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This article presents the use of a real life problem to reach a deeper understanding among students of the benefits 
of principal components analysis. Pattern recognition applied on the 26 letters of the alphabet is a recognizable 
topic for the students. Moreover it is still verifiable with computer algebra software. By means of well defined 
exercises the student can be guided in an active way through the learning process. 
 
Keywords: Data Reduction, Eigenvalues, Eigenvectors 

Introduction 

Principal Components Analysis (PCA) is a statistical tech-
nique for data reduction which is taught to students mostly with 
a pure mathematical approach. This paper describes how teach-
ers can introduce students to the concepts of principal compo-
nents analysis by means of letter recognition. The described 
approach is one of an active learning environment (with 
hands-on exercises can be implemented in the classroom), a 
platform to engage students in the learning process and may 
increase student/student and student/instructor interaction. The 
activities require use of some basic matrix algebra and eigen-
value/eigenvector theory. As such they build on knowledge 
students have acquired in matrix algebra classes.  

Former attempts to develop a more creative instruction ap-
proach for PCA can be found with Dassonville and Hahn 
(Dassonville, 2000). They developed a CD-rom geared to the 
teaching of PCA for business school students. The test of this 
pedagogical tool showed that this new approach, based on dy-
namic graphical representations, eased the introduction to the 
field, yet did not foster more effective appropriation of those 
concepts. Besides, when the program was used in self tuition 
mode, the students felt disconnected from the class environ-
ment, as Dassonville and Hahn claim themselves. 

A second initiative is DoLStat@d (Mori, 2003), developed at 
Okayama University in Japan by Yuichi Mori and colleagues. 
This web based learning system, available online at  
http://mo161.soci.ous.ac.jp/@d/DoLStat/index.html, provides 
real world data with their analysis stories about various topics, 
PCA included. Since only applications are presented, without 
any background information about the method itself, students 
unfamiliar to PCA, will not reach a deeper understanding about 
PCA and will keep stabbing at a recipe approach. 

Principal Components Analysis 

The objective of PCA (Jackson, 2003) is to obtain a 
low-dimensional representation of the objects/individuals with 
minimum information loss, which facilitates compression of the 
initial data and extracting the most relevant characteristics. 

PCA is a known data reduction technique in statistical pat-

tern recognition and signal processing (Kastleman, 1996) (Turk, 
1991). It is valuable because it is a simple non-parametric 
method of extracting relevant information from confusing 
datasets. PCA is also called the Karhunen-Loeve Transform 
(KLT, named after Kari Karhunen (Karhunen, 1947) & Michel 
Loève (Loève, 1978)) or the Hotelling Transform (Hotelling, 
1935). 

PCA involves finding eigenvalues and corresponding eigen-
vectors of the data set, using the covariance matrix. The corre-
sponding eigenvalues of the matrix give an indication of the 
amount of information the respective principal components 
represent. The methodology for calculating principal compo-
nents is given by the following algorithm.  

Let 1 2, , , mx x x  be the variables.  
 Computation of the global means ix   1,2, ,i m   
 Computation of the sample covariance matrix Σ of di-

mension m m  
 Computation of the eigenvalues and eigenvectors of Σ 
 Keep only the n  eigenvectors  1 2, , ,i i imv v v iv   

 1,2, ,i n   corresponding to the largest eigenvalues. Then 
 1 1 2 1,2, ,i i n   are called principal com- 

ponents. 
2v x v x  imx mv i

Corresponding eigenvectors are uncorrelated and have the 
greater variance. In order to avoid the components that have an 
undue influence on the analysis, the components are usually 
coded with mean as zero and variance as one. This standardiza-
tion of the measurement ensures that they all have equal weight 
in the analysis. 

Representation of Letters by Binary Variables 

We use the pixel representation with seven rows and five 
columns as in Figure 1 for the alphabet. This image is trans-
formed into a binary vector representation (see Table 1). This 
was accomplished by using 35 variables ix   
by running the figure from top to down and from left to right 
assigning 1 to an occupied pixel and 0 to a non-occupied pixel. 

 1,2, ,35 i

Student exercise 1: Make the binary vector representation of 
the 26 letters of the alphabet (less time consuming: each student 
makes one). 

Student exercise 2: Use Maple (www.maplesoft.com) or some  
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Table 1.  
The binary vector representing the letters of the alphabet. 

letter 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x 11x 12x  … 35x  

A 0 0 1 0 0 0 1 0 1 0 1 0 … 1 

B 1 1 1 1 0 1 0 0 0 1 1 0 … 0 

C 0 1 1 1 0 1 0 0 0 1 1 0 … 0 

… … … … … … … … … … … … … … … 

Z 1 1 1 1 1 0 0 0 0 1 0 0 … 1 

 

 

 

 

 
Figure 1.  
The pixel representation of the 26 letters of the alphabet. 

 
other computer algebra software to construct the covariance 
matrix Σ and to obtain its eigenvalues and eigenvectors. 

PCA Applied on Letters 

A principal components analysis applied on this data reveals 
that replacing the 35 variables by the first ten principal compo-
nents, explains already almost 90% of the total variance (see 
Figure 2). The two main principal components are displayed in 
Figure 3 for all letters. As PC1 and PC2 are the two most pre-
dominant eigenvalues, the distance in this two-dimensional 
diagram gives an indication of the resemblance of the letters. 
When including the first ten eigenvalues, a more general dis-
tance function can be created. 

Student exercise 3: How many principal components are 
needed to explain 75% of the total variance? 

Student exercise 4: Make a visualization of the resemblance 
of the letters of the alphabet defined as in Figure 1 by means of 
a two dimensional diagram with variables PC1 and PC2 as in 
Figure 3. 

When receiving a letter described by the coloring of the pixel 
model, it is possible to detect the letter from the prescribed  

alphabet set that resembles most the given letter, by making  
 

 

Figure 2. 
The cumulative variance of the subset of the first k principal compo-
nents. 
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Figure 3. 
The first two principal components for the 26 letters. 
 
calculations on the distances between letters. 

The distance between a first letter 1  described by the vari-
ables 

l
 1 1,2, ,35ix i  


 and a second letter  described by 

the variables 
2l

2 1,2,ix i  ,35  is defined by 

   
35 21 2

1 2
1

, .i i
i

d l l x x


   

As the computational cost increases rapidly with an extensive 
collection of letters to choose (each represented by 35 vari-
ables), a considerable gain of effort is reached when using the 
principal components 1pc  and 2pc  of the letters 1  and 

2  respectively instead. These vectors have only ten compo-
nents  defined by 

l
l

 1,2, ,1ipc i   0

1 1 2 2 35 35i i i ipc v x  v v xx   

This means that the distance function d is replaced by 

   
10 21 2

1 2
1

,PC i i
i

d l l pc pc


   

in order to quantify the resemblance of two letters.  
The letter from the prescribed alphabet with the smallest dis-

tance to the given letter  can be identified with the given 
letter. 

1l

Example 1: 
The letter 1  = ‘P’ written as in Figure 4 will be recognized 

as the standard letter from Figure 1, as the distance PC  be-
tween both is only 1.21, smaller than the distance to f.e. the 
standard letter R from Figure 1 which resembles  as well. 
Their distance is 1.83. 

l
d

1l

Example 2: 
The letter 1  = ‘A’ written as in Figure 5 will not be recog-

nized as the standard letter from Figure 1, as the distance be-
tween both is 3.72, greater than the distance to the standard 
letter R from Figure 1 which resembles  better. Their dis-
tance is 3.21. 

l

1l

Example 1 supports the robustness of the described technique, 
where example 2 shows its limits and supports the demand for 
refinement. As such they are two good exercises for the stu-
dents to evaluate the technique and to suggest some improve-
ments. Students can discuss the balance that should be found 

between calculation cost and the quality improvement of the 
method by refining the pixel grid or incorporating more eigen-
vectors. To perform the extensive calculations the computer 
algebra software Maple can be used. 

Student exercise 5: Investigate by means of PC  if standard 
letter S defined as in Figure 1, resembles most the letter as de-
picted in Figure 6. 

d

Conclusion 

My experiences with engineering students revealed the posi-
tive impulse when presenting a recognizable and interesting 
problem to convince students of the usefulness of mathematics 
and statistics. I succeeded in removing partly the prejudices 
conventional on mathematics. Some of the comments of the 
students when asking their opinion about the lesson, were: 

“Apparently math is not always boring.” 
“Never thought there were matching points between mathe- 

 

 

Figure 4. 
Alternative representation of the letter ‘P’. 

 

 

Figure 5.  
Alternative representation of the letter ‘A’. 

 

 

Figure 6.  
Alternative representation of the letter ‘S’. 
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matics and language.” 
“Surprising that we can make computers smart by means of 

mathematics, since they are able to recognize letters!” 
“Granted, today revealed that statistics is more than calculat-

ing the mean of our exam results.” 
The discussions I held in class with my engineering students, 

resulted in an impressive improvement in their mathematical 
comprehension. Moreover the students became aware of the 
relevance of reducing the multidimensional datasets to lower 
dimensions for analysis by means of principal components 
analysis. 
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