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Abstract 
In this work, the effect of transverse horizontal electric field on the stability of three layers of im-
miscible liquids is illustrated. The fluids are subjected to a uniform horizontal electric field. Ana-
lytical and numerical simulations of this system of linear evolution equations are performed. The 
solutions of the linearized equations of motion and the boundary conditions lead to deriving two 
simultaneous Mathieu equations of damping terms having complex coefficients. The effects of the 
streaming velocity, the permeability of the porous medium, and the electrical properties of the 
flow on the instability are investigated. In the case of uniform velocity, it is found that electric field 
has a stabilizing influence on the stability criteria. When the periodicity of the velocity is consi-
dered, the method of multiple scales is applied to obtain stability solution for the considered sys-
tem. It is found that the phenomenon of the dual role is found for increasing the permeability pa-
rameter. In addition it is found that the velocity of the middle layer has a destabilizing effect whe-
reas the dielectric constant ratio has an opposite influence to the stability of the fluid layers. 
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1. Introduction 
The flow through porous media is of considerable interest for petroleum engineers and in geophysical fluid 
dynamicists. A series of studies for hydrodynamics stability have been initiated by many authors, for example, 
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the unsteady electrohydrodynamic stability has been investigated in article [1]. The stability analysis is made of 
a basic flow of streaming fluids in the presence of an oblique periodic electric field. The authors in the paper [2] 
have discussed the instability of viscous potential flow in a horizontal rectangular channel. Bhatia [3] has stu- 
died the influence of viscosity on the stability of the plane interface separating two incompressible superposed 
fluids of uniform densities, when the whole system is immersed in a uniform horizontal magnetic field. He has 
developed the stability analysis for two fluids of equal kinematic viscosities and different uniform densities. 
Zakaria et al. [4] have investigated the instability properties of streaming superposed conducting fluids through 
porous media under the influence of uniform magnetic field, where the system is composed of a middle fluid 
sheet of finite thickness embedded between two semi-infinite fluids. 

A good account of hydrodynamic stability problems has also been given in papers [5]-[9]. Li et al. [10] have 
examined the electrohydrodynamic stability of the interface between two superposed viscous fluids in a channel 
subjected to a normal electric field. The long wave linear stability analysis is performed within the generic 
OrrSommerfeld framework for both perfect and leaky dielectrics. The approach proposed in paper [11] is limited 
to study the gravity-driven flow of a liquid film below an inclined wall with periodic indentations in the presence 
of a normal electric field. Espn et al. [12] have analyzed the effect of viscoelasticity on the electrohydrodynamic 
instabilities in thin liquid films under the influence of AC and DC electric fields. It is found that the elasticity 
increases both the maximum growth rate and the corresponding wave number. In their study of AC 
electrohydrodynamic instabilities in thin liquid films, Roberts and Kumar [13] applied lubrication theory to 
examine the possibility of using AC electric fields to exert further control over the size and the shape of the 
pillars. They found that, for perfect dielectric films, linear stability analysis shows that the influence of an AC 
field can be understood by considering an effective DC field. 

It is the purpose of our paper to develop a mathematical model for a steaming fluid sheet embedded between 
two bounded fluid layers in the presence of porous media. The fluids are subjected to a horizontal electric field. 
The present article is structured as follows. This section has presented the motivation for the investigation in 
addition to relevant background information. The next section lays down the exposition of the problem and a 
sketch of the system under consideration. Also in this section the equations of motion and boundary conditions 
are derived. The third section is prepared to linear perturbation and the line of solutions. In the fourth section, 
the Mathieu equations, for a periodic velocity, have been derived to control the surface wave propagation. Also, 
in this section, the perturbation scheme using the multiple scales analysis and the numerical estimation for 
stability configuration have been discussed. The results are discussed and some important conclusions are drawn 
in the final section of this paper.  

2. The Basic Flow and Exposition of the Problem 
Consider parallel flow of three fluids in an infinite, fully saturated, uniform, homogeneous and isotropic porous 
media with constant permeability, where we assume a model of a liquid sheet sandwiched between two bounded 
fluid layers. The two interfaces between the fluids are assumed to be well defined and initially flat and forms the 
plane y H= ±  and the instantaneous perturbed interface height is ( ),ly h x t= , 1, 2l =  is along the y 
direction. The system is considered to be influenced by the gravity force in the negative y-direction as shown in 
Figure 1. The fluids are incompressible and have constant properties. There are two interfaces between the 
fluids are assumed to be well defined and initially flat and the two interfaces are parallel and the flow is each 
phase is every where parallel to each other. Assuming that the layers are moving with velocity ( )r =u  

( )
0

ˆcosjU tΩ i , where ( )
0

rU  and Ω  are constants. The unit vectors î  and ĵ  are in x- and y-directions. 
The equations governing two-dimensional motion of an incompressible fluid through porous medium are 

given by the phenomenological Darcy equation, which comes from the combination of the momentum equation 
and Darcy’s law [11]-[14]: 

( ) ( ) ( ) ( ) ( ) ( )
0

ˆ ,   1, 2,3,r r r r r r
tD p g rρ ρ η= −∇ − + =u j u                       (1) 

associated with the continuity equation  
( ) 0.r∇⋅ =u                                        (2) 

In these equations ( ) ( )( )r r
t tD = ∂ + ⋅∇u u , the partial derivatives of any function are denoted by the subscripts 
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                          Figure 1. Schematic of problem geometry.                  

 

t, x and y. The ratio ( )
( )

( )0

r
r

rQ
ηη =  represents to the resistance parameter, where the permeability ( )rQ  describes 

the ability of the fluid to flow through the porous medium and ( )rη  is the fluid viscosity measures the resis- 
tance of fluid to shearing that is necessary for flow. The symbol ( ),x y∇ ≡ ∂ ∂  is the horizontal gradient opera- 
tor, the function ( )rp  refers to the fluid pressure and the parameter ( )rρ  is the density of the fluids. Intro- 
ducing the velocity potential ( ) ( ), ,r x y tφ  of the perturbed motion such that the total fluid velocity is given by  

( ) ( ) ( ) ( ) ( ){ } ( ) ( )0
ˆ ˆ, , cos  , , , , ,r r r r

x yx y t U t x y t x y tφ φ= Ω −∂ − ∂u i j                   (3) 

and thus ( )rφ  will satisfy Laplace equation  
( ) ( )2 , , 0.r x y tφ∇ =                                      (4) 

In a magneto-quasi-static system with negligible displacement current, Maxwell’s equations in the absence of 
free currents are 

( ) ( )( ) ( ) 0  and  0.r r rε∇ ⋅ = ∇× =E E                               (5) 

Here, ( )rE  is the electric field intensity vector, the notation × refers to the vector product of two vectors and 
( )rε  refers to the dielectric constant. The construction of a potential function ( )rψ , can be representable as the 

gradient of the scalar potential such that  
( ) ( ) ( ){ } ( )

0
ˆ ˆ,r r r r

x yE ψ ψ= −∂ − ∂E i j                               (6) 

automatically satisfies zero curl for a constant permittivity and therefore the electrostatic potential satisfies the 
Laplace equation  

( )2 0.rψ∇ =                                       (7) 

The Maxwell stress tensor describes the stress field induced in the material due to electrostatic forces whose 
expression is  

( ) ( ) ( ) ( ) ( ) ( )( )1 ,
2

r r r r r rε  = − ⋅ 
 

M E E E E I                            (8) 

where, I  is the identity tensor. In the following, the boundary conditions are used to complete the solutions of 
the above system of the governing equations. These constraints are information about the solutions at the upper 
and lower boundaries and at the interfaces between the fluids [7]-[10]. 

On the interface ( ),ly h x t= , 1, 2l =  it is natural to impose the kinematic boundary conditions, the 
kinematic condition expresses the fact that the interface always comprises the same fluid particles, and therefore 
the function ( ),lh x t  whose graph defines the interface satisfies simultaneously  
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, 1 , 1
0 cos 0.l l l l

y t l x lh U t hφ + +∂ + ∂ + Ω ∂ =                            (9) 

In addition kinematic relation follows from the assumption that the normal component of the velocity vector 
in each of the phases of the system is continuous at the dividing surface:  

( ) ( )( ) ( )1 0   at  , .l l
l ly h x t+⋅ − = =n u u                                (10) 

Here, ln  is the exterior pointing normal unit vector to the interfaces which has the form  
ˆ ˆ,l l l x lF F h= ∇ ∇ −∂ +n i j

 where ( ), ,lF x y t  is the surface geometry defined by ( ),l lF y h x t= − . The  
boundary conditions on the upper and lower plates, in which the plates are assumed to be rigid and kept constant, 
this implies that:  

( ) ( )1 2
1 20  at    and  0  at  .y L y L= = = = −u u                       (11) 

The continuity of the normal and the tangential components of the electric displacement at the interface 
obeyed Maxwell’s conditions, and thus we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1 1 1
0 0 , 0,l l l l l l l l

y y xE E h x tε ψ ε ψ ε ε+ + + +∂ − ∂ + − ∂ =                    (12) 

( ) ( )1 0.l l
x xψ ψ +∂ − ∂ =                                   (13) 

Furthermore the dynamical boundary condition, where the normal stresses are balanced by the amount of the 
surface tension is  

( ) ( ) ( )
( )

( ) ( )
11 2 2

1
1  ,    , ,
2

ll
ll ll l

p y h x tε ε γ
++

+⋅ − ⋅ + ⋅ − ⋅ = − ∇ ⋅ =n I n E n E t n              (14) 

where, it is assumed that the fluid interfaces have surface tension coefficient ( )1l lγ +  and ( )1,l x lh= ∂t  is the  

corresponding unit tangent at the interface.  

3. Linear Perturbation and Solutions 
In order to discuss the stabilization of the present problem, the interfaces between the fluids will be assumed to 
be perturbed about its equilibrium location and will cause a displacement of the material particles of the fluid 
system. The amplitude of waves formed on the fluid sheet is assumed to be small. For a small departure from the 
equilibrium state, every physical perturbed quantity may be expressed as functions of both the horizontal and 
vertical co-ordinates as well as time:  

( ) ( ) ( )ˆ, , , exp . .,S x y t S y t ikx c c= +                             (15) 

where k is the wave number, which is assymed to be real and positive, the symbol i denotes 1−  , the 
imaginary number, and c.c. represents complex conjugate of the preceding terms and S stands for φ  and ψ . 
These, expansions are introduced into the governing equations and the relevant boundary conditions. The 
linearized terms in these perturbed quantities are only maintained in view of the linear stability theory [15] [16]. 
To perform a linear stability analysis of the present problem, the interfaces between the three fluids will be 
assumed to be perturbed about their equilibrium locations to cause displacements of the material particles of the 
fluid system. Consider the effect of small wave disturbances to the interfaces y H= ± , propagating in the 
positive x-direction. Assuming that the surface deflections are given by  

( )( ) ( )11 , ,l
ly H h x t+= − +                                 (16) 

where  

( ) ( ) ( ) ( ), exp ,l
lh x t t ikxξ=                                (17) 

( )1ξ  and ( )2ξ  are arbitrary time-dependent functions which determine the behavior of the amplitude of the 
disturbances on the interfaces. Now by inserting Equation (3) into Equation (1), we obtain the pressure in terms 
of the velocity potential such that  
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )
0 0cos ,r r r r r r r

t xp U t gyρ φ φ η φ= ∂ + Ω ∂ − +                      (18) 

Hence, from Equations (14) and (18), the balance at the dividing surfaces gives  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( )( )

1 1 1 1 1
0 0

1 1 1 1 1( )
0 0 0 0

1 2
, 1

cos

0.

l l l l l l l l l l
t t x x

l l l l l l l l ll
y y

l l
l l l l

t U U

E E

g h k h

ρ φ ρ φ ρ φ ρ φ

ε ψ ε ψ η φ η φ

ρ ρ γ

+ + + + +

+ + + + +

+
+

∂ − ∂ + Ω ∂ − ∂

− ∂ − ∂ + −

− − + =

            (19) 

In accordance with the interface deflection given by (17) and in view of a standard Fourier decomposition, we 
may similarly assume that the bulk solutions are of the form  

( ) ( ) ( ) ( ) ( )ˆ, , , exp . .,r rx y t y t ikx c cφ φ= +                           (20) 

( ) ( ) ( ) ( ) ( )ˆ, , , exp . .r rx y t y t ikx c cψ ψ= +                            (21) 

As is customary in hydrodynamic stability analysis [15], we determine the boundary-value problem cited 
above. It constitutes a homogeneous system of equations and boundary conditions for explaining the factors 
governing the surface wave’s propagation. In view of the above boundary conditions, the solution of Laplace's 
equation yields the distribution of the velocity potential ( )rφ  and the magnetic potential ( )rψ  in the three 
layers. Insert (20) into Laplace’s Equation (4); the resulting solutions in view of the above kinematic boundary 
conditions yield 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ){ } ( )

1
1 1

1 1 1
0 1

, , 1 cosh cosech 1

cos exp . .,   1 ,t

x y t k k y L k L

ik U t ikx c c y L

φ

ξ ξ

= − + −

× Ω + ∂ + < <
                (22) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )(
( ) ( )( ) ( ) )}} ( )

2
2 2

0
1

, , cosh 2 cos 1 cosh 1 1

1 cosh 1 1 exp . .,   1 1,

n n n

n

n n n
t

x y t k k ikU t k y

k y ikx c c y

φ ξ

ξ

=

 = Ω − + − 


+ − + − ∂ + − < <

∑
            (23) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ){ } ( )

3
2 2

2 3 2
0 2

, , 1 cosh cosech 1

cos exp . .,   1 .t

x y t k k y L k L

ik U t ikx c c y L

φ

ξ ξ

= − − −

× Ω + ∂ + − < <
              (24) 

Substituting (21) into Laplace’s Equation (7), the resulting solutions in view of the previous Maxwell’s 
conditions will give  

( ) ( ) ( ) ( ) ( )1 1
0 1 1, , sinh exp . ,x y t E k y L ikx c cψ = Γ + +                        (25) 

( ) ( ) ( ) ( ) ( ){ } ( )
2

2 1
0

1
, , 2 sinh 1 exp . ,n n

n
x y t E n M L ikx c cψ

=

= − − +∑                   (26) 

( ) ( ) ( ) ( ) ( )3 1
0 2 2, , sinh exp . ,x y t E k y L ikx c cψ = Γ − +                        (27) 

where, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ){
( ) ( ) ( )( ) ( )}

1 2 2
1 1

1
1

ˆ ˆ ˆ1 1 sinh 3 1 sinh 1

ˆ ˆ2 1 1 sinh 1 ,

l
l l l

l l l
l

i N k L k L

k L

ε ξ ε ε

ε ε

+ +

+
+

 Γ = − − − + + + 

+ − − −
 

( ) ( )( ) ( )( ) ( )( ) ( )( ){
( ) ( )( )} ( ) ( )

1 1(1)
1

1 1 1
1 1 1

ˆ ˆ ˆ1 1 sinh 1 1

ˆ ˆsinh 1 2 1 ,   ,   at 2,

ll l l
l l

l l l l
l l l

M i N k y L

k y L L L l

ε ξ ε ε

ε ε

+ +
+

+ + −
+ + −

= − + + − + −

× + − + − = = =
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( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

2
1 2 2

2 2
1 2 2

ˆ2sinh 1 cosh 2 cosh 1 sinh 2 sinh 1

ˆ ˆ2 cosh 1 cosh 2 sinh 1 sinh 2 cosh 1 .

N k L k k L k k L

k L k k L k k L

ε

ε ε

= − − − −

+ − − − −
 

In the above solutions the stream velocity and the velocity potential function are made dimensionless using  
Hg  and H Hg , while the applied normal field and the electric potential are made dimensionless by  

( ) ( )2 2Hgρ ε  and ( ) ( )2 2H Hgρ ε , respectively. In addition the viscosity ( )2 2H gρ , permeability of the  

porous medium 2H Q . And by using the symbols ( ) ( ) ( )1 1 2ε̂ ε ε= , ( ) ( ) ( )2 3 2ε̂ ε ε=  the density  
( ) ( ) ( )1 1 2ρ̂ ρ ρ= , ( ) ( ) ( )2 3 2ρ̂ ρ ρ= , the Weber number ( )22

l lW H gγ ρ= , ( )1,2l = . 

4. The Characteristic Equations 
In this section our goal is to study effect of general surface deformations on the onset of a periodic velocity 
applied to the fluid sheet. Equations that determine the surface deflections are called the characteristic equations. 
Substituting Equations (22)-(24) and (25)-(27) into the normal stress tensor (19), to replace the dependence on 
the potential velocity ( )rφ , the electric stream function ( )rψ  and the fluid pressure function ( )rp  by the 
dependence on the amplitude lξ , finally after a straightforward calculations, one obtains the coupled equations  

( ) ( ) ( ) ( ) ( ) ( )( ){ } ( ) ( ) ( ) ( ) ( ) ( )( ){ } ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )({
( ) ( ) ( ) ( ) )} ( ) ( ) ( ) ( ) ( ) ( ) ( ){

1 1 1 1 2 1 1 2 2 2 3 2 22
1 0 1 0 2 1 0 1 0 2

1 1 1 1 1 2 1 1 1 2 12 2 2 2
1 0 2 0 3 0 4 0 1 0 2

1 1 2 1 1 2 1 2 2 2 32 2 2 2
0 3 0 4 1 0 2 3 0 0

0

cos cos

cos cos

sin cos

t r i i t r i i t

r r r r i i

i i r r r

l i U l U l t f i U f U f t

s E s U s U s t i U s U s t

U s U s t r E r r U U t

i U

ξ ξ ξ

ξ

∂ + + + Ω ∂ + + + Ω ∂

 + + + + Ω + − Ω 

   + − Ω + + + − Ω   

+ ( ) ( ) ( ) ( ) ( ) ( ) ( )( )} ( )2 2 3 2 2 3 2 2
1 0 2 3 0 0cos sin 0,i i rr U r t r U U t ξ   + Ω + − Ω =   

    (28) 

( ) ( ) ( ) ( ) ( ) ( )( ){ } ( ) ( ) ( ) ( ) ( )( ){ } ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )({
( ) ( ) ( ) ( ) )} ( ) ( ) ( ) ( ) ( ) ( ) ( ){

2 2 1 2 2 2 2 1 2 1 1 12 (3)
1 0 1 0 2 1 0 1 0 2

2 1 2 1 2 2 2 1 2 2 22 2 2 2
1 0 2 0 3 0 4 0 1 0 2

1 2 2 2 2 1 1 1 1 2 32 2 2 2
0 3 0 4 1 0 2 3 0 0

cos cos

cos cos

sin cos

t r i i t r i i t

r r r r i i

i i r r r

l i U l U l t f i U f U f t

s E s U s U s t i U s U s t

U s U s t r E r r U U t

i

ξ ξ ξ

ξ

∂ + + + Ω ∂ + + + Ω ∂

 + + + + Ω + − Ω 

   + − Ω + + + − Ω   

+ ( ) ( ) ( ) ( ) ( ) ( ) ( )( )} ( )2 1 3 1 1 3 2 1
0 1 0 2 3 0 0cos sin 0,i i rU r U r t r U U t ξ   + Ω + − Ω =   

    (29) 

where the coefficients that appear in these equations are real and depend on the physical parameters of the 
problem. The mathematical formulas of these coefficients are lengthy and not included here. However, they are 
available upon request from the author. Equations (28) and (29) are two coupled Mathieu equations having 
damping terms and complex coefficients. By making use of these equations, the stability behavior of the fluid 
sheet is controlled. For a uniform stream, the periodicity of the stream will be absent. Therefore, wave 
propagation is excited by using the electro-capillarity technique. Hence, in the limiting case of Ω  tending to 
zero in the above system, the damped Mathieu equations then become a linear differential equations with 
constant coefficients. It can be satisfied by a growth rate solution, which may be written as  

( ) ( ) ( )exp ,l l i tξ ξ ϖ=                                    (30) 

where ( )lξ  is the constant of integration. Substituting this equation into the above system of Mathieu equations 
the dispersion equation of the perturbed motion is then  

( ) ( ) ( )4 3 2
11 12 21 22 31 32 41 42 0,i i i iϖ α α ϖ α α ϖ α α ϖ α α+ + + + + + + + =               (31) 

where the coefficients α’s are clear from the context. It should be noted that (31) represents a complex linear 
dispersion relation that is satisfied by values of ϖ  and k. It is clear that the surface waves propagating along 
the interfaces separating between the inviscid fluids will only be stable if all the roots of (31) are real. Otherwise, 
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there are at least two roots (complex conjugate) and thereby the interfacial inviscid waves are unstable. In 
Figure 2 our main goal is to examine the influence of the the applied electric field on the stability criteria of the 
system. However, the curves displayed in part (a) of Figure 2 clarify the four roots of the characteristic 
Equation (31) with the variation of the disturbance wave number k, corresponding to the case of the uniform 
stream, for a system having the parameters given in the caption of Figure 2. It is observed that all the roots of 
(31) are real and then admitting stable waves in the range satisfying the relation 1 1.3k< < , while two of these 
roots are complex in the specific regions 0 1k< <  and 2 3k< < . It is shown in part 2(b) with ( )1

0 0.6E =  
that the four roots of (31) are real in the region 1 2.2k< < , whereas two of these roots are complex in the 
specific regions 0 1k< <  and 2.2 3k< < . In part 2(c), where ( )1

0 1E = , we observe that the stable area is 
increased to become in the range 0.9 2.3k< < , while the unstable range is decreased, in which we observe that 
one or two the roots of (31) have acquired real values. In comparison of the parts of Figure 2, we conclude that 
the electric field has a stabilizing influence on the movement of the waves where the increase of the values of 
the field has changed the unstable waves into stable waves. This case may be physically interpreted as 
suggesting that a part of the kinetic energy of the field has been absorbed from the waves. El-Sayed et al. [17] 
have obtained a similar conclusion in their studies of nonlinear electrohydrodynamic stability of two superposed 
Walters B’ viscoelastic fluids in relative motion through porous medium. 

In the presence of the periodicity of the velocity, the stability picture has changed dramatically and hence we 
return to the general form of dispersion relations (28) and (29). The method of multiple time scales [18] has 
 

 
Figure 2. The variation of the four roots of (31), corresponding to the the case of the uniform stream, with the disturbed 
wave number k, for a system having ( )1

0 0.4U = , ( )2
0 0.1U = , ( )3

0 0.8U = , ( )1ˆ 0.5ε = , ( )2ˆ 0.4ε = , 1 0.3L = , 2 0.8L = , 
( )1ˆ 0.8ρ = , ( )2ˆ 0.9ρ = , ( )1 0.5Q = , ( )2 0.3Q = , ( )3 0.5Q = , with ( )1

0 0.2E = , 0.6 and 1 of the partitions (a), (b) and (c), 
respectively.                                                                                            
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been successfully used to treat similar these equations, since the solutions and the properties of Equations (28) 
and (29) are unknown. Applying the method of multiple scales, where the independent variable t can be 
extended to introduce alternative independent variables: nt t=  , 0,1, 2n = , where the parameter   represents 
a small dimensionless parameter characterizing the steepness ratio of the wave. Thus, we define 0t  as the 
variables appropriate to fast variations and 1t , 2t  as the slow variables. The differential operators can now be 
expressed as the derivative expansions:  

2 20 1 0 10

2 2 2   and   2 ,t t t t tt t
∂ ≡ ∂ + ∂ + ∂ ≡ ∂ + ∂ +                         (32) 

where 0t  is the time of the lowest order. For the small dimensionless parameter  , we can characterize the  
amplitude of the periodic force which is defined as ( ) ( )

0 0
r rU U=  . The analysis then follows the usual perturba-  

tion procedure and suppression of the secular terms except that is now more convenient to write the solution in a 
complex form. 

Now, let the dependent variables ( )lξ  be expanded in the form  
( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 0 1, , , , 1, 2.l l lt t t t t lξ ξ ξ= + + =                       (33) 

Substituting (32) and (33) into (28) and (29) and equating coefficients of like powers of   (because each of 
the ( )lξ  are independent of  ) yields simpler inhomogeneous equations, which can be solved successively 
with knowledge of the solutions of the previous orders. Uniform solutions are required to eliminate the secular 
terms. This elimination produces the solvability conditions corresponding to the terms containing the factor 

( )0exp i tϖ , in which the solvability condition is divided into two cases. The first is valid in the non-resonant 
case in which the frequency Ω  is away from the frequency ϖ . Otherwise the resonance arises when the 
frequency Ω  approaches the frequency ϖ . Hence the solvability condition in the non-resonant case is  

( ) ( )( ) ( ) ( )( )1

1 1 1 1
1 2 1 1 2 1 0.tf if A s is A+ ∂ + + =                           (34) 

This condition show that the motion is stable if  
( ) ( ) ( ) ( )1 1 1 1

1 1 2 2 0.f s f s+ ≥                                   (35) 

In the resonance case when the frequency Ω  approaches the frequency ϖ , we introducing a detuning 
parameter ( )1λ  defined by  

( )12 2 ,ϖ ελΩ = +                                    (36) 

and hence the solvability conditions are  
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )1

1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1 1exp 2 0,tf if A s is A h ih A i tλ+ ∂ + + + + =                (37) 

where 1A  is the complex conjugate of 1A . The solution of Equation (37) imposes a dispersion relation. This 
dispersion relation will be used to discuss the stability behavior in this resonant case. Let the solution of this 
equation has the form:  

( ) ( )( ) ( )( )1 1 1
1 1 2 1expA x ix i tϖ λ = + + 

                              (38) 

with real ϖ  and ( )1λ . Substituting Equation (38) into Equation (37) and separating the real and imaginary 
parts, if ( )1

1x  and ( )1
2x  are proportional to ( )1exp tϖ . Then the coefficients matrix must vanish for non-trivial 

solution. This yields the following dispersion relation: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1 1 1 1 1 1 1 12 2
1 1 2 2 1 1 2 2

1 1 1 1 12 2 2 2
1 2 1 2

2 2

0,

f f s f s f f s f s

f s s h h

ϖ ϖ λ λ+ + + + −

+ + − − =

 

             (39) 

where, ( ) ( ) ( )( )1 1 12 2
1 21f f f= + . An important feature of the waves is that the growth or decay is according to the  

sign of ϖ . In view of the Hurwitz criterion [18], the stability of Equation (39) arises when  
( ) ( ) ( ) ( )1 1 1 1

1 1 2 2 0.f s f s+ ≥                                       (40) 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2
1 2 2 1 1 2 1 22 0f f s f s f s s h hλ λ+ − + + − − ≥                 (41) 

are satisfied. Condition (40) is the same as condition (35) which satisfies in the non-resonant case and the values 
of ( )1λ  are the roots of the Equation (40), which are:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2
1,2 1 2 2 1 1 2 2 1 1 2 1 2 .f f s f s f f s f s f s s h hλ = − − ± − − + − −        (42) 

The curves ( )1
1λ  and ( )1

2λ  represent the transition curves in the plane ( )( )1 kλ −  that separate the stable  

region from the unstable one. According to Fleque’s theory [18] of linear differential equations with periodic  
coefficients, the region bounded by the two branches ( )1

1λ  and ( )1
2λ  is unstable, while the area outside them is  

stable along which ( ) ( )l tξ  are periodic with a period of the other. It is clear that the two branches ( )1
1λ  and  

( )1
2λ  have common fixed points known as the resonant points. The emergence of these branches occurs as    

tends to zero in Equation (36). 
In graphing the stability picture, numerical computations are made for the resonant cases discussed above. 

The stability characteristics are governed by Equations (42) which require the specification of the same 
parameters which we indicated in the case of the uniform stream. The resonant case of the frequency Ω  
approaching the disturbance frequency ϖ  is carried out. The numerical calculations for the transition and 
curves ( )1

1λ  and ( )1
2λ  in the resonant case of Ω  near ϖ  are displayed in Figures 3-5. 

 

 
Figure 3. The same system as that considered in Figure 2, but for ( )2

0 1.5U = , 2.5 and 3.5 of the partitions (a), (b) and (c), 
respectively.                                                                                            
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Figure 4. The stability diagrams in the ( )( )1 kλ −  plane, according to Equations (42), at ( )1ˆ 0.7ε = , 1.2 and 1.7 of the 

partitions (a), (b) and (c), respectively.                                                                       
 

In Figure 3, ( )1λ  is plotted against the wave number k. The graphs emphasize the impact of the variation of 
the above parameters. A numerical search was conducted to seek the regions of the stability and instability. The 
stable region involved in these graphs was decided by satisfying the inequalities (40) and (41), where S 
represents the stable region and U indicates the unstable case. The instability is due to the balance between the 
frequency Ω  and the disturbance frequency ϖ . The influence of the velocity ( )2

0U  is displayed in Figure 3, 
the stability diagrams that are shown in this graph represent two stable regions and other region that lies between 
the two transition curves ( )1

1λ  and ( )1
2λ  are unstable, which coincides with Floquet's theory. In Figure 3(a), 

we choose the velocity ( )2
0 1.5U =  and select suitable values of the parameters which we indicated above. 

Inspection of the stability diagrams reveals that there is an unstable regions bounded by the transition curves 
( )1

1λ  and ( )1
2λ  and other outside them which is stable. The increasing of velocity to the value ( )2

0 2.5U =  under 
the same values of the other parameters is given in Figure 3(b). The stability diagrams that are shown in these 
graphs illustrate that the unstable area increase, while the stable regions decrease. Thus, we conclude that the 
increase of the velocity has a destabilizing influence. In Figure 3(c), the stability diagrams that are shown in 
these graphs represent the same system as in the previous graphs while the velocity increases to the value 

( )2
0 3.5U = , the unstable region increase and the stable regions decrease. It is apparent from the comparison 

between the graphs of Figures 3(a)-(c) that the variation of the velocity in middle layer plays a destabilizing 
role in the motion of the fluids. 

In order to examine the influence the dielectric constant ratio ( )1ε̂  the lower layer to the middle sheet on the  

http://dx.doi.org/10.4236/oalib.1101315


S. A. Alkharashi 
 

OALibJ | DOI:10.4236/oalib.1101315 11 February 2015 | Volume 2 | e1315 
 

 

Figure 5. The graph is constructed for ( )1λ  versus k, according to the transition curves given from condition (42), for the 

same system given in Figure 2, with ( )1 2Q = , 3 and 5 of the partitions (a), (b) and (c), respectively.                     
 
stability criteria, numerical calculations are made in the parts of Figure 4 The graph shown in the plane 

( )( )1 kλ −  are achieved for three values of the ratio ( )1ˆ 0.7ε = , 1.2, and 1.7, corresponding to the partitions (a), 
(b) and (c) respectively, where the other quantities are held fixed. The inspection of the stability diagram of the 
parts of Figure 4 reveals that the increase of the dielectric constant ratio ( )1ε̂  leads to increase in the width of 
the stability regions, while the unstable areas are decrease. The conclusion that may be drawn here is that the 
dielectric constant has a stabilizing influence on the stability behavior of the waves. In the parts (a), (b) and (c) 
of Figure 5, we repeat the same diagrams as illustrated in Figure 3, with a change in the value of the 
permeability of the porous media ( )1 2,3,5Q = , while the other parameters are fixed. Applying the above 
stability constraints to separate the stable and the unstable regions, we notice that the the phenomenon of the 
dual role is found for increasing the value ( )2Q , which has two roles: one is a stabilizing influence at ( )2 2Q =  
to ( )2 3Q =  and the other is a destabilizing influence when the permeability is increased from ( )2 3Q =  to 5. 

5. Conclusion 
In this paper, we introduce the stability of a fluid sheet of finite thickness embedded between two bounded 
layers of fluids through porous media. The system is under the influence of a horizontal electric field with a 
periodic stream. Through linear perturbation analysis in the general case where the surface deflections are 
assumed to be independent, the solution of the system in the use of normal stress condition leads to two 
simultaneous differential equations of Mathieu type with damping terms and having complex coefficients, which 
are used to control the stability of the fluid sheet motion. Consequently, a mathematical simplification is desired 
to relieve this complication for the Mathieu equation. Hence, the parametric instability arose in the standard way 
of the multiple scales method, which is used in order to derive stability criteria in the case of uniform streaming, 
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and in resonant and non-resonant cases. The transition curves separating the stable region from unstable regions 
are identified. The analysis recovers the key numerical findings and provides qualitative understanding. 
Numerical calculation of the stability of the system is made where the physical parameters are put in the 
dimensionless form. The special case for the absence of periodicity of the velocity is discussed. They are found 
to be in exact agreement with the corresponding previous works in fluid mechanics and electro- hydrodynamics. 
Stability diagrams are plotted and discussed for different sets of physical parameters. Based on the numerical 
results, several conclusions can be drawn as follows: in the case of uniform velocity, it is found that electric field 
has a stabilizing influence on the stability criteria. When the periodicity of the velocity is considered, the method 
of multiple scales is applied to obtain stability solution for the considered system. It is found that the 
phenomenon of the dual role is found for increasing the permeability parameter. In addition it is found that the 
velocity of the middle layer has a destabilizing effect whereas the dielectric constant ratio has an opposite 
influence to the stability of the fluid layers.  
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