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Abstract 
We provide a numerical algorithm for numerically approximating a centrally located floating ball. 
We give examples of equilibria, and we present non-unique cases for the same physical parame-
ters when the density of the ball is either greater than the supporting liquid (heavy) or lighter 
than the density of the vapor above (light). We classify the non-uniqueness by analyzing a function 
related to the force balance. We derive the potential energy of these states, and make comparisons 
of the non-unique cases. In the cases of both the light and heavy floating balls, the evidence pre-
sented supports the conjecture that when there are two equilibria, the one with lower energy cor-
responds to the location of triple junction (between the ball, the vapor and the liquid) that is clos-
er to the equator of the ball. 
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1. Introduction 
Consider a ball of density Bρ  floating at the surface of a fluid that has density ρ



. We present numerical ex-
amples of non-uniqueness of the equilibrium states for these configurations. We will also provide a framework 
for the classification of these states, including an energy analysis. The energy analysis is used to determine 
which of the two equilibria has the lower energy, and thus, at least amongst centrally located floating balls, this 
process finds the energy minimizing configuration. Under these conditions, this is the configuration that our 
model predicts which will be found in experiments. We begin with a precise formulation of our model. 

The energies considered in this model are due to the surface tension and gravity. Surface tension energy is 
taken, as usual, to be proportional to the area of the free surface with proportionality constant σ  called the 
surface tension constant. The energy due to gravity consists of two terms, one corresponding to the liquid and 
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another to the floating object. The former is proportional to the density of the liquid, ρ


, a gravitational con-
stant, and a volume integral of the physical height, z, in the gravity field. The latter is similar except the density 
of the floating object, Bρ , is used, and the integral is taken over the volume of the floating object. If we denote 
the floating ball by B, the liquid by E, and Λ  the free liquid-air interface, w  the wetted portion of the 
bounding walls, if they exist, B  the wetted portion of the floating ball. Then the energy of this configuration 
is given by  

d d ,w w B B B B E
g z V g z Vσ β σ β σ ρ ρ= Λ − − + +∫ ∫

                      (1) 

with wetting coefficients = cosB Bβ γ  and cosw wβ γ= , depending on contact angles Bγ  and wγ  at the 
contact with the ball and the wall, respectively. Here z is height in the vertical direction, and dV  is the volume 
measure. Also, ⋅  denotes surface area, calculated using a Hausdorff measure, as appropriate. It is often con-
venient to refer to the mathematical energy of the system, which is merely the scaled energy σ . Note that 
then the gravitational terms become  

d and dB
B E
z V z Vρ κ κ

ρ ∫ ∫


 

with “capillary constant” gκ ρ σ=


. 
The natural physical setting for these problems is in a bounded container in 3 . We will study the lower di-

mensional problem here for two reasons: first, there is a growing literature of flotation in this setting, and second, 
there is an approach to prove the existence (and, when applicable, uniqueness) of the equilibria in this setting 
using a phase plane analysis; and it is useful to have robust numerical simulations. We will consider the settings 
in 2  of both a bounded container and an unbounded sea of fluid. We can interpret these problems as the low-
er dimensional setting, or we can interpret them as unbounded in one horizontal direction. In the latter, the 
floating ball may be seen as an infinitely long log floating in an infinitely long trough. The triple contact line of 
the liquid with the air at the surface of the floating object is then a straight line extending along the unbounded 
log. In what follows we preserve the intuitive meaning of area, volume, and energy by interpreting the lower 
dimensional setting as generating cylindrical configurations in the unbounded horizontal direction, and then we 
take the area, volume, and energy to be per unit distance in that unbounded direction. 

The goal of this note is to provide numerically computed approximations to some sample configurations when 
the ball is centrally located in the container and the fluid is assumed to be symmetric about the central axis. We 
will focus on the cases of the density Bρ  outside of the range ( )0,ρ



. One could classify the admissible den-
sities into three types: light, medium, and heavy. This would correspond to ( ),0Bρ ∈ −∞ , ( )0,Bρ ρ∈



, and 
( ),Bρ ρ∈ ∞



, respectively. Specifically, we will classify the behavior of a certain function ( )F φ  that is pi-
votal in the force balance considerations, as derived using variational techniques. Then we will follow this by a 
measurement of the mathematical energy, specifically of interest for the cases of non-uniqueness. For a theoret-
ical treatment of this setting in general, see first McCuan and Treinen [1], and also McCuan [2] for further de-
tails. We will use the results of those variational arguments in what follows. 

With this setting established, we are able to proceed to the configurations of interest. Assume that the ball 
floats centrally, and so that the center of the ball is at a height d. Thus the boundary of the ball can be described 
by its azimuthal angle φ  and its radius a, given a height d. The fluid-air interface contacts the ball at a particu-
lar azimuthal angle, denoted by φ . In the bounded cases a volume of fluid is described by the wetted container 
walls, the fluid-air interface, and the wetted surface of the ball. This volume is held fixed, and introduces a La-
grange multiplier λ  into the problem. The height of the fluid is given by the differential equation  

2 ,H uκ λ= −  

where 2H  is the mean curvature operator, commonly seen as  

2H Tu= ∇ ⋅  

where  

21

uTu
u

∇
=

+ ∇
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when the surface is a graph over some base domain. However, we will not restrict ourselves to these limited 
configurations. We have boundary conditions  

cosTuν γ⋅ =  

where ν  is the exterior unit normal on the container, or the interior unit normal on the ball, as appropriate. Al-
so, γ  is taken to be the contact angle along the container wall, or the ball itself, also we assume that γ  is con-
stant, up to possibly having different values on the container wall and on the ball, as described above. This re-
striction that γ  is locally a constant is simply a statement that we are considering only uniform materials in this 
current work. The underlying model is flexible enough to accommodate non-constant γ , if γ  is well behaved. 

In [1], we derived an additional necessary condition that does not appear in the classical literature consisting 
of fluid interactions with rigid solid objects. A manuscript by Finn [3] is the standard reference for the classical 
literature. We need to define several objects before we can state this condition. Denote the volume of fluid by 
 . Set n  to be the outward pointing unit co-normal along the boundary of the liquid-air interface. Set N to be 
the unit normal to ∂  pointing out of  . The fluid-air interface has a surface tension σ , and the potential  
energy due to gravity is measured as 

B
G

∪Σ∫  where G depends on position and the material. For our applica-

tion, if z measures height in the vertical direction, then G gzρ= , for the appropriate density ρ . Then the con-
dition for free floating is  

( ) ( ) 0.
B B B
n G N G Nσ λ σ

∂ ∂
+ − − =∫ ∫ ∫


 
                        (2) 

Under the assumption of symmetry about the vertical axis, the PDE with boundary conditions can be reduced 
to  

( )
( )

cos
sin

and cos when 0 sin

π 2 when .
B

w

x
u

u
u d a x x a

x x R

ψ
ψ

ψ κ λ
ψ γ φ φ φ

ψ γ

 =


=
 = −
 = − = + = =
 = − = =









                  (3) 

This representation of the equation allows for the parameterized curve to pass through both inflection points 
and vertical points. Various authors have studied this system with differing boundary conditions and also as a 
family of solution curves. Solutions are sometimes known as Euler elastica. See Aspley, He, and McCuan [4], 
Euler [5], Giaquinta and Hildebrandt [6] (pp. 142-144), McCuan [7] and [8], and Wente [9] for both historical 
origins, as well as applications to capillarity. 

Then (2) becomes  

( ) ( ) ( )2
4 42 sin 2 sin sin 2π 1 ,B d

aa
ρφ φ φ γ κ λ φ

κ ρκ
 

+ + − + − = − 
 

             (4) 

and we define ( )F φ  to be the left hand side of this equation. A key observation is that the locally observed 
information is collected on the left side of this equation, and the right side contains the global density informa-
tion. In [1] we interpreted this as a version of a force balance condition. 

We seek solutions to (3) that satisfy (4) and 0v=  where 0 0v >  is some prescribed quantity of volume 
large enough that the ball need not touch the container. This problem is the bounded container problem in 2 . 
The unknown quantities are , , ,dφ λ  . The details are in Section 2.1. 

If we replace the bounded container with an infinite sea of liquid, then we follow Bhatnagar and Finn [10] in 
taking the Lagrange multiplier λ  to be 0, and the condition π 2 Bψ γ= −  when ( )x x R= =  is replaced 
with lim lim 0x xu ψ→∞ →∞= = . We then seek solutions to (3) thus modified that satisfy (4) with 0λ = . This 
problem is the  unbounded container problem in 2 . This problem is significantly simpler, and one may view 
it as adding assumptions compared to the bounded container problem, the result of which is a family of curves 
representing the fluid interface that is completely characterized. In fact, it can be shown that not only is there 
existence and uniqueness of the boundary value problem in this setting, but we also have a formula for both 
( )x ψ  and ( )u ψ . (See [10], though unfortunately the formula is stated incorrectly there.) Thus the unknown 
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quantities in the 2D unbounded container problem are reduced to φ . The details are in Section 2.2. 
Before moving on to these details we would like to mention some other authors and their works on floating 

objects: Bemelmans, Galdi, Kyed [11], Bhatnagar and Finn [10], Finn [12]-[14], Finn, McCuan, and Wente [15], 
Finn and Sloss [16], Finn and Vogel [17], Kemp and Siegel [18], McCuan [2], Vella [19], Vella and Mahadevan 
[20], Vella, Lee, and Kim [21], and Vella, Metcalfe, and Whittaker [22]. In particular, as pointed out in [19], a 
number of applications have been of recent interest, for some examples, see capillary-driven self-assembly 
Whitesides and Boncheva [23] and Whitesides and Grzybowski [24], the stabilization of emulsions by colloidal 
particles (Binks and Horozov [25], Tavacoli, Katgert, Kim, Cates and Clegg [26]), the locomotion of insects and 
spiders on water (Bush and Hu [27], Gao and Jiang [28]), and the design and optimization of biomimetic wa-
ter-walking robots (Hu, Chan and Bush [29], Ozcan, Wang, Taylor and Sitti [30], Song and Sitti [31]). 

2. Methods  
We will consider first the bounded container in 2 , followed by the unbounded container. In both of these con-
figurations there is a common method of approach. The floating ball problem is cast as solving a system of 
ODEs coupled with side conditions for the volume constraint and the new free boundary condition. The side 
conditions can be considered simultaneously with the standard boundary conditions, and form a set of necessary 
conditions. We employ shooting methods for the underlying systems of ODEs coupled with nonlinear zero 
finding algorithms for vectorized necessary conditions. The zero finding algorithms require initial guesses for 
the free parameters, which we tune to the given physical with estimates when we are able. 

Next we illustrate how the new free boundary condition can be used to determine when there is non uni- que-
ness of the equilibria. We give numerical examples. Finally, in the case of the bounded container, we calculate 
the potential energy of each configuration and compare the energy of the two configurations with the same 
physical properties. 

2.1. Bounded Container in 2   
We first need to measure the volume of fluid held in the container. One may compute  

( )( ) ( )12 sin cos cos sin π .
2 w B
aa d R aλφ φ γ γ φ λ φ

κ κ
  = − + + − − + + −    

             (5) 

Our formula does not require that the height u is a function over a base domain. 
In what follows we will assign 1κ =  in all of the numerical computations. This can be seen as applying a 

standard scaling argument, however we are then unable to further normalize the container described by R, and 
the radius of the ball a. Thus these two parameters are inherent features of this model. 

The numerical procedure is a shooting method, where we integrate the system of ODEs  

cos
sin

x
u

u

ψ
ψ

ψ κ λ

=
 =
 = −







                                      (6) 

with initial conditions  

sin
cos

B

x a
u d a

φ

φ

ψ γ φ

 =


= +
 = −

                                    (7) 

to some ending arc-length   using ODE45 in Matlab. We use the finest permitted tolerances, with the absolute 
tolerance set to 1 14e −  and the relative tolerance set to 2.23 14e − . We have free parameters , ,dφ λ , and  . 
We use these to satisfy the physical conditions  

0v=                                         (8) 

( )x R=                                        (9) 
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( ) π
2 wψ γ= −                                     (10) 

( ) 2π 1F ρφ
ρ

 
= − 

 
                                 (11) 

which say that the configuration satisfies the volume constraint and the force balance condition as well as the 
need for the fluid interface to extend to the wall of the container with the prescribed contact angle. 

The parameters , , ,dφ λ   are given the following initial guesses:  

0 π 2φ =  

0
0 2

v
d

R
=  

0
0 2

v
R

λ =  

( ) ( )0
1min 5, 1 tan tan .
2 B wR a γ γ

 
= − + +  

 


 

This leads to a solution of the initial value problem where we can evaluate the conditions (8)-(11). We use 
Matlab’s fsolve to then vary , , ,dφ λ  , computing the solution to the IVP out to the arc-length   at each step, 
until Equations (8)-(11) are satisfied up to the requested tolerances. Matlab’s fsolve uses a dogleg variant of a 
trust region method to solve this 4-dimensional zero finding problem. Here we use tolerances that are coarser 
than the underlying ode solver’s tolerances, as the zero finding depends on those approximations. Specifically, 
we use termination tolerance on the objective function value of 1 12e −  and on the input values of 1 12e − . 

We next proceed with a few examples. In Figure 1 we set 2R = , 1a = , 1 2Bρ ρ =


 and 0Bγ = , and 
compare wγ  values of 0 and π . We conjecture that the figure on the left shows a stable configuration, while 
the figure on the right shows a configuration conjectured to be unstable. In order to analyze this stability crite-
rion, we would need to consider off-center configurations, which we leave for a future work. In Figure 2 we set 

( )2π 5 2πBρ ρ = +


 and 1.7453Bγ = , and compare 0.69813wγ =  with φ  values of 0.20058 on the left 
and 0.69924 on the right. We conjecture that the figure on the left shows a local energy minimum, and the figure 
on the right shows an energy maximum. 

As an approach to explain the behavior in the examples in the second pair, we turn to a study of the function 
( )F φ . The parameters , ,d λ   are given the same initial guesses as just above, with an initial value of  

 

   
Figure 1. Comparing contact angles wγ  set to π  on the left and 0 on the right.                                      
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Figure 2. Non-uniqueness: two values of φ  for the same physical parameters.                                       

 
π 2φ = . This leads to a solution of the IVP which we can use to evaluate the following conditions to within a 

given tolerance:  

0v=  

( )x R=  

( ) π
2 wψ γ= −  

and we use Matlab’s fsolve to then vary , ,d λ  , computing the solution of the IVP out to the arc-length   at 
each step, until the equations for the necessary conditions are satisfied up to a given tolerance. Then we evaluate 
( )F φ  with this information. We proceed iteratively for evenly spaced values of π 2φ >  using the data from 

previous step as an initial guess for each new value of φ . The range π 2 φ<  is treated in the same manner.  

We do not attempt to evaluate ( )0F , nor ( )πF , however, we use the limiting values of ( ) 2
40 sin BF
a

γ
κ

= −  

and ( ) 2
4π 2π sin BF
a

γ
κ

= + . We sample from this process in Figure 3 and Figure 4. Notice that we have in-

cluded the non physical immersed partial solution to the floating ball problem. We call these semi-equilibria. 
We show the plot of F for 0Bγ =  and 1.7453wγ =  compared to 1.3963Bγ =  and πwγ =  in Figure 5. 

Take careful note of a key fact. In the ( ) ( ), 0,1.7453B wγ γ =  example, there are apparently no solutions to the 
floating ball problem when ρ ρ>



, as 0F ≥  here. We include some endpoints of the ( ),B wγ γ  pairs: see 
Figure 6 with ( ) ( ), π,πB wγ γ =  and ( ) ( ), 0,0B wγ γ = . 

With these solutions to the partial floating ball in hand, we are able to numerically calculate the energy of the 
configuration. It is simpler to use the scaled mathematical energy σ , and we also use the standard scaling 
arguments that result in 1κ =  and 1ρ =



. The free interface energy Λ  is simply 2 , and the wetting  
energies are also trivial to compute: ( )( )2w R u= +   and ( )2 πB a φ= − . We then calculate the gravita- 
tional potential energy of the ball:  

( ) ( )π2 2 2
0

d 2 d 2 sin cos d π .
d a

B B B BB d a
z V rz z a d a a dρ ρ ρ φ φ φ ρ

+

−
= = + =∫ ∫ ∫            (12) 

The gravitational potential energy of the liquid is more convenient to compute in sections. First we will treat 
the portion directly below the interface, but due to the lack of a closed form expression and also due to the vari-
able step size of the data we do this numerically with the trapezoid rule:  

( )
0

2 2d d trapz , ,
R

x
z V z x x z= =∫ ∫  
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Figure 3. Computing partial solutions for values of φ .                                                          

 

  
Figure 4. Computing partial solutions for values of φ .                                                          

 

  
Figure 5. Symmetric values of contact angles.                                                                   
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Figure 6. At the extreme range of ( ),B wγ γ  pairs.                                                              

 
where 0 sinx a φ= . The error here is bounded by  

( )20 ,
12

R x h u ξ− ′′                                    (13) 

where h is the maximum step size taken in the irregularly spaced data, and ξ  is some number in the interval 
( )0 ,x R . If π 2φ ≥ , then we simply need to add to this quantity the portion directly under the ball that has not 
yet been accounted for:  

( ) ( )sin 22
0 π

d cos cos d
a

z x x a d a
φ φ

φ φ φ= +∫ ∫                                  (14) 

( )
2

2 2 3 31π sin sin 2 sin sin .
2 3

a da d ad aφ φ φ φ φ = − + + + − 
 

      (15) 

The case where π 2φ <  has the complication that we must remove the portion of the fluid where the ball 
overlaps the portion directly below the free interface. We find the formulas match if we additionally compute 
the energy from the top of the ball, then subtract the entirety of the corresponding energy of the ball:  

( ) ( )sin 22
0 0

d cos cos d
a

z x x a d a
φ φ

φ φ φ= +∫ ∫                                  (16) 

2
2 2 3 31sin sin 2 sin sin ,

2 3
a da d ad aφ φ φ φ φ = + + + − 

 
           (17) 

which matches (15) upon subtracting 2πa d , the energy of the whole ball. 

2.2. Unbounded Container in 2 
We next consider the unbounded container problem in 2 . This is envisioned as an infinitely long log floating 
on an unbounded sea of liquid. As such, there is only the contact angle on the ball, so we use Bγ γ= . It is worth 
noting that the only relative relation remaining is that comparing a to κ . In the case of the bounded container 
there is the significantly more complicated interaction between a, R, and κ , as well as the contact angle wγ . 
We are first interested in finding a solution to  

cos
sin

x
u

u

ψ
ψ

ψ κ

=
 =
 =







                                      (18) 

that satisfies lim lim 0s su ψ→∞ →∞= =  and lims x→∞ = ∞ . The curve ( ),x u  forms a generating curve for the 
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cylindrical liquid-air interface. This system is equivalent to the following system  
d cos
d

x
u
ψ

ψ κ
=                                       (19) 

d sin
d

u
u
ψ

ψ κ
=                                       (20) 

satisfying 0lim xψ→ = ∞  and 0lim 0uψ→ = . This can be explicitly integrated:  

( ) ( ) 11 1 cos2 1 cos tanh const.
2

x ψψ ψ
κ

−
  +

= + − +      
                  (21) 

( ) ( ) ( )2sign 1 cos .u ψ ψ ψ
κ

= − −                              (22) 

See [10] and [9]. 
We proceed to the full problem of computing the floating ball configuration in the unbounded 2  configu-

ration. Using our formulas, for each [ ]0, πφ ∈  we can produce an interface curve ( ),x u  that begins  
with inclination angle ψ γ φ= −  where ( ) sinx aψ φ= . Then we set ( ) cosd u aψ φ= −  to fix the height of 
the ball. We are then able to evaluate the necessary condition  

( ) 2π 1 BF ρ
φ

ρ
 

= − 
 

                                  (23) 

with 0λ = . We are left with this single equation as well as one free parameter: φ . We use Matlab's zero find-
ing function FZERO to vary φ , computing the solution to the asymptotic boundary value problem at each step, 
until this equation is satisfied to within given tolerance. 

Our results can be compared to Bhatnagar and Finn [10], where an independent variational formulation was 
used. In our case, we are formally applying the results from [1] which assumed a bounded container in order to 
measure the energy of the configuration, whereas in [10] their variational argument was constructed with care to 
account for the difficulties of infinitesimal variations of infinite quantities. 

Our examples use 1.4105γ = . In Figure 7 we show non-uniqueness with ( )2π 4.5 2πBρ ρ = +


. The con-
figuration on the left is conjectured to be stable, with a value of 0.5732φ = , and the configuration on the right 
is conjectured to be unstable, with a value of 0.14686φ = . In comparison, there was only one solution when 

( )2π 1 2πBρ ρ = +


: Figure 8. 
 

  
Figure 7. Non-uniqueness: two values of φ  with ( )2π 4.5 2πBρ ρ = +



.                                          



R. Treinen 
 

 
186 

 
Figure 8. Unique solution with the same contact angle and ( )2π 1 2πBρ ρ = +



.           

3. Results and Discussion  
We begin here with the floating ball in a bounded container, and we ask the following question: what values of 
( ),B wγ γ  pairs give non-uniqueness of one or both of 0Bρ <  and Bρ ρ>



? Proceeding as before, for 
( ) [ ] [ ], 0, π 0, πB wγ γ ∈ × , we compute F as above and then test the regions 2πF >  and 0F <  for monoto- 
nicity. The results appear in Figure 9 with Figure 10. It is worth mentioning that there are 50 grid points on 
each axis, and ( )F φ  was evaluated at 100 grid points of φ , giving 250,000 numerical solutions to the (par-
tial) floating ball problem for each of these figures. The cases marked with a star represent curves that begin at 

0φ = , and ( )0 0F ′ < , proceeding down to a global minimum, where ( ) 0F φ′ = . Then F increases to its 
global maximum, where ( ) 0F φ′ = , and then decreases to its terminal values at πφ = . Note ( )π 0F ′ < . The 
cases marked with a square represent curves that begin at 0φ = , and ( )0 0F ′ > , proceeding to its global 
maximum, from which it decreases to its terminal value at πφ =  where ( )π 0F ′ < . This gives non- unique-
ness for 0Bρ <  only. The cases marked with a plus represent curves that begin at 0φ = , and ( )0 0F ′ < , pro-
ceeding to its global minimum, from which it increases to its terminal value at πφ =  where ( )π 0F ′ > . Here 
non-uniqueness appears only for Bρ ρ>



 only. 
It should be stated that while this current work focuses more directly on the influence of the contact angles on 

the nonuniqueness criterion, the influence of R and a on the nonuniqueness criterion is just as important. To see 
this impact, compare Figure 9 with Figure 10. We leave a separate study focusing on fixed contact angles and 
varied values of R and a for a further work. 

With the energy computed as in Section 2.1, we first use it in conjunction with the graph of ( )F φ . For each 

semi-equilibria with ( )0, πφ ∈  we compute the mathematical energy of that configuration. This curve is  
plotted with that of ( )F φ  in Figure 11. Carefully note that the density of the ball changes along this curve. 
We do not specify a fixed density, however, we back out the density that appears in the graph of ( )F φ  with 
the observation that  

( ) 2π 1 .BF ρφ
ρ

 
= − 

 
 

Then the energy is computed with this value of Bρ . Further, the energies of the two equilibria are compared 
in Figure 11, and at least for the particular height picked to illustrate this energy difference, the equilibria with  
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Figure 9. Non-uniqueness of equilibria for 2R =  and 1a = .                                

 

 
Figure 10. Non-uniqueness of equilibria for 1R =  and 0.5a = .                               
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Figure 11. Using the function F to determine which solution has the lower energy. The curves are F and the energy. The lower hori-
zontal line fixes a height that picks up two values of φ  for the same value of F (and thus Bρ ). These two φ  values are indicated 
by the vertical lines. Finally, the upper horizontal line is shown that meets the intersection of the energy graph and the rightmost ver-
tical line. Note that the energy is below the intersection of the upper horizontal line and the left vertical line. This implies the confi-
guration with the smaller value of φ  has lower energy.                                                  
 

the smaller value of φ  has lower energy. For a more robust comparison, consider first the light ball. If there is 
non-uniqueness, there is a maximum value of F with πφ <  there. Denote this value by φ . Next, we pick the 
subset of the φ  values in ( ), πφ  and for each of these, we use the value of ( )F φ  to interpolate the smaller 
value of φ  that shares the same height of F. Finally, we interpolate the energy at this smaller value of φ . 
Then we plot the energy for φ  in ( ), πφ  and the corresponding energy values that come from this compari-
son scheme. The results are shown in Figure 12. The corresponding comparison is done for the heavy floating 
ball, see Figure 13. In both of these cases the value of φ  further away from the endpoints of the interval 
( )0, π  had lower energy than the other possibility. This is some evidence for the conjecture that the energy mi-
nimizer contacts the ball closer to the equator when compared to other equilibria. We will state this conjecture 
more precisely below. 

We then included the above analysis into the program that generated Figure 9 with a 50 × 50 grid of values 
for Bγ  and wγ , and the results are shown in Figure 14. A series of these simulations were performed 
amounting to 3.5 million tests of the conjecture. The results are in Table 1. The cases with 3R =  and 1a <  
were attempted, however the initial guess for the zero finding function needs to be refined in these cases, as 
those guesses had been tuned to configurations where the curvature was larger, and convergence to 
semi-equilibrium is not uniform on the grid considered. The cases 2R = , 1.75a =  and 3R =  with 2a >  
are at the limits of the ability to prescribe finer tolerances for the problem and the results are not conclusive for 
the cases we have considered there. We should note that in the case 2R = , 1a =  we needed to prescribe the 
relative tolerance of Matlab’s ode45 to 2.23 14e −  in order to verify the conjecture there. This became the 
standard for our tests, and as the spacing of floating point numbers is 2.2204 16e − , we are currently unable to 
achieve finer results. 

Next, we trace the energy values from a sampling of balls with given, fixed densities as the semi-equilibrium 
are computed through the range ( )0,πφ ∈ . This is in contrast to the energy graphs that we have so far  



R. Treinen 
 

 
189 

 
Figure 12. The light ball energy comparison.                                                   

 

 
Figure 13. The heavy ball energy comparison.                                                
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Figure 14. Verifying the conjecture with 2R =  and 1a = .                               

 
Table 1. The configurations where the conjecture was tested, with the displayed radius a and the half-container width R. 
Each entry on this table represents 250,000 configurations with 50 × 50 evenly spaced points of ( ),B wγ γ  pairs, and for each 

pair, 100 evenly spaced points were chosen for ( )0,πφ ∈ .                                                       

a 1R =  2R =  3R =  

0.25 verified verified  

0.5 verified verified  

0.75 verified verified  

1.0  verified verified 

1.25  verified verified 

1.5  verified verified 

1.75   verified 

2   verified 

 
examined. Here we fix a few densities and in contrast, in the previous discussions the densities would vary with 
the value of ( )F φ . Figure 15 shows the results of this, which should be seen as following a ball as it rises 
from the depths, first registering when it contacts the interface with 0φ =  in a semi-equilibrium state, and 
passing continuously through that parameter until leaving the fluid at πφ = . It should be understood that this is 
not a continuous behavior in terms of the center height d. In fact, in order to achieve the semi-equilibria, in gen-
eral d changes discontinuously at both the point of beginning and ending the contact with the free interface. We 
do not include that behavior in our graphs. The feature exhibited in these figures that that there are at most two 
interior local extrema along the trajectory of the energy profile curves. This is in agreement with the maximum 
of two equilibria for a fixed density, of either a light or heavy ball. The phenomenon can be described at follows, 
as the ball passes through a full range of heights, though not necessarily monotonically. First, let 0Bρ < . Then, 
as d increases from the depths, the energy decreases. At the contact with the interface there will  
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Figure 15. Given 5 sample densities Bρ , tracing the energy of the system as φ  moves from 0 to π . On the left 0Bρ <  
and on the right Bρ ρ>



.                                                                                  
 

be a discontinuous change in d. Then we move through the parameter φ , increasing from 0φ =  as the energy 
continues to decrease. Then there appears a local energy minimizer, where the surface energies play a stronger 
role than the gravitational energies. From this point the energy may increase from a local minimum, or decrease 
from a saddle point. On the remainder of the curve there may be a second equilibia, which is a local energy 
maximum. The energy is continuous to the endpoint where πφ = . At this point there is another discontinuous 
change in the height d as the ball frees itself from the interface, and from this point it continues upwards indefi-
nitely as the energy continues to decrease. Second, let Bρ ρ>



. Here the ball rises from the depths, with in-
creasing energy up to the point of contact with the interface. Then there is a discontinuous change in d at the 
contact, but where the configuration is in a semi-equilibrium at 0φ = . Then as φ  increases, the energy de-
creases to a local energy minimizer. From there the energy increases, and there may be another equilibrium 
along the curve, which would be a local energy maximum. Either way, the energy is continuous up to the point 
where πφ = , and then there is another discontinuous change as the ball leaves the liquid. From there the ball 
continues upward, and the energy increases with d. 

Finally, we turn to a study of ( )F φ  for the floating ball problem in an unbounded container. Adapting the 
argument from the case of an bounded fluid in 2 , we generate F over [ ]0, π . In this setting, however, once  

φ  is removed from the list of unknowns, and ( ) 2π 1 BF ρ
φ

ρ
 

= − 
 

 is removed from the necessary conditions, 

we are able to generate a configuration for each φ  using the explicit solutions as above. 
Figure 16 shows the results for 0γ =  and πγ = . Again, note the lack of a possibility of a solution existing 

if Bρ ρ>


 when 0γ = . Also note that there is no solution possible if 0Bρ <  when πγ = . Figure 17 
shows an example when it is possible to have non-unique solutions for both of the cases Bρ ρ>



 and 0Bρ <  
for that particular choice of γ . 

We compute F over [ ]0, πγ ∈ , testing the regions 2πF >  and 0F <  for monotonicity. The results are 
collected in Figure 18, where we display the results for a selection of radii ( ]0,2a∈ . The behavior is in line 
with the simulations done with the bounded case in 2 . We do not here proceed with an energy comparison 
between these non-unique cases for two reasons. First, the one approach that might be used would be to fix some 
large domain with which to measure the energies and compare the two values obtained. This is seemingly 
somewhat arbitrary, and has the possibility of not detecting the correct case when the comparison is close. 
Second, and more important, is that Bhagnagar and Finn [10] carefully analyzed the energy comparisons, and 
their method is superior to that just described. We do not wish to repeat their analysis, so we simply take note 
that their analysis supports the following conjecture in the examples that they computed explicitly. Further, 
Bhatnagar and Finn found examples of nonuniqueness, and their energy based methods give rise to a more  
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Figure 16. ( )F φ  with contact angles 0,πγ = .                                                                

 

 

Figure 17. An example of ( )F φ  with nonuniqueness for both light and heavy floating balls.       

 

 
Figure 18. Nonuniqueness of equilibria with 0.5Bρ ρ =



.                                
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rigorous stability analysis. The results from this section then can be seen as purely an analysis of the non- uni-
queness criteria. 

Conjecture 1. The centrally located floating ball has at most two equilibria in a bounded container in 2D, 
and the centrally located floating ball has at most two equilibria in the unbounded configuration in 2D. In both 
cases, this will occur at some value or values of the azimuthal angle φ  on the ball. In the case that 0Bρ < , if 
there are two configurations then the solution with the smaller value of φ  has lower energy. In the case that 

Bρ ρ>


, if there are two configurations then the solution with the larger value of φ  has lower energy.  

4. Conclusion  
We have developed a robust numerical solver for finding the equilibria of a centrally located floating ball in 
both bounded and unbounded problems in 2 . The non-unique cases for both the light ball and the heavy ball 
have been analyzed using the function ( )F φ , and the uniqueness and non-uniqueness depend on the geometry 
of the graph of that function. We calculated the potential energy of the bounded configurations, and used that 
first, to determine which non-unique equilibrium was the local energy minimizer, and second, to trace the ener-
gy profile of a ball as it is passed through the fluid interface. Our methods were used to formulate a conjecture 
on the energy minimizer, and 3.5 million test cases were verified. 
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