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Abstract 
The numbers of reads generated by second-generation sequencing technologies permit to estab-
lish in a single sequencing lane multiple microRNA (miRNA) expression profiles from small RNA- 
derived cDNA libraries tagged by barcodes consisting of few bases. Multiplex sequencing allows 
sample size expansion and thus the statistical reliability of generated data. This allows the detec-
tion of discrete changes in miRNA expression levels that occur at the onset of cellular processes. 
With the development of the “by-amplification” strategy, tagging cDNA libraries is no more a source 
of technical variability. However, other specific features should be kept in mind when designing 
experiments aimed at profiling miRNA expression using Illumina sequencing technology, the most 
important being the substantial distortion between miRNA expression in sequencing data and the 
true miRNA abundancy. miRNAs of low expression in profiles may correspond to abundant miRNAs 
in samples and vice versa. We report here data obtained from rat cerebellum and liver that illus-
trate 1) the high 3’ adaptor dependency of miRNA expression profiles, 2) the impact of sample size 
when working with moderate (3 - 4 fold) changes of miRNA expression and 3) the impact of the 
statistical tools used to identify differentially expressed miRNAs. 

 
Keywords 
Differential Expression, Illumina Technology, miRNA Transcriptomes, Rat 

 
 

1. Introduction 
In the last decade, three next-generation sequencing (NGS) technologies (the Roche/454 GS FLX, llumina/ 
Solexa Genome Analyzer and Applied Biosystems SOLiD system) have been released revolutionizing the field 
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of high throughput data collection [1] [2]. RNA-seq, one major application of these technologies, opens new ho-
rizons for large scale gene expression analysis in providing global transcription profiles through the sequencing 
of millions of nucleic acid fragments [3]. Illumina sequencing technology that currently generates hundreds mil-
lions of reads of 40 - 100 bases per flow cell lane is particularly well adapted to investigate small RNA tran-
scriptomes.  

MicroRNAs (miRNAs) are 18 - 24 bases non-coding RNAs that act as key regulators of gene expression in 
eukaryotes [4]. miRNAs mediate post-transcriptional regulation of target messenger RNAs (mRNAs) by im-
pairing their translation and/or stability. The latest version (release 21) of the miRBase database [5], a central 
repository for miRNAs, lists sets of 256, 495, 1193 and 1881 miRNA genes (miR genes) in fly, rat, mouse and 
human genomes, respectively. The relatively limited number of miRNAs, allied to the high sequencing capacity 
of Illumina technology, allows multiplex sequencing to be performed thus increasing the number of individual 
miRNA profiles. This is a great advantage given the fact that profiling of individual miRNA transcriptomes is 
now a major issue to recover complete genetic and epigenetic information. Furthermore, multiplex sequencing 
gives access to any miRNA transcriptome at a relatively low cost. 

miRNA expression profiling with Illumina technology requires cDNA library construction consisting of four 
steps: ligation of a DNA oligonucleotide (3’ adaptor) to the 3’ end of RNAs, ligation of a RNA or chimerical 
DNA/RNA oligonucleotide (5’ adaptor) to the 5’ end of RNAs, reverse transcription (RT) of the resulting 
molecules and double-strand cDNA production by polymerase chain reactions (PCR). cDNA library tagging re-
quired for sample identification from multiplex sequencing data can virtually be done at any of the four steps by 
barcoding either adaptors or primers.  

Early tagging strategies incorporated barcodes into 3’ adaptors [6]-[9]. In this “by-ligation” multiplexing 
strategy that is still in use [10], cDNA molecules are sequenced using one primer and a sequencing pass of 40 - 
50 bases (Figure 1(a)). However, inherent preferences of T4 RNA ligases 1 and/or 2 for particular miRNA se-
quence structure and/or composition lead to artefactual variations between libraries [7]-[9]. To reduce artefac-
tual variations, a “by-amplification” multiplexing strategy has been developed by Illumina (Illumina TruSeq 
Small RNA Sample Preparation kit), and others [7]. Illumina strategy incorporates barcodes downstream the 3’ 
adaptor during the PCR step (Figure 1(b)). In PALM, a variant strategy, barcoded oligonucleotides are ligated 
to PCR products [11]. In these two multiplexing strategies, the barcode is located at more than 40 bases from 
miRNA 5’ ends so that the RNA and barcode nucleotides are sequenced either on a pass of 70 - 80 bases or in-
dependently. We developed a “by-amplification” multiplexing strategy that uses bulged primers (BP) strategy 
with a two-base insertion within the 3’ adaptor (see Figure 1(b)).  

Three challenges are faced when comparing miRNA expression profiles from multiplexed cDNA libraries. 
First, we must ensure that miRNA expression changes are not artefactual, i.e. not due to differences in ligation 
efficiency of barcoded adaptors with some miRNAs in “by-ligation” multiplexing strategies, or differences in 
amplification efficiency of the barcoded primers with some single-strand cDNAs in “by-amplification” multi-
plexing strategies. Second, we would like to identify miRNAs of low expression as the level of miRNA expres-
sion in profiles is highly dependent on the sequences of the oligonucleotides used to build cDNA libraries. As a 
consequence the level of miRNA expression in profiles does not reflect the real abundance of miRNAs in sam-
ples [12]. Third, we aim to detect discrete changes of miRNA expression levels. Indeed, a moderate change in 
miRNA expression level may be biologically relevant in triggering significant cellular responses [13]. 

The first challenge or objective is now accomplished using by-amplification multiplexing strategies, however 
the two others have to be considered when analysing data. Here we describe data obtained from rat brain and 
liver addressing these issues for improvement of downstream analyses.  

2. Material and Methods 
2.1. Collection of Samples 
Wistar rats (virgin females and males) were obtained from Janvier (CER France) and housed in cages in stan-
dard conditions of temperature (20˚C - 22˚C) and hygrometry (40%), in a 12 h light/dark cycle. Animals had 
free access to water and standard food (280 kcal/100g; formula 113; 18%, 23% and 59% of the energy content 
derived from lipids, proteins and carbohydrates, respectively, from Safe (Augy, France)) for 4 weeks before 
breeding. From day 1 of pregnancy and until weaning, females were shifted to an unbalanced food (440 kcal/ 
100g; formula 235; 46%, 16% and 38% of the energy content derived from lipids, proteins and carbohydrates,  
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Figure 1. Schematic overview of strategies and protocols used for cDNA library tagging. To construct RNA-derived cDNA 
libraries, adaptors are successively ligated to RNA 3’ and 5’ ends, ligated molecules are reverse transcribed and cDNA sin-
gle strands are eventually amplified by polymerase chain reaction (PCR). (a) “Ligation-based” strategies incorporate bar-
codes (circles) through adaptors (usually upstream the PA sequence used as the 3’ adaptor) whereas (b) “Amplification- 
based” strategies incorporate barcodes (circles) through amplification, either downstream the RA3 sequence (TruSeq indexes) 
or as bulged nucleotides (Bulged Primers). 

 
respectively, from Safe (Augy, France)). At birth, litters were sized to ten pups to prevent under- or overnutri-
tion during lactation. At weaning, all animals were fed the standard food. From 4.5 months, half of each progeny 
was shifted to the unbalanced food for 10 weeks. Animals of 2.5 or 7 months were killed by decapitation under 
isoflurane deep anesthesia between 9 am and 10 am, following a 15-16-hour fasting. Brain was removed from 
males of 2.5 months born to dams fed a standard food, cerebellum was dissected and immediately homogenized 
in a ceramic bead tube (Ozyme) containing 2 ml of QIAzol lysis reagent (Qiagen) using a PreCellys homoge-
nizer (PreCellys 24/Cryolys) for 20 s at 10˚C. Livers from males of 7 months were taken, immediately frozen in 
liquid nitrogen and stored at −80˚C. Samples were homogenized as described for cerebellum. 

2.2. Purification of miRNA-Enriched Small RNA Fractions 
Small (<150 - 200 bases) and long (>150 - 200 bases) RNA fractions of cerebellum were separated from QIAzol 
homogenates using the RNeasy Mini Kit (Qiagen) following manufacturer’s instructions and recovered in 
RNase-free H2O (Invitrogen). For liver, nuclei acids in the aqueous phase of the Qiazol extraction were precipi-
tated by adding 1 volume of isopropanol. Pellets were resuspended in RNAse-free H2O. Part of small RNAs was 
heated in 50% (v/v) formamide, for 3 min at 70˚C, and size-fractionated on a 17% Tris-Borate-EDTA (TBE) 
urea (8 M) polyacrylamide gel. RNAs of 16 - 40 bases were eluted in 0.4 M NaCl overnight at 4˚C and precipi-
tated in presence of glycogen (0.04 μg/μl; Invitrogen) by addition of 3 volumes of EtOH. After centrifugation at 
13,200 rpm for 30 min at 4˚C, pellets were rinsed twice with cold 70% EtOH, air dried at room temperature and 
resuspended in RNase-free H2O.  
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2.3. Construction of Tagged cDNA Libraries 
All DNA and RNA oligonucleotides (Table 1) used in the preparation of cDNA libraries were purchased from 
Sigma (France). 3’ adaptors were bought phosphorylated at the 5’ end and blocked at the 3’ end by a C7-Amine 
residue. They were adenylated as described [6]. 

2.3.1. Tagging with Bulged Primers 
For each library, 16 - 40 bases RNA (corresponding to the RNA obtained from 300 - 600 ng of total RNA) was 
ligated to 0.25 pmoles of the adenylated BC8 3’ adaptor. Ligation reaction was performed in a final volume of 
10 μl containing 2.4 μl of PEG 8000 (Biolabs), 1X truncated T4 RNA ligase 2 buffer (Biolabs) and 0.4 μl (20 
U/μl) of T4 RNA ligase 2 truncated (Biolabs). The ligation reaction was incubated for 75 min at 25˚C. The 5’ 
RNA adaptor was subsequently ligated to RNA by adding 1 pmole of adaptor to the mixture. After 3 min dena-
turation at 70˚C, the mixture was kept on ice while adding 1.0 μl of (20 U/μl) T4 RNA ligase 1 (Biolabs) and 10 
pmoles of ATP. The ligation reaction was incubated for 60 min at 25˚C. The ligated RNA was converted to sin-
gle stranded cDNA using 130 units of Superscript II reverse transcriptase (Life technology) and 50 pmoles of 
RT1-primer at 50˚C for 90 min in a final volume of 30 μl. Following reverse transcription, a PCR mix was di-
rectly added to the RT reaction tube that contained 30 μl of 2X Master Mix Phusion enzyme (Biolabs), 60 
pmoles of PB primer and 100 pmoles of bulged primer. The resulting 60 μl reaction volume was distributed into 
4 × 15 μl to enhance thermic exchange, denaturated for 1 mn at 98˚C and submitted to 16 PCR cycles (20 s at 
98˚C, 30 s at 55˚C, 25 s at 72˚C). PCR products were EtOH precipitated in sodium acetate 0.3 M final and re-
suspended before size-fractionation on 6% TBE polyacrylamide gel to purify the small RNA-derived cDNAs of 
90 - 95 base pair (bp) from the adaptor dimer byproducts of 74 bp. cDNAs were eluted as described above and 
resuspended in H2O.  

2.3.2. Tagging with Barcoded Primers (TruSeq) 
For each library, 4 μl of 16 - 40 bases RNA was ligated to 0.25 pmoles of the RA3 3’adaptor. Following ligation 
to the 5’ adaptor (1 pmole) and reverse transcription with the RT2-primer (50 pmoles), PCR amplification was 
performed in presence of 100 pmoles of TruSeq primer under the same thermal cycling conditions as above. 
PCR products of 130 - 140 bp were purified from the 112 bp dimer adaptor byproducts as described above.  

2.4. Sequencing Data Analysis 
A GAIIx sequencing lane yields approximately 30 - 32 millions quality-filtered reads. The TruSeq barcoded reads 
were obtained demultiplexed from Imagif platform (Centre de Recherche de Gif http://www.imagif.cnrs.fr). The 
barcoded BP reads were demultiplexed using our script written for this purpose. This script retrieved se-
quences having the first eleven nucleotides of the 3’ adaptor. The filtered reads were trimmed from the adaptor  

 
Table 1. Names and sequences (5’-3’) of oligonucleotides used in the three methods of small-RNA library preparation. 
Barcodes of the cDNA amplification primers are in bold. The canonical sequence of the reverse PCR bulging primers is 
given in which NN symbolizes different dinucleotides.  

3’ adaptor  

BC8 CCCTTCTCGTATGCCGTCTTCTGCTTG 

RA3 TGGAATTCTCGGGTGCCAAGG 

5’ adaptor  
PB rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrC 

RT primer  
RT1 CAAGCAGAAGACGGCATACGA 

RT2 GCCTTGGCACCCGAGAATTCCA 
Amplification primers  

PB' AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA 
Bulging primer CAAGCAGAAGACGGCATACGANNGAAGGG 

TruSeq primer I CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 
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sequence and their length distribution was recorded. Reads > 16 bases were analyzed using the miRanalyzer (or 
its latter version sRNAbench) [14] [15]. Reads were mapped onto the BN/SsNHsd/Mcwi reference rat genome 
allowing 2 mismatches. This server uses the miRBase (http://www.mirbase.org) and additional databases to 
classify the mapped reads into miRNAs, miRNA-related and non-miRNA sequences. Sequences that do not fall 
into these annotation categories but that match on the reference genome are tested for the encoding of putative 
novel miRNAs. Concerning former categories, reads are assigned to the miRNA genes that have been identified 
in the rat genome. Detailed counts of known mature miRNA and mature miRNA-star (the less stable strand of 
the RNA duplex precursor) sequences as well as detailed counts of new variant sequences not yet annotated in 
the miRBase database are provided. The former designation of mature miRNA/miRNA* has been replaced by 
the miRNA-3p/miRNA-5p designation according to the hairpin arm precursor miRNA arise from. The variant 
sequences denoted “Hairpin rno-miR’” differ from known miRNAs at the 5’ end by one base and define 
5’_isomiRs. miRNA sequence-based profiles were then constructed and compared. To account for library size 
differences, we computed the expression of each miRNA the DESeq normalization methods [16]. The raw 
data files have been submitted to SRA database (NCBI) under the accession numbers (SRX363287-90, 
SRX363303-18, SRS1443267 and SRS1443207). Individual group statistics were calculated using Mann and 
Whitney tests and corrected for multiple testing. 

3. Results and Discussion 
3.1. First Challenge: No Barcode Bias 
As illustrated in Figure 2, the introduction of barcodes is no more a source of technical variability when bar-
coding through cDNA amplification with tagged primers (TruSeq indexes or bulged primers). As mentioned in 
the Introduction, significant variability used to be introduced when using a ‘by-ligation’ multiplexing strategy. 
This is important to recall because by-ligation protocols were still in use in the scientific community [10]. It is 
also important to take into account when re-examining early published data. 

3.2. Second Challenge: MicroRNAs of Low Expression 
In sequencing data, moderately or even weakly expressed miRNAs can actually correspond to abundant 
miRNAs in the samples because of adaptor bias. Figure 3 highlights the strong 3’ adaptor-dependency of  

 

 
Figure 2. Lack of barcoding bias. Comparison of miRNA expression levels between barcoded libraries. (a) Scatter plot 
comparing the expression of miRNAs between pairs of profiles resulting from the use of TruSeq indexes in cDNA library 
construction. Read counts in profiles I 1 - 4 were compared to reads counts in profile I1. All read counts align along the di-
agonal showing a lack of technical bias. (b) Scatter plot comparing the expression of miRNAs between pairs of profiles re-
sulting from the use of bulged primers in cDNA library construction. Read counts in profiles BP 1 - 8 were compared to 
reads counts in profile BP1. All read counts align along the diagonal showing a lack of technical bias in that case too.  
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Figure 3. Adaptor bias. miRNA expression profiles of rat cerebellum were constructed either using BC8 (BP protocol) or 
RA3 (TruSeq protocol) 3’ adaptors. (a) Impact of 3’ adaptor sequence on the top 40 expressed miRNAs in BP profiles. For 
each miRNA, the mean BP and TruSeq expression is shown. miRNA expression are given in reads per million (RPM) fol-
lowing DESeq normalisation. Y-axis is drawn using a log2 scale. (b) miRNA expression in the mean TruSeq profile are 
plotted against miRNA expression in the mean BP profile. miRNA expression differ by a factor of 1 - 3 (Red areas) for 47 
miRNAs, 3 - 10 (blue areas) for 52 miRNAs, 10 - 50 (green areas) for 23 miRNAs, and >50 for 9 miRNAs. X- and Y-axes 
are drawn using log10 scales. 

 
miRNA expression profiles. Studies devoted to RNA ligase activities have shown that, for a given adaptor, RNA 
ligases favour some miRNA species over others [8] [9]. This selective capture impairs measurement of the true 
(absolute) expression level of miRNAs and less biased library preparation remains an important issue as testified 
by the recent publications in the field of small-RNA deep sequencing [17]-[19]. Our study markedly illustrates 
how much miRNA expression profiles are dependent of the adaptor sequence per se. From the same small RNA 
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sample, we have built eight multiplexed BP libraries and four TruSeq multiplex cDNA libraries. These two pro-
tocols used the same 5’ adaptor but two 3’ adaptors of unrelated sequences (BC8 or RA3). Following the con-
struction of mean profiles specific of the BC8 or RA3 oligonucleotides, miRNA expression were established in 
reads per million (RPM). Both adaptors approximately capture the same number of miRNAs with a common list 
of 268 miRNAs, “the 268-set”. However, these miRNAs displayed important variation that can be two orders of 
magnitude even for miRNAs of high expression ranks (Figure 3(a)). For instance we obtained in BP and 
TruSeq mean profiles respectively, 760,000 versus 8000 for let-7d-5p, 20,000 versus 204,000 for miR-26a-5p, 
1500 versus 78,000 for miR-30a-5p. In Figure 3(b), we plot for each miRNA its expression value in the mean 
BP profile versus the RA3 one. Four categories of miRNAs can be detected according to expression fold 
changes: 1 to 3, 3 to 10, 10 to 50, and beyond. Our data confirmed the strong sequence and/or structural-fold 
preference of RNA ligases ultimately leading to 3’- or 5’-adaptor-dependent miRNA profiles [20]. To solve this 
problem and allow a more accurate measurement of the absolute expression level of miRNA, a strategy had 
been proposed using pools of adaptors degenerated at their first positions [8] [17] [18] [20]. However, this can-
not be sufficient to achieve the “true” miRNome characterization as we reported that profiles recovered with a 
family of barcoded adaptors displayed variation far below the variation observed between adaptors differing 
over their entire length for a large number of miRNAs (personal data).  

So it is important to estimate the abundance of a miRNA using alternative quantification techniques such as in 
situ hybridization or calibration curve in real-time RT-qPCRs.  

3.3. Third Challenge: Quantification of Moderate Expression Changes 
miRNA repertoires and miRNA expression profiles are specific of tissues and/or physiological/pathophysio- 
logical status. The range of miRNA expression changes is expected to greatly differ, depending on their bio-
logical status: small miRNA expression differences (<3) often characterize a tissue under different physiological 
conditions while miRNA expression differences of several orders of magnitude are observed between different 
tissues, or healthy tissues versus neoplastic tumors. In former cases, estimates of expression change will be 
highly dependent on the accuracy of expression level between sample groups. As shown in [21], increasing the 
number of biological replicates is powerful to increase accuracy of expression level of highly or moderately ex-
pressed genes. For lowly expressed genes, adding replicates and sequencing depth both participate to increase 
accuracy of expression levels. From our experience on miRNA populations of rodent tissues and body fluids, we 
recommend to sequence 5 - 7 biological replicates at a sequencing depth of at least 1 - 2 millions miRNA-related 
reads [22]-[24]. As an example we provide here comparison of miRNA expression profiles of liver of 7 months 
old rat fed standard diet (7 biological replicates) versus high-fat diet (6 biological replicates). The 13 libraries 
were sequenced at a depth of 3.1 ± 0.2 millions reads. More than six hundreds miRNAs were detected giving a 
total of 181 miRNA gene families. Eleven miRNAs were identified as differentially expressed (padj-values < 
0.1). Fold-changes of expression ranged from 2 to 4. Reducing the sample size to 3 - 4 replicates markedly de-
ceased the number of identified differentially expressed miRNAs (Figure 4). In one case, only 4 differentially 
expressed miRNAs could be identified, in another one, only 1 differentially expressed miRNAs could be identi-
fied while in two other cases, no differentially expressed miRNA was identified. In addition, we would like to 
draw attention to the fact that very different statistical tools are used for the characterization of false-discovery- 
rates (FDR) [25]-[27]. Figure 5 illustrates the fact that different FDR corrections give very different lists of 
putatively differentially expressed miRNAs. 

4. Conclusion 
In summary, this work shows 1) the dependency of miRNA expression profiles from adaptors. This questions 
the statement of abundance widely used in the literature from sequence data. This may in turn influence our vi-
sion of relationships between miRNA expression and function; 2) the impact of sample size on comparative ex-
pression analyses. This should be strengthen because profiling individual miRNA expression of complex tissue 
is becoming a major breakthrough notably in brain specialized structures or substructures which express a high 
number of ubiquitous and specific miRNAs [28]-[30]. 
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Figure 4. Impact of replicate numbers. miRNA expression profiles of liver of rats fed a control (c) or high-fat (HF) diet were 
constructed using the TruSeq protocol. Samples have been compared with the DESeq procedure, using either the whole sets 
of replicates or different replicate subsets. padj-values < 0.10 were retained as significant. (a) Nine miRNAs were identified 
as differentially expressed when using whole sets of replicates. No miRNA was identified in three subset combinations and 4 
miRNAs, in one combination. Numbers in parenthesis refer to numbers of biological replicates. Letters in parenthesis refer 
to replicate subsets. The identification of differently expressed miRNAs greatly depends on the number of replicates. (b) 
Fold-change of expression. Despite differences in padj-values, fold-changes of expression were similar in all comparisons 
for the 9 miRNAs. 

 

 
Figure 5. Impact of statistical tools. miRNA expression profiles of rat liver were constructed using the TruSeq protocol. 
Samples have been compared using a DESeq-like procedure and methods described by Holm (padj-values(H)) [28], Benja-
mini and Hochberg (padj-values(BH)) [29] or Benjamini and Yekutieli (padj-values(BY)) [30] to characterize false- 
discovery-rates and whole sets of replicates (7 for sample C and 6 for sample HF). Out of 256 miRNAs identified by more 
than 10 reads, 73 displayed fold-change of expression with p-values < 0.05. Two miRNAs displayed fold-change of expres-
sion with a padj-values (BH) < 0.05, 10 miRNAs, with a padj-values (H) < 0.05. No miRNA displayed fold-change of ex-
pression with a padj-values (BY) < 0.05. Depending on the test, 0 - 10 miRNAs therefore appeared putatively differentially 
expressed between samples C and HF. 
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