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Abstract 
In this paper, we are concerned with a class of second-order nonlinear differential equations with 
damping term. By using the generalized Riccati technique and the integral averaging technique of 
Philos-type, two new oscillation criteria are obtained for every solution of the equations to be oscil-
latory, which extend and improve some known results in the literature recently. 
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1. Introduction 
Zhang and Yan discussed respectively the solutions’ oscillation of the second order nonlinear differential equation 
with damping in [1]-[3] 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) 0,a t x t x t p t x t q t f x tψ ′′ ′+ + =                       (1) 

and obtained some useful results. On this basis, the paper continues this discussion of Equation (1). For 
Equation (1), assume that 

(A1) [ ) ( )( )0: , R R ,a t +∞ → = −∞ +∞  is continuously differentiable; 

(A2) [ )0, : , Rp q t +∞ →  are continuous functions, and for arbitrarily large t, ( )p t , ( )q t  can change sign; 
(A3) , : R Rfψ →  is continuously differentiable and when 0u ≠ , ( ) 0uψ > , ( ) 0uf u > , ( ) 0f u′ > . 
In this paper, we assume that each solution ( )x t  of Equation (1) can be extended to [ )0 ,t +∞ . A solution is 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.47122
http://dx.doi.org/10.4236/jamp.2016.47122
http://www.scirp.org
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said to be regular if there exists t on arbitrary interval [ ),T +∞ , such that ( ) 0x t ≠ . A regular solution is said to 
be oscillatory, if it has arbitrarily large zeros; otherwise it is said to be nonoscillatory. Equation (1) is called 
oscillatory if all its regular solutions are oscillatory. 

Many exceptions of Equation (1) have emerged in the literature, for example, the paper [4] discussed the 
oscillation of the second order linear differential equation with damping 

( ) ( )( ) ( ) ( ) ( ) ( ) 0,a t x t p t x t q t x t′′ ′+ + =                           (2) 

and the associated equations have been studied by many authors with a number of important results of 
oscillation. We recommend References [5]-[7] and their introductions. The purpose of this paper is to establish 
the Philos-type oscillation criteria of Equation (1) in general conditions. By using the generalized Riccati 
transformation and integral averaging technique of Philos-type [8], we obtain three new oscillatory criteria for 
Equation (1). Our results generalize, improve and unify the above results in above references and the method of 
proof is also relatively simpler than their’s. The functions inequalities in this article are established for all 
sufficiently large t if there is no particular explanation. 

2. Main Results 
Using Philos-type integral average conditions, the new oscillatory results of Equation (1) is given as below. 
Function classes P is introduced, we define that 

( ){ } ( ){ }0 0 0D , : ,  D , : .t s t s t t s t s t= > ≥ = ≥ ≥                         (3) 

( )C ,H D R∈  is called function belong to the class P, if there is ( )0C ,h D R∈  satisfying 
1) ( ) 0, 0, H t t t t= ≥ ; ( ) ( ) 0, 0, , DH t s t s> ∈ ; 
2) H exists non-positive and continuously partial derivatives for the second variable in 0D , and satisfies the 

equation 

( ) ( ) ( ) ( ) 0

,
, , ,    , .

H t s
h t s H t s t s D

s
∂

− = ∈
∂

                           (4) 

Theorem 1. Assume that (A1) - (A3) hold, and ( )1 20 c x cψ< ≤ ≤ , ( ) 0, 0f x k x′ ≥ > ≠ . The function ( ),H t s  
belongs to the class of functions P and (4) holds. If there is an continuously differentiable function 
( ) [ ) ( )0: , 0,t tρ +∞ → +∞  making 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

0

2
1 2

0 1 2

2

2

2

1limsup ,
, 4

,1 , d = ,
4 ,

t

tt

c c p s
H t s s q s

H t t kc c a s

s p s s h t s c a s
s H t s s

c a s k sH t s

ρ

ρ ρ
ρ

ρ

→+∞

  − + 
   

   ′− + − +∞
    

∫
                 (5) 

then Equation (1) is oscillatory. 
Proof. Suppose that ( )x t  is a nonoscillatory solution of Equation (1). We may assume without loss of gene- 

rality that ( ) 0x t ≠  with 0t t≥ . we consider the function 

( )
( ) ( )( ) ( )

( )( ) 0= , .
a t x t x t

W t t t
f x t
ψ ′

≥                             (6) 

From Equation (1), we get 

( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( )( ) ( )

( )( )

( )
( )( ) ( ) ( ) ( )

( ) ( )

2

2

21

p t x t x t
W t q t a t x t f x t

f x t f x t

p tkq t W t W t
a t a tx t

ψ

ψ

′ ′
′ ′= − − −

 
≤ − − + 

  

 



Q. X. Zhang et al. 
 

 
1181 

( )
( )( )

( )
( ) ( )( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2
2

2
2

1 2

2
1 2 2

1 2 2

1 1
4 2

1
4 2

1 .
4

p t p tkq t W t
ka t a tx t x t ka t

p t p tkq t W t
kc a t c a t ka t

c c p t p tkq t W t W t
kc c a t c a t a t

ψ ψ

 
 = − + − +
  

 
 ≤ − + − +
  

 −
= − − − + 

  

 

So when 0 ,t s t≥ ≥  we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0

0

2
1 2

1 2

2

2

, d , d          
4

1 , d .

t t

t t

t

t

c c p s
H t s s W s s H t s s q s s

kc c a s

p skH t s s W s W s s
c a t a s

ρ ρ

ρ

 −
′ ≤ − + 

 
 

− + 
 

∫ ∫

∫
           (7) 

By the division integral formula and applying Equation (4), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
0 0

0 0 0
,

, d , , d
,

t t

t t

s h t s
H t s s W s s H t t t W t s H t s W s s

H t s
ρ

ρ ρ ρ
 

′ ′ = − + −
  

∫ ∫      (8) 

So when 0t s t≥ ≥ , it follows 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

0

0

0

2
1 2

1 2

2

0 0 0
2

2

, d     
4

,
, d

,
, d ,

,

t

t

t

t

t

t

c c p s
H t s s q s s

kc c a s

H t s s W skH t t t W t s
c a s

s p s s h t s
s H t s W s s

c a s H t s

ρ

ρ
ρ

ρ ρ
ρ

 −
+ 

 

≤ −

 
′ − + −

  

∫

∫

∫

                  (9) 

By (9), when 0t s t≥ ≥ , we get 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

0

0

2
1 2

1 2

2

2

2

0 0 0
2

2

2

2

0 0 0

,
4

,1 , d     
4 ,

, ,

,1  , d
2 ,

, .

t

t

t

t

c c p s
H t s s q s

kc c a s

s p s s h t s c a s
s H t s s

c a s k sH t s

k s
H t t t W t H t s W s

c a s

s p s s h t s c a s
s H t s s

c a s k sH t s

H t t t W t

ρ

ρ ρ
ρ

ρ

ρ
ρ

ρ ρ
ρ

ρ

ρ

  − +  
  

  ′ − + − 
    

≤ − 


  ′ + + − 
    

≤

∫

∫                (10) 

The two sides of (10) are divided by ( )0,H t t , and we calculate the limit of the two sides of (10) when 
t → +∞ . So we have a contradiction to the condition (5). This completes the proof. 

Corollary 1. In Theorem 1, if the condition (5) is replaced by the following conditions: 

1) 
( ) ( ) ( ) ( ) ( ) ( )

( )0

2
1 2

0 1 2

1 , d ,lim sup
, 4

t

tt

c c p s
H t s s q s s

H t t kc c a s
ρ

→+∞

 −
+ = +∞ 

 
∫  



Q. X. Zhang et al. 
 

 
1182 

2) 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( )0

2

2

0 2

,1lim , d ,
, ,

t

tt

s p s s h t s c a s
s H t s s

H t t c a s k sH t s
ρ ρ

ρ
ρ→+∞

 
′ + − < +∞

  
∫            (11) 

then Equation (1) is oscillatory. 
Remark 1. In Theorem 1, if we select different functions ( )tρ  and ( ),H t s  the different oscillation criteria  

of Equation (1) can be obtained. For example, you can select ( ) ( ),H t s t s α= −  or ( ) 1, ln
1

mtH t s
s
+ =  + 

. 

If the condition (5) is not satisfied, we can apply the following guidelines for determining oscillation of 
Equation (1). 

Theorem 2. Assume that (A1) - (A3) hold, and ( ) ( )1 20 , 0, 0c x c f x k xψ ′< ≤ ≤ ≥ > ≠ . ( ),H t s  belongs to 
the class of functions P and (4) holds. Besides, 

( )
( )0 0

,
0 inf lim inf .

,s t t

H t s
H t t≥ →∞

  < ≤ ∞ 
  

                            (12) 

If there is a continuously differentiable function ( ) [ ) ( )0: , 0,t tρ +∞ → +∞  to make 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( )0

2

2

0 2

,1lim sup , d ,
, ,

t

tt

s p s s h t s c a s
s H t s s

H t t c a s k sH t s
ρ ρ

ρ
ρ→+∞

 
′ + − < +∞

  
∫           (13) 

and continuously function ( ) [ )0: , Rt tϕ +∞ →  to make 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( ) ( )

2
1 2

1 2

2

2

2

1lim inf ,
, 4

,1 , d
4 ,

t

st

c c p
H t q

H t s kc c a

p h t c a
H t s

c a kH t

τ
τ ρ τ τ

τ

ρ τ τ ρ τ τ τ
ρ τ τ τ ϕ

τ ρ ττ

→+∞

  − +  
  

  ′ − + − ≥
    

∫
             (14) 

hold when 0t s t≥ ≥ . Besides, 

( ) ( ) ( )
( ) ( )0

2

0

1lim , d ,
,

t

tt

s
H t s s

H t t s a s
ϕ

ρ
+

→+∞
= +∞∫                          (15) 

where ( ) ( ){ }max ,0t tϕ ϕ+ = . Then Equation (1) is oscillatory. 
Proof. Suppose that ( )x t  is a nonoscillatory solutions of (1). And when 0t t≥ , ( ) 0.x t ≠  Define 

( ) ( ) ( )( ) ( )
( )( ) 0, .

a t x t x t
W t t t

f x t
ψ ′

= ≥                            (16) 

We can get (10) as the proof of Theorem 1, i.e. 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

2
1 2

1 2

2

2

2

0

,
4

,1 , d
4 ,

, ,    .

t

s

c c p
H t q

kc c a

p h t c a
H t

c a kH t

H t s s W s t s t

τ
τ ρ τ τ

τ

ρ τ τ ρ τ τ τ
ρ τ τ τ

τ ρ ττ

ρ

  − +  
  

  ′ − + − 
    

≤ ≥ ≥

∫

                 (17) 

The two sides of the above result are divided by ( )0,H t t , then we calculate the limit of the two sides when 
t → +∞ . By (14), we get ( ) ( ) ( ) 0, .s s W s s tϕ ρ≤ ≥  So 

( ) ( ) ( )2 2 2 .s s W sϕ ρ+ ≤                               (18) 
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Define  

( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )

0

0

0
0 2

2

0
0 2

,1 , d ,  ;
, ,

,1 d ,  .
,

t

t

t

t

s p s s h t s
u t s H t s W s s t t

H t t c a s H t s

H t s s W skv t s t t
H t t c a s

ρ ρ
ρ

ρ

 
′ = + − >

  

= >

∫

∫

            (19) 

By (9), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )0

2
1 2

0 0
0 1 2

1 , d ,
, 4

t

t

c c p s
u t v t t W t H t s s q s s

H t t kc c a s
ρ ρ

 −
+ ≤ − + 

 
∫            (20) 

and by (14), we get 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
2

1 2
0

1 2

1lim inf , d ,  
, 4

t

st

c c p
H t q s s t

H t s kc c a
τ

τ ρ τ τ τ ϕ
τ→+∞

 −
+ ≥ ≥ 

 
∫              (21) 

and 

( ) ( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )

0

0

2
1 2

0 1 2

2

2
0

0 2

1 , dlim sup
, 4

,1 1lim inf , d .
4 , ,

t

tt

t

tt

c c p s
H t s s q s s

H t t kc c a s

s p s s h t s c a s
s H t s s t

H t t c a s k sH t s

ρ

ρ ρ
ρ ϕ

ρ

→+∞

→+∞

 −
+ 

 

 
′ − + − ≥

  

∫

∫

        (22) 

By (13) and (22) there is a sequence 

{ } 01
, , 1, 2,3, , lim ,n n nn

t t t n t∞

→+∞
> = = +∞�                          (23) 

such that 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( )0

2

2

0 2

,1 1lim , d .
4 , ,

nt n
ntn

n n

s h t ss p s c a s
s H t s s

H t t c a s k sH t s

ρρ
ρ

ρ→+∞

 
 ′+ − < +∞
  

∫          (24) 

When t → +∞  we calculate the supper limit of (20) and apply (21), it follows 

( ) ( ){ } ( ) ( ) ( )0 0 0 .lim sup
t

u t v t t W t tρ ϕ β
→+∞

+ ≤ − =                        (25) 

So for sufficiently large n, there is 

( ) ( ) .n nu t v t β+ <                                    (26) 

Because 

( ) ( )
( ) ( ) ( )

( )0

2

0
0 2

,
d 0,  

,
t

t

H t s kW s
v t s s t t

H t t c a s
ρ= > >∫                          (27) 

is increasing, we get ( )lim
t

v t C
→+∞

=  Where C = +∞  or is a positive constant. Assume that C = +∞ , then  
( )lim nn

v t
→+∞

= +∞  and by (26), we have 

( )lim .nn
u t

→+∞
= −∞                                     (28) 

From (26) and (28), 
( )
( )

1 ,n

n

u t
v t

ε+ <  where 0 1ε< <  is a constant.That is for sufficiently large nt  

( )
( )

1 0.n

n

u t
v t

ε< − <                                    (29) 
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On the other hand, by the Schwarz inequality, we get 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( )

0

0

0

2

2
20

2

2

0 2

2

0 2

,10 , d    
, ,

,1 , d
, ,

1 , d .
,

n

n

n

t n
nt

n n

t n
nt

n n

t
nt

n

s h t ss p s
s H t s W s s

c a sH t t H t s

s h t ss p s c a s
s H t s s

H t t c a s k sH t s

k s
H t s W s s

H t t c a s

ρρ
ρ

ρρ
ρ

ρ

ρ

  
  ′≤ + −
    

  
  ′≤ + −     
 
⋅   
 

∫

∫

∫

            (30) 

So 

( )
( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )0

2
2

2

0 2

,10 , d .
, ,

ntn n
nt

n n n

u t s h t ss p s c a s
s H t s s

v t H t t c a s k sH t s

ρρ
ρ

ρ

 
 ′≤ ≤ + −
  

∫           (31) 

From (24), we have 

( )
( )

2

0 lim .n

n
n

u t
v t→+∞

≤ < +∞                                (32) 

There is an contradiction with (28) and (29). If ( )lim
t

v t C
→+∞

= < +∞  with (18) we get 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )0 0

2 2

2 0 2 0

1 1lim , d lim , d ,
, ,

t t

t tt t

s W sk kH t s s H t s s s C
c H t t s a s c H t t a s

ϕ
ρ

ρ
+

→+∞ →+∞
≤ = < +∞∫ ∫      (33) 

we obtain a contradiction to (15). This completes the proof.                                        □ 
Remark 2. The theorems of this paper improve or extend the results in [1]-[12]. For Equation (1), Theorem 1 

and 2 are new. 
Finally, we give two examples. 
Example 1. Consider the second-order differential equation with damping 

( )( ) ( ) ( ) ( ) ( )2 3
03

2

1 11 sin 0,  : 1,x t x t x t x t x t t t
t

t

′   ′ ′+ − + + = ≥ =                   (34) 

where ( ) ( ) ( ) ( ) ( )
3

2 1 321, 1 sin , , ,a t u u q t t p t t f u u uψ
− −= = + = = − = + . 

Now let ( ) ( )2,H t s t s= − , ( ), 2h t s = , ( )t tρ = , It is easy to verify that Equation (34) satisfies all the 
conditions of Theorem 1, so by Theorem 1, Equation (34) is oscillatory. 

Example 2. Consider the second-order differential equation with damping 

( ) ( ) ( ) 02 4 3

1 1 1 0,  : 2,
′ ′ ′+ + = ≥ =  

x t x t x t t t
t t t

                        (35) 

Here ( ) ( ) ( ) ( ) ( )2 4 3
1 1 1, 1, , ,a t u p t q t f u u
t t t

ψ= = = = = . 

Now let ( ) ( )2,H t s t s= − , ( ), 2h t s = , ( )t tρ = , ( ) 1
2

t
t

ϕ = , so all the conditions of Theorem 2 are satis-  

fied. By Theorem 2, Equation (35) is oscillatory on [ )0 ,t ∞ . But the other known results cannot be applied in 
Equation (35). 

3. Conclusions and Outlook 
In this paper, the two well-known results of Philos on the second order linear differential equation are extended 
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to the second order nonlinear differential equations with damping term. As we all know, the motions under ideal 
conditions and vacuum are rare, but the motions with damping and disturbances are widespread. The discussion 
on the oscillation of the differential equation with damping term in our paper is of more practical significance. 
Moreover, the previous study on oscillation of the equation always assumed that ( ) ( )0, 0p t q t> > , but the sign 
of ( )p t  and ( )q t  in our paper may change. Therefore, in this paper we extend and improve some of the 
results that are known in the previous study. 

It is a deficiency of this paper that there is no discussion on delay. So in the follow-up study we will discuss 
the oscillation of the second order delay differential equations with damping, second order neutral delay 
differential equations and higher order delay differential equations with damping. 
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