
g values obtained 

e compared in Figure 6 to the correspond-
according to the hr-C  

th e   tha
obta

ss. 
If 

 or  criterion (two values of turbulence coeffi- 
ci

 

 
 Moin oulomb

(M-C) or Voellmy (V) resistance criterion at the base of 
the mass, neglecting the granular temperature effects. 

The proposed model gets a run-out leng qual to t 
one inable if the M-C resistance criterion is assumed 
at the base (r = 1); conversely, by assuming r = 3.7, the 
computed run-out length is equal to the one estimated if 
the V criterion is applied at the base of the sliding ma

r = 1.1, an intermediate run-out length is obtained. 
For both cases, the sliding rate obtained through the 

model is smaller than the ones computed through M-C or 
V criteria; if r = 1 the rate computed through the model 
is almost constant along an appreciable length of the 
path. 1 19.2 

8 
37.5 
15.7 1.5 

3 6 11.8 

–5 1516 
1 

1.5 
3 

19.4 
5.5 
2.6 

38.2 
10.7 
5.4 

–10 1433 
1 

1.5 
3 

19.7 
0.2 
– 

38.7 
5.8 
– 

Computed rate and dissipated energy, for three  val- 
ues, by assuming r = 1.5, are reported in Figure 7. The 
same values of the rate are compared with those ones 
obtained by assuming the M-C (three different friction 
angle) V

ent ) at the base of the mass. If the M-C-criterion is 
applied, high run-out distances (particularly for small b), 
but excessive rate values, are obtained. Instead, if the V 
criterion acts, although obtained rate values are accept- 
able, small run-out lengths are obtained, because the hard 

–15 1375 
1 

1.5 
3 

19.8 
0.2 
– 

39.5 
0.5 
– 
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Figure 6. Velocity (v) along the path and energy dissipation 
(E) for three values of r; L = 1000m, l = 100 m, H = 5 m, d = 
0 m, b = 10˚,  = 30˚,  = 0˚, t = 20 kN/m3. For Voellmy 
criterion,  = 1000 m/s2. 
 
deceleration of the mass at the slope change. Computed 

. Back analysis 

l model [16,17] 

ble and are not directly 
pplicable to estimate the above defined parameters. By 

ese limits, the back analysis of the 
n-out length measured for the Frank slide (Canada, 

 water saturated mass has been  

run-out lengths LT considerably vary with 
counterslope, Figure 8 and ratio d/H (interstitial 
pressures at the base, Figure 9). 
 
6
 
Only a partial assessment of the theoretica
is possible, since direct field observations of landslides 
and avalanches are rarely availa
a
taking into account th
ru
1903) is carried out. 

The Frank slide occurred on the morning April 29, 
1903, killing about 70 people. The estimated mobilized 
volume was about 30 × 106 m3. The slope of the first 
sliding surface is about 30˚, while for the counterslope is 
about –2.2˚. The profile along the run-out path is repre- 
sented in Figure 10. A

 
 

 

Figure 7. Velocity (v) along the path and energy dissipation 
(E); L = 1000 m, l = 100 m, H = 5 m, d = 0 m,  = 30˚,  = 0˚, 
t = 20 kN/m3. For Voellmy criterion, it is assigned b = 10˚. 
 

 

Figure 8. Total run-out length (LT) vs counterslope angle ; 
L = 1000 m, l = 100 m, H = 5 m,  = 30˚, t = 20 kN/m3, r= 
1.5,  0, b = 10˚,  =5 · 10–4. 

Copyright © 2011 SciRes.                                                                                  IJG 



F. FEDERICO  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  IJG 

283

 

  

Figure 9. Total run-out length (LT) vs. ratio d/H; L = 1000 m, l = 100 m, H = 5 m,  = 30˚, t = 20 kN/m3, r= 1.5,  0, b = 
10˚,  = 0˚ =5 · 10–4. 
 

 

Figure 10. Frank slide: profile along e run-out path (modified from [17]). 

A basal shear resistance angle equal to 16° has been 
assigned, according to [16]. The parameters assigned to 
fit the measured run-out length LT = 2800 m are:  =  
= 5·10–5 s/m, 0 = 0.1,  = 3·10–4 s2/m2. 

The rate along the path is reported in Figure 11, for 
three r values. An acceptable agreement between meas-
ured and computed run-out lengths is achieved for r = 
1.25. 

The max rate of the sliding mass is 50 m/s, almost in-
dependently from the r values. 
 
7. Concluding remarks 
 
The motion of a granu

odeled accounting for granular temperature effects [6]. 
g to experimental observations and theoreti-

ca

 related storage 

of kinetic energy, due to fluctuations of grains velocity, 
occur within this s.l. 

The energy transferred by the s.l. (granular-inertial re-
gime) to the sliding mass and viceversa, following a 
suggestion by [6], has been modeled by introducing a 
positive adimensional rate dependent function (v) in 
the power balance of the sliding mass. 

By this way, the governing equations of the motion 
have been written with reference to the sliding along: 1) 
the first s.s.; 2) the progression from the first (>0) to 
the second s.s. (<0); 3) the run-up along the second s.s. 
The assumption of a reduced shear resistance (mobilized 
angle b < ’) in Corominas’ empirical criterion is con-

 dissipation related to 

er

 

th
 
assumed. 

lar mass along two planar s.s. is ceptually justified only if the energy
grains collisions, localized in the shear layer, is consid-m

ed; a possible range of b values has been evaluated. 
The “transfer” function (v) plays a role on the ef-

fects of energy dissipation and on the kinematic of the 
mass. 

Accordin
l considerations, it is assumed that, during the rapid 

motion, a shear layer (s.l.) at the base of the sliding mass 
takes place [2,7,12]. Energy dissipation due to both fric-
tional and collisional phenomena [13] and Moreover, along the first s.s., acceleration is smaller 
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Figure 11. Frank Slide: rates along the run-out path. 
 
th

t

ns 
re

 coupled with limited sliding rates, by this 
ov
V-resistance criteria. For particular r values, the solu- 
tions obtained by assuming the M-C or Voellmy (V) re- 
sistance criteria are recovered. 

The limits of the proposed model are mainly related to 
the invariability of the geometry of the sliding mass, the 
preliminary estimate of micromechanical param
figuring in the laws motion, the uncoupling between
interstitial pressure at the base of the mass and the slid- 
ing rate. 
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