Applied Mathematics, 2016, 7, 1183-1206 00:0 Scientific

Published Online June 2016 in SciRes. http://www.scirp.org/journal/am "‘0 Research
i 9,¢ Publishing

http://dx.doi.org/10.4236/am.2016.710105 ¢

The Bistability Theorem in a Model of
Metastatic Cancer

Jens Christian Larsen

Vanlgse Alle 50 2 mf tv, 2720 Vanlgse, Copenhagen, Denmark
Email: jlarsen.math@hotmail.com

Received 2 May 2016; accepted 27 June 2016; published 30 June 2016

Copyright © 2016 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

The main theorem of the present paper is the bistability theorem for a four dimensional cancer
model, in the variables C,C,,,GF,Gl representing primary cancer C, metastatic cancer C,,,

growth factor GF and growth inhibitor GI, respectively. It says that for some values of the para-
meters this system is bistable, in the sense that there are exactly two positive singular points of

this vector field. And one is stable and the other unstable. We also find an expression for Z—Ct:(O)

for the discrete model T of the introduction, with variables (C,GF,GI), where C is cancer,

GF,Gl are growth factors and growth inhibitors respectively. We find an affine vector field Y
whose time one map is T2 and then compute c;—f(O), where (C (t),GF(t),GlI (t)) is an integral
curve of Y through (0, GFO,GIO) e R®. We also find a formula for the first escape time for the vector

field associated to T, see section four.
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1. Introduction
1.1. Summary of the Paper

We continue the study of the cancer model from Larsen (2016) [1]. The model is

TR R?
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T(y)=Ay+g+c
where

1+y a p
A= & 1+ 0
c 0 1+py

g =(gc,gF,gI )T e]RT3 are birth rates and T denotes transpose. Here ¢ =(cl,0,0)T ,C, <0 is chemotherapy

and ¢=(0,0,¢,)",c, >0 is immune therapy. The parameters y,5,c€R, aeR,, 4,4, €R , feR_.
We have shown previously Larsen (2016) [1], that there are affine vector fields on R?, such that their time one
map is T, when the eigenvalues of A have positive real part. This enables you to find a formula for the rate of
change of cancer growth in C = 0. The characteristic polynomial of A is

(1-2)((1-2)(1+y—-2)-as - po)
when g =, =0. The discriminant of this polynomial is
V=y*+4(ad+ o)

The eigenvalues are
PR N |
i 2 2

In section two we prove the Bistability Theorem for a mass action kinetic system of metastatic cancer C,,
and primary cancer C. The model also has GF growth factors and Gl growth inhibitors. We show that for
some values of the parameters there are exactly two positive singular points c::(C:,C*M’,GF*,GI:P,
cI:(CJ,C*“"*,GF*,GI*+ , Where C; <C/,CM <CM*. We prove that ¢ is unstable and c; is stable,
when one of the rate constants is small.

For V<0 we have: if the eigenvalue a+ib of A has a® >b?® then one can find an affine vector field,
whose time one map is T?. Similarly, when V >0,ad+ o <0 and the eigenvalues 1,4, of the cha-
racteristic polynomial of A are nonzero, then one can find an affine vector field on R*, whose time one map is
T2. This enables us to find a formula for the rate of change of cancer growth in C =0. This is the subject of
Section 3.

The phase space of our model T is R®. In section four we show, that when . =4, =0, g=0, V<0,
iR(/L) >0 orbits of the vector field associated to T will escape phase space for both t>0 and t<0. We
obtain a formula for the first escape time. There is a similar treatment for V > 0.

1.2. The Litterature

UPAR (urokinase plasminogen activator receptor) is a cell surface protein, that is associated with invasion and
metastasis of cancer cells. In Liu et al. (2014) [2] a cytoplasmic protein Sproutyl (SPRY1) an inhibitor of the
(Ras-mitogen activated protein kinase) MAPK pathway is shown to interact with uUPAR and cause it to be de-
graded. Overexpression of SPRY1 in HCT116 or A549 xenograft in athymic nude mice, led to great suppression
of tumor growth. SPRY1 is an inhibitor of the MAPK pathway. Several cancer cells have a low basal expression
of SPRY1, e.g. breast, prostate and liver cancer. SPRY1 promotes the lysosomal mediated degradation of uPAR.
SPRY1 overexpression results in a decreased expression of uPAR protein. This paper suggests that SPRY1 re-
gulates cell adhesion through an uPAR dependant mechanism. SPRY1 inhibits proliferation via two distinct
pathways: 1) SPRY1 is an intrinsic inhibitor of the RaffMEK/ERK pathway; 2) SPRY1 promotes degradation of
UPAR, which leads to inhibition of FAK and ERK activation.

According to Luo and Fu (2014), [3] EGFR (endoplasmic growth factor receptor) tyrosine kinase inhibitors
(TKIs) are very efficient against tumors with EGFR activating mutations in the EGFR intracytoplasmic tyrosin
kinase domain and cell apoptosis was the result. However some patients developed resistance and this reference
aimed to elucidate molecular events involved in the resistance to EGFR-TKIs. The first EGFR-TKI s to be
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approved by the FDA (Food and Drug Administration, USA) for treatment of NSCLC (non small cell lung
cancer) were gefitinib and erlotinib. The mode of action is known. These drugs bind to the ATP binding site of
EGFR preventing autophosphorylation and then blocking downstream signalling cascades of pathways RAS/
RAF/MEK/ERK and PI3K/AKT with the results, proliferation inhibition, cell cycle progression delay and cell
apoptosis.

There are several important monographs relevant to the present paper, see Adam & Bellomo (1997), [4], Geha
& Notarangelo (2012), [5], Murphy (2012), [6], Marks (2009), [7], Moalina (2011), [8].

2. A mass Action Kinetic Model of Metastatic Cancer

The main result of this section is Theorem 1 below that proves the bistability of the mass action kinetic system
(1) to (8). Consider then the mass action kinetic system from Larsen (2016), [9], in the species C,C,,,GF,Gl
primary cancer cells, metastatic cancer cells, growth factor, growth inhibitor respectively.

GF »C 1)
GF -»C, )
C+Gl >0 ®3)
C, +Gl >0 ()
C—2C (%)
C, — 2C,, (6)
0= GF ()
0 Gl )

The complexes are C(1)=GF,C(2)=C,C(3)=C,,,C(4)=C+GI,C(5)=0,C(6)=C,, +Gl,
C(7)=2C,C(8)=2C,,,C(9)=Gl. And this defines the rate constants k;. With mass action kinetics the
ODE s become

C' =k, GF —kg,C -Gl +k,,C

Cy =ky,GF —k,Cy -Gl +Kkg,Cyy
GF' = —(Ky + Ky, +ksy ) GF +kg
Gl" = —k.,C -Gl — kg C,, - Gl + kg — koGl
all k; >0. We shall now find the singular points of this vector field denoted
f:R* >R’
But first we state a theorem, we shall next prove. A positive (nonnegative) singular point (C,CM ,GF,GI)

of f is a singular point of f, such that (C,C,,,GF,Gl)eR?, ((C,CM,GF,Gl)EE“). Define

k15 k15

k = B — 15
1 =Ko o Ky =Ky
Ky + Kap + Ky Ky +Kay +Key

Theorem 1 Assume K, = kKg;, Kgy = Ksg. When Kk =Ke —keg —k, —k, >0, V =k? -4k, (k, +k,)>0, there
are exactly two positive singular points

. =(C.,CM"",GR.,Gl.) ¢ =(C./,CM",GF.,Gl))

where C. <C.!,CM" <CM*". ¢l isunstable. Given Ky =k, k =k’ k, =kJ, ks, =kg € R, such that
k=ky =kes —kiy —k? =k >0 and, V° =k —4kg, (k +kJ)>0, then thereexists ¢>0,e<kg suchthat c;
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is stable when Kk, <e.
Consider a singular point c. =(C.,CM,GF.,Gl.) of fand linearize

k7z - k54G|* 0 I(21 _k54C*
B Df - 0 Kys — ke Gl Ky, —k,CM
> 0 0 —(Kyy +kyy +Kgp) 0
—kg,Gl, —kg,Gl, 0 —kgy — kg, C. —kgsCM

Setting the last coordinate of f equal to zero gives

k95

Gl = v
K C + koG + Ky

when C,,CM >0. Now insert this into the first and second coordinates of f to get

Ky (KsoCo + KggCl' + Koo ) = KagkosCu + KpyCu (KgCo + kgyCM 4+ kg ) = 0 9)
and

Ky (KsoCa + KasCl' + Ksg ) —KogkosCl! +kssCM (KsuCu + Ky CM +Ksy ) = 0 (10)

When C,,CM >0 we get from (9)

I(1 + I(72C‘* _ _ I(54 k95
-~ =k,Gl = v
C. KeyCo + KgCl' + Keg
and from (10) we get
k, + kffC*M K, Gl. - k%k95M
C. K Cu + Ko C + Keg
This means that B simplifies to
k
- Ct 0 Ky, —ks,C.
K, k kesC.
B=Df = 0 o 31 —KssC
0 0 —(kgy + kg +Kgp) 0
—ks,Gl.  —kgsGl. 0 —kKgo — Kg,C. — kgsC.”

Let B denote the matrix you obtain by deleting row three and column three in B. Then

. kk
detB =— c:c 2 (K + KsyCu + ks )

M
+ _gzés& C.(k +k,C.)+ —éllg:SfA C (k, +kgCo)

ke e

kK key + KoKk ,CZ + KiKegkgsCM' 2

c.c
Also
S kl kz M
o =trace B =~ - (Kso + kgsCu + kssCM )

The characteristic polynomial of B is denoted
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det(B /ud) Ao’ —1A+5
Finally
k.k,
“cch e

k, +k,C.
C.
K, + KgsC.
c
ik, + KikggCM 4 KoKeoC + Kikes 2 + Kok, C2
- c.cl

(ksg + kg Co + keeC ) Ks,C.

+ é‘—fn(ksg +kgyCu+ kegCM ) - kesC

- I(72 k54C* - kaaksec*M

In Larsen (2016) [9], we found two cubic polynomials P, P, such that
P(C)=0, P, (Cy)=0

whenever (C, C, GF,GlI ) is a nonnegative singular point of f. We shall need the following lemma.
Lemma 1 Assume K, =Kg,, kg =Ks5. Then

Py (Cy)=bCP +bCy, +by
where
b, = _kszek524k95 (kl + kz)
b =k, I(524 KssKosK
by = _k22 k59k524k95
Proof. The coefficientto C;, is according to Larsen (2016), [9]
a,a’ - f,fa=0

=k, ), 0 =—Kkeo, d =kke,, f =kesks, and ay, =—kZ,, by, =kg, (Kes —ksy —ky),
=kyks,. The coefficientto C;, is according to Larsen (2016), [9]

~d,, f? - f,bf +2a,ab+h,af - f,,ad
= _k1k536k524 - k536k524 (kgs - k59 - kz ) + 2k524k536 (k95 - k59 - kz)
+ Ksg (Kos —Kso = kl)(—k§6 ) Koksy + KegKesk,

a= k526’b k56( 95 9
Cy = —kikeg, dyy = kikes, Ty

Everything cancels out and leaves a zero. The coefficientto C? is according to Larsen (2016), [9]
a,b* +c, f*+b,ad - f,,bd +b,bf +2a,,ac-2d,,df - f,,cf
= k2 ks (Kos — Ko =Ky ) = Kikeg (Ksoksy )* + Koy (Kag — ks — Ky ) (= ) Kok
— k& Ksy (Kos —Ksg — Ky ) KoKsy +Ksy (Kos — Ko — Ky ) Kag (Kos —Ksg — Ky ) Ksgksg
2k, ) (ks ) (“Koksg ) = Ksgksy (—Kokeg ) Keokss — 2K,k k& ke,
Square b® and multiply b,,b to get
= G (s i)+ = 2K, (i ki ) )~ Kok (Keghes)°
Koy (Kos —Kag =Ky ) (—KZ ) KoKy = KiKsy (Kog = Keo =Ky ) Kok,
R ((kas —eg )7 = (K 4, ) (keg — koo ) + ki)
+ 2k, ) (kG ) (Kokag ) = Kagkss (—KoKsg ) Kagksy — 2K;kok& kS,
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Everything cancels out except
_k526k524k95 (kl + kz )
The coefficientto C,, is according to Larsen (2016), [9]
by, cf +2c,,df — f,,cd —d,,d*+2a,,bc +b,, bd
= k54 (kgs - k59 - kl)(_kzksg ) k56k54 + 2(_k1k59 ) k2k524k56
+ k54k56k2k59k2k54 - k1k56 (kzksa )2 + 2(_k524 ) kss (kgs - k59 - kz)(_kzksg)
+Kyy (kgs — ks — kl)k56 (kgs — ks — kz)kzks4
Multiply
2
bM bd = k524k56 ((kgs - ksg) - (kgs - ksg)(k1 + kz)"‘ klkz)kz

Everything cancels out except
= —K, Kok KesKeg + KoK Kok — KokZ KegKosK, — K2k, KogKos
= k,kZ,Kegkosk
Finally the constant term is
¢, d? +a,,c’ +b,cd
= —kiKsg (KoKsg )" = k2 (KoKsg )7 + Koy (Kog = Ksg — Ky ) (—KoKsg ) Koo
= —KggkZ,Ksok?

The lemma follows.
Theorem 2 Assume K;, =K, Kgy =kss When k =ke —ksg —k —k, >0, V=k? -4k, (k +k,)>0 there
are exactly two positive singular points of f

(c..cM,GF,Gl), (ci,cM GR,GL)
where
C.<C!, cY <c!
Proof. We have

P(C)=a,C’+aC+a, PR, (C,)=b,Cj +bCy +h

where
a, = —kgki ks (K, +k,)
a, = kK k Kok
ay = —Kk 7Kgk Kos
and

b, = _k526k524k95 (kl + kz)
b1 = kse I(524k2 k95k

bo = _kz2 k59k§4k95

1188
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due to symmetry of P,P,. When k>0,v >0, Pand P, have two positive roots
C. <C;
in P and
cl-<cM

in P, , see (15) and (16) below. We are going to verify that

(c..cM.GF,Gl), (ci,cM GR.,GL)
are singular points of f and that

(c..cM*,GR.,Gl."), (CI,CM,GR.,GLI")

are not singular points of f. Here

Gl." = Kor m
kg, Co + KeeCl' ™ + Ky
and
Gl = K
kg, + KesC' ™ + Ky
Also
Glf = ks
Ks,Co + kgsC' " + Ky
Gl =—— Kos o
Ks,Cr +KsC' ™ + Ko
We have
+
Ct= kli
2Ky, (K, +ky)
and logically equivalent
oME _k k+JV

2 2Ky (K, +K,)
where V =k?* -4k, (k, +k,)>0. To see (15) compute

V=2a’-4a,,
= kge k§4k12 k925k2 - 4'k12 k59k§6k95 : ksze k524 k95 (kl + kz)

= k;6k§4k12k925 (kz - 4k59 (kl + kz ))
So

— _ksze I(54 Ky k95 k+ ksze k54 I(1k95 ﬁ

C.
_2k526k524k95 (k1 + kz)

and from this the formula follows. And (16) is a similar computation.

(11)

(12)

(13)

(14)

(15)

(16)
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We shall insert (15), (16) in the first coordinate of f, multiplied with (kg,C." +kgoCl'* + kg ) > 0

(KsaC K, ) (KsaCo +kagCl'™ + Koy ) — kg koe C

k+vV k+tvV k+t\V
=k ————+Kk, || k +k, +Kgy |-
2(k, +k,) 2(k,+ky) " 2(k, +k,)

Now abbreviate x=k + ﬁ and find

X X X
I R ST S I S
(12(|<1+|<2)+ 1}(2+ ng S (k1 Ky )

Multiply with 2(k, +k,) >0 to get

k+JV
i) "

(kx+2(k, + kz)kl)(§+ ksgj—k%klx =0

But this amounts to

_ k{%xz —kx+2k59(kl+k2)j

and this vanishes due to the formula for roots of quadratic polynomials. That the second coordinate vanishes is
logically equivalent. So (11) are singular points of f.
We shall now argue, that

(c..cl,GF.,GL™)
is not a singular point of f. To this end define
y=k+ WV, x=k-V

Insert the formulas (15), (16) for C.,CY* in the first coordinate of f multiplied with ky,C. + ke ClM ™ +Keg
to get

X X (y—x)+x X
k—2 vk |k K o |—kok — X
( 20k 1K) 1}( 20k 1k 2 2(k1ky) SQJ =9k 1 Ky)

Multiply with 2(k, +k,) to find

kl((x+2(kl+k2))(§+ kSQJ—kgsxj (17)

X
+(klm+kljkz(y—x) (18)

But (17) is zero by the above and (18) is nonzero. So (C;,C*“"*,GF*,GI;’+ is not a singular point. That
(CI,CF’,GR,GII"? is not a singular of f is logically equivalent. The theorem follows.
In the remainder of the proof of Theorem 1, we assume, that

K, =kg, kg=ks k>0, V>0

We shall now verify that (C:, C*M*,GF*,GIJ) is unstable. We shall show that det B > 0.
But we have

C.C."
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Simply insert (15) and (16) in the numerator

2 2
kk2 ﬂ + k2K, ﬂ — ke
2(k, +k,) 2(k, +k,)

KK, [(kl + kz)[zlzkt—l/i)f ) kng

_ 1 2
= kK, (m(k +V+2kﬁ)—k59J

=L(k2 +V + 2k IV — kg (K, +K, ))

4(k +k,)
Now we use that
k? +V =4k, (k, +k,) =2V
so
2V + 2kﬁ >0

is equivalent to

V> —kJV

The right hand side here is negative and the left hand side is positive. Thus B has a positive eigenvalue. So
CJ,C*M*,GF*,GIJ) is unstable.
We shall now show that C:,C*M’,GF*,GI;) is stable, when k., is small. We shall use the Routh Hurwitz
criterion. So we start by showing, that det B <0. But similarly to the above

k—JV jz , (k—«/v
SINY kK|
2(k, +kj) 2(k, +k,)
_ kk ,

_4(kll—+2kz)(k +V = 2KV — iy (K, +K, )

klkZ
=% (v _2kV)<0
4(kl+k2)( )<

2
numerator ( det B) = k,k; ( J — kKK

But this amounts to
V< kﬁ
which is equivalent to
V? <k’V
and this again is equivalent to
V <k?
and from this it follows that det B <0. We have the following formula for =

r= ﬁ(klkz + kKo CM™ + K koo Cr + kg (c*M - )2 + kK, (c;)

2

—k(cr) e —kics (CN')Z)
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And a formula for &

a:—g—%—k ke,Ci —kesCM™
Define
Lo k=IV
2(k, +k,)
so that
CI:ﬁx, C*M’:ﬁx
I(54 k56

2 2 2
ik, +kkegk, X kokk, +kk2|i( klzkz%_klkzxs_klkzxa

56 54 56 54 k56 k54

T =
S k,k, x>

54756
Notice that 7 >0 forsmall x>0. Also
—Kgg + K X* + kX2
l 2
k54k56 "

S=

is negative for small x>0. The Routh Hurwitz criterion says in our framework, that o <0,7>0,6 <0,
—or+0 >0 isequivalent to stability of (C:, C*M’,GF*,GI,:). But —or+ 6 >0 isequivalentto

x*(-or+0) >0 because our assumptions imply x>0. So x*(-o7 + 5) >0 is equivalent to

3 3
(k54+k56+k59x+k1x2+k2x2)[1+[i+k jk59+k k1 ;‘ —kzli(—JkMkse
56 54 54 56 54
+x(—k59 + kX2 + kzxz)k56k54 >0
This equation holds for small k., . So (C;,C*M’,GF*, GI;) is stable for small k., . This follows by writing

1-Vl+z= I \/1+zsds_—z.[

1
ds=1zh(z
0241+ 28 ( )

where z e ]—1,1[ and h is smooth. This is the standard trick from singularity theory. Then
4k, (K +k,)
k[l— 1-—=21 1 2/ k; 2 J
2(k, +k,)
k —Akgg (K, +k, ) h _4k59(k1+k2)
2(k,+k,) k? k?

:_Zkﬁh[_4k59(kl+kz)J

k k?

X =
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And from this it follows that (C.,C)",GF.,Gl. ) is stable for small k. To be precise, given kg = Kg,
k =k’ K, =5 ke =kiy € R, such that k =k, =kg —kg —k/ —k; >0 and, V° =k —4kJ, (k+k7)>0,
then there exists ¢ >0,& <kg, suchthat c. isstable when kg <. Theorem 2 follows.

Consider the mass action kinetic system in the species C,GF,GI,P cancer cells, growth factor, growth
inhibitor and a protein, respectively.

GF »C (19)
C+Gl -0 (20)
C—2C (21)
0= GF (22)
0 Gl (23)
05C—P (24)
2C+P —-3C (25)

The complexes are C(1)=GF,C(2)=C,C(3)=GI+C,C(4)=0,C(5)=2C,C(6)=GI, C(7)=P,
C(8)=2C+P,C(9)=3C. And this defines the rate constants k;. With mass action kinetics the ODE s
become

C'=kyGF —ky3C -Gl +Kg,C — (kyy + Ky, )C + Ky +kggC? - P
GF'=—(ky +kyy )GF +ky,

Gl' =k, C -Gl +kg, —k,Gl

P'=k,,C—kuC*-P

see Horn and Jackson (1972), [10]. Notice that (24), (25) are the Brusselator, which is known to have oscillating
solutions for some values of the parameters, see Sarmah et al. (2015), [11]. Subtracting 2C on both sides of
(25) gives the reaction P —>C. Let k, =0.01k,; =0.0Lk,, =0.01,k;, =2,k =0.9, Kk, =0.01,k,, =0.01,
K, =1,k,, =1k, =0.0Lk, =0.01. With these parameter values and initial conditions (C,,GF,,Gl,,P,)=
(11,1,1) the system oscillates, see Figure 1.

3. Eigenvalues with Negative Real Part

In this section x =, =0,9 =0 in the discrete model T of the introduction. The purpose of this section is to
find a formula for the rate of change of cancer growth

P4y

i (C, p)
!
0 2

Figure 1. The oscillating mass action kinetic system. | have

plotted P versus C.
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<)

on the hyperplane C =0. Here (C(t),GF (t).GI (t)) is an integral curve of the vector field Y, defined below.
There are four cases to consider. First assume, that V <0. Let A, =a+ib=4 +i4,. We shall assume that
a’ -b?>0. Define

0 l-a -b
U=l g -6 0
- -0 0
and compute, when detU #0
L 0 ob -6b
= —ab —-pb
detU “ s

0
—(ad+po) -a(l-a) -p(1-a)

If A, has negative real part we might be able to find an affine vector field whose time one map is T°.
Notice that

T?(y)=A’y+Ac+c

By Larsen (2016), [1],

1 0 O
UTAU=|0 a b
0 -b a
Then
1 0 0

U?AMU ={0 a*’-b?> 2ab
0 -2ab a%?-b?

Define the vector field

0 0 O
X(z)=|0 a, b, |z+d (26)
0 b, a
d,zeR?® and let
L _[ a, sz
-b, a,
where a,,b, e R. The flow of X is
O (t,w), = x +td, (27)
" (t,w),, =exp(Lt)x+ L' (exp(L;t)—id)d (28)

where w=(X,%,,%)eR’, x=(X,,%),d=(d,,d;) e R? x,d, eR. Also

exp(LZt)z[

e* cosh,t e sinb,t
—-e™'sinb,t e coshyt
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If
e* cosh, =a’*—b’
e®sinb, = 2ab
then
a’-b® 2ab
exp(L,)=
(L) ( -2ab a’ —sz

Assume that a? >b?. Then we can let

But this means that

because we have

sin(tan’l(x)) X

N1+ X2

X€:|—£,£|:. So we get
2 2

e” =a’+b’
ie. a =In(a”+b”). Consider first the immune therapy model

0
c={0| c>0
CS

So assuming detU =0
-0, 2¢,

—-pA,2c,
—pc,(ad + po)-2pc,(1-4,)

U‘l(Ac+c)=m

We want to have
d, =U*(Ac+c),

and

w2,

3
such that
@) (w)=U AU (w)+U*(Ac+c)

Here @, denotes the time one map of X and w e R®. Define
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Y (w)=DU o X oU™(w)

Then
Q" (t,w)=U o ®* (t,U’lw)
Thus
@ (W)= A*w+Ac+c=T%(w)

Now

d,) 1 (a®-b’-1 2ab ' 5 282,65

d,) detu{ -2ab a*-b*-1 —2¢, (1= 4,) - pcy (ad + fo)
Define

p=(a’-b’ —1)2 +4a%h?

Let U, denote the first row in U. Compute letting

0
x=U"|GF,
Gl,
dcC d X b, 2
E(O)ZE(UN@ )(O'X):_detU (aGFO+ﬂGIO)((l—/11) +/Lz)
1_/11 ’ +/122 2 2
+(pﬁ(bz(a ~b? ~1) - 2aba, ) (-2/3c; )

b (az—bz—l)—Zaba
1 2 2

+ (1-4,-4,) L,
pdetU 2abb, +(a* -b* ~1)a,

J(—ﬂcs)(aé + fo)

where (C,GF,Gl)(t) is an integral curve of Y through (0,GF,,Gl,)eR’. And, because (1-4 )" +A? =
—(ad+ fo) thisis equal to

dcC b,
o (0= g (GFs + 461, ) (~ (a5 + o))
" pdetU (b (2 - ~1) - 28ba, ) (28¢,) (a6 + Bo)

+(1-a)(b, (a® ~b? ~1) —2aba, ) (~(ad + Bor)) e,
+b/(2abb, +a, (a® ~b’ —1))(a§+ﬂa)ﬂc3)

Now suppose V >0,4,,4. #0,a6 + fo <0 and 1,4,,4_ distinct and define

0 1-4, 1-4
D= B8 -6 -0
-a — —-o
Then
1 0 0
D'AD=(0 4, 0
0 0 2
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when detD =0, because the columns of D are eigenvectors of A corresponding to eigenvalues 1,4, ,1
respectively. Compute, when det D = 0, the inverse

0 —o(A-2) (4 -1)
D’lzdeiD (fo+ad) a(l-1) BA-2)
—(Bo+as) -a(l-1,) -B(1-4,)
Then
Bc, . 2c,6(4, —4.)
D (Ac+c)=D"| 0 |=——| fe(ad+fo)+26,B(1- 1)
2, —Bey (a6 + fo) -2, 8(1- 1,)
Define the vector field
0 0 0
X(z)=|0 InA? 0 |z+d (29)
0 0 In A2
z,d e R®. X has flow
1 0 0 dit
X _ 2 1 2
®* (t,2)=| 0 exp(tina?) 0 Z+ m(exp(t(ln&))—l)% (30)
0 0 exp(tin 4?) 1 ,
2 (exp(t(ln 22 ))—1)d3

and the time one map is

2
® (z2)=D"'A’Dz+ ’:“n /121d2
Ai-1

In A2

3

and we want this to be
@) (z)=D'A’Dz+D*(Ac+c)
Then define the vector field
Y (z)=DXD"(z)
This vector field has time one map
O (z)=Az+Ac+c=T%(z)
Then arguing as before
(22-1)d, 1
In(/1+)2 detD

(Bc;(ad + Bo)+2c,8(1- 1))

and
(A-1d, 1
In(4 ) ~ detD

(-Bc; (a8 + o) - 2¢,8(1- 2,))

We can now find
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d

dC y
E(O)ZE(DN(D )(0.%)
= Getp (2Ch + fGly)(=(po +as))(In 2 ~In 2?)
L (e (a5 + o) + 24, (1- 4)
’ /Iln ji—l deiD (Bcy (a8 + o) + 2 3¢, (1- 4,))

Next consider the chemo therapy model

G
c={0], ¢<0
0

and initially, that V <0,detU = 0,a* —b? > 0. Define the vector field X by (26). It has flow (27), (28). Define

the vector field
Y=DUoXoU™

We want this vector field to have time one map
@) (z)=Az+Ac+c=T?(z)
Then we find
0
u*(zmg;ﬁ “be, (a5 + fio)
—(ad+po)(2+y)c,—(1-a)c (ad + fo)

Now compute arguing as above

2 2 -1
(gj:(a __Zib_l 2 _ZEE_J Lg(Uil(AC-I—C)sz)
__ 1 [az—bz—l —2ab j[az bz]
p detU 2ab a?-p?-1)-b, a,
—be, (ad + Bo)
.[_(a5+/’70)(2+7’)01—(1—a)q(a5+ﬁa)]

Finally we can find

£ (0)=2 (U, 20) (0%

- _d;zu (~(ad + Bo))(aGF, + BGl, )+ (1 4)d, - 4y,

b,
ey (~(ad + po))(aGF, + BGl,)

" pditu (_(1—%)(0‘5+ﬂ‘7)(2+7)c1((a2 ~b? ~1)b, - 2aba, |

+b(ad + fo)(2+7)c,(2abb, + &, (a® ~b* -1))
+ bzcl(—(a6+ﬂa))((a2 —b? ~1)b, - 2aba2)
+(1-4) cl(b2 (a* ~b* -1)b, - 2aba2)(—(a5+ﬂa)))
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and this becomes

()=~ ({6 + o)) (aGF, + 461,
DB (1) (a2, 2abm)

+b(2+;/)(:1(2abb2 +a,(a” - b’ —1))
—((1—21)2 +/L22)(b2 (a* -’ —1)—2abaz)cl)

Now consider the chemo therapy model, when vV >0,4,,4 #0,a6 + fo<0 and 1,4,,4 distinct. Define
the vector field X by (29). It has flow (30). Here

0
D*(Ac+c) =$ (2+7)c,(ad+ o) +a(1-2.)dc + B(1- 4 )oc,
—(2+y)c (ad+ po)-a(l-4,)dc, - B(1-4,)oc,
The second coordinate here should be equal to
(42 -1)q,
InA?
while the third coordinate should be equal to
(2*-1)d,
In A2

in order that the time one map of DXD™ is T2. Now we can find

dc d »
E(O) :a(Dl °® )(O'X)
=$((ac;|:0 +BGL, ) (~(ad + o)) (I 27 ~In 27)
+(1—/1+)/Ilr;):fl((2+y)cl(a5+ﬁ0')+(a§+[>’a)(l—/1)cl)

an

—(1—/1)/Ilrl/izl((Z+7/)01(0:5+ﬁ0)+(a5+ﬁo)(l—ﬂ+)cl)

and this is simplified to

dC ad + fo
E(O):( detD )
In(4?)c,

1+ 4,

~(aGF, + G, )(In 47 —In 4?)

In(4%)c

1+_ﬂ,_ l((2+7/)+(1_/7‘+))

(2+7)+@-2))+

Remark 1 When y=-3 a=86=0=14=-3.2525 then V<0,a= —%,b =0.05, thatis a’-b®>>0. So
by the above you can find an affine vector field whose time one map is T?2. Similarly when

y=-3,« :5:0:1,ﬁ=—%, then V>0 and A, :%,/1_ :—g. So by the above, you have a formula for
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%(0) on C=0.

4. Escaping Phase Space

In this section gz =g, =0,g=0. The phase space of our model T of the introduction is R?. When
detU =0,V <0,a>0 integral curves of B from theorem 1 in Larsen (2016), [1], starting in R? will always
escape phase space for both t>0 and t<0. Here

0 0 O
F=l0 a b
0 b a

and B=DUoFoU™, where

a =%In(az+b2), blztanl(g].

U as in section 3. This vector field, B, has time one map T, see Larsen (2016), [1], or argue as in Section 3.
The purpose of this section is to prove, that there exists a first escape time t >0, i.e. the existence of a

smallest t >0, such that
®®(t,c)eR®, c=(C,GF,Gl,) eR?
When ceR®,V>0,4,4, >0,ad+ fo<0,detD =0, we prove, that either
®°(tc)eR, Vt>0
or there exists a smallest t >0 such that
°(t,c)eR:

Proposition 3 Suppose detU =0,V <0,a>0. Given ¢=(C,,GF,,Gl,)eR® then there exists t, >0,
t, <0 such that

@°(t,c), =0
i=12.
Proof. We have the following formula for the flow of B
®° (t,c), =U, o ®F (t,U*(c))
=e* ((1-a)(cos(byt) y +sin(bt)z)—b(-sin(bt) y +cos(bt) z))

Here
X C,
y |=U*|GF, |,
z Gl,
U, =(0,1-a,-b)
and
X

X
OF |ty ||=| e*(cos(bt)y+sin(bt)z)
z e (—sin(bt)y+cos(bt)z)
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Define
v=(1-a)y-bz=C,
w=(1-a)z+by
Since C, >0 we candefine ¢e[0,2n[ by

v .
C0Sp=———, Sing =

v+ w? vi+w?

It follows that we have the following formula

@ (t,x), =e™ cos (bt — ) Vv + W

Since b =tan™ (Bj =0 the proposition follows.
a

Remark 2 By the proof we have

( p+ 1] T+ ¢
2
f=——"-——
by
implies ®°(t,c) =0. Here peZ.Let s, denotethe smallest positive solutionto ®°(t,c) =0,t>0.

When detD=0,V>0,4,,14 >0,a6+ o <0 we have the following proposition using the definitions

1-4, _ aGF, + fGl,
A—A A4,
y)

y:CO
-4, aGF,+fCl,
A2 A

z=-C,

These formulas are explained in the proof of Proposition 4.
Let B=DoFoD™, where

0 O 0
F=|0 In2, O
0 0 InA

D as in section 3. B has time one map T, see Larsen (2016), [1], or argue as in section three.
Proposition 4 Suppose detD =0,V >0,4,,4 >0,ad + o <0. Let ¢=(C,,GF,,Gl,)eR} be given. (i)

(R4S |

If y<0, then there exists a unique t>0 such that
®°(t,c), =0
If y>0 then
@°(t,c), >0

forall t>0.
(i) If z <0 then there exists a unique t <0 such that

@°(t,c), =0
If z>0 then

®°(t,c), >0
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forall t<0.
Proof. First of all the flow of F is

O (t,w)=|exp(tina,)
(t

We have the following formula
®°(t,¢), =D, o ®F (1,D*(c))
=exp((In4,)t)y+exp((InA_)t)z
=exp((In /1+)t)(y+exp((ln A —In A)t)z)
where D, is the first row of D. From this equation, (i) follows. For (ii) write
@ (t,c), =exp((In /L)t)(z +exp((In 4, —InA_)t) y)

From this formula, (ii) follows.
Remark 3 In case (i) of the proposition, if y <0 we have

b

InA_-Ina,
implies
@7 (t,¢)=0
In case (ii) of the proposition, if z<0 we have
In(—ZJ
Y
InA, —InA
implies
@} (t,c)=0

We shall now derive a formula for the first escape time FET e R,. To start with, assume that ceR®,
V <0,a>0,detU = 0. Notice that

g¢ (1) =@°(t,c), =(B,-5,0) @7 (t,U(c))
= g% -5 (e cos(byt)  +sin (bt)2)
and
g, (1) =®° (t,c), = (-a,~0,0)@" (t,U*(c))
=—a%—o(e™ (cos(bt) y +sin(bt)2))
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where
1
X = GF, - 6Gl,)b
"= GetU (7GR, o)
- 1
y=—m(O!GFO+ﬂG|O)b
5 1
2= -5 ((ad+ po)Cy +(1-a)(aGF, + fGl, ))
ie
X C,
y|=U"|GF, [eR®
7 Gl,
Compute
gr (t) =—oe* (vcos(bt)+wsin(bjt))
g; (t)=—oe™ (vcos(bt)+wsin (bit))
where

v=aj+bz w=az-by
If (v,w)=(0,0) let s. =+oo,s, =+o0. If (v,w)=(0,0) define y €[0,2n[ by

(cosy,siny ) = %

Then we have the following formulas
05 (t)=-5e* Vv + W’ cos(bt —y) (31)
g; (t)=—oe* Vv’ +w? cos(bt—y) (32)

Assume that a, <0, fX=0. Then there exists T >0 such that
e (t)=0
for t>T. Ifthereexists t. €[0,T] such that
e (t-)=0

we claim that there are atmost finitely many such solutions and hence that there exists a smallest s >0 such
that

e (s:)=0
Assume for contradiction, that there are infinitely many solutions to
0:(s)=0, se[0T]
By (31) there are exactly ne N, solutions to

0r(s)=0, se[0T]
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Since there are infinitely many solutionsto g (s)=0,5€[0,T], there exist
L<t <<t
in [0,T] suchthat
e (t)=0
By the mean value theorem, there exists ¢; € Jt;,t,,,[ such that
0=0¢ (t) = 9¢ (1) = 9% (&) (tia — 1)
i=1---,n+1. Hence
9r (¢i)=0

i=1--,n+1. A contradiction and there are only finitely many solutions to g, (s)=0,s€[0,T]. If there
exists a t. >0, such that g.(t-)=0 let s. >0 denote the smallest such number, and otherwise let
Sp = +o.

If gx=0 then
ge (t) =—5e™ (cos(bt) y +sin(bt)2)
Since gq(0)#0, then §=0. Define y <[0,2n] by

(cos:ﬁ,simﬁ):(j'—z) (33)
g2 +7°

S0
0 (t) =—0e™ cos(bt—y )4 ¥ + 2°

By s; denote the smallest positive solutionto g (t)=0. Suppose px=0 and a =0, if (¥,Z)=(0,0)
let s =+oo, otherwise write (33). If

|BR|> 6\ §* + 2°

let sp =+oo otherwise let

p eZ, sothat

By s denote the smallest positive tﬁ.Here
cos:[0,x] »>[-1,1]

Suppose B%#0,a >0. If (¥,2)=(0,0) let s. =+, otherwise write (33). Then there exists T >0,
suchthat g.(T)=0. By s_ denote the smallest positive solutionto g (t)=0,t[0,T], arguing as above.
If g,(t)>0 forall t>0 let s =+o0, otherwise denote by s, the smallest positive solutionto g, (t)=0.
Now define the first escape time FET by

FET =min{s,,s;,s, }

We shall now find the first escape time when detD =0,V >0,4,,4 >0,ad + fo <0. Then we have
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g¢ (1) 2@ (t,c), =D, @ (t,D*(c)) =(B,~0,-5) @ (t,D'c)
= px—=5yexp((In2,)t)-5Zexp((In A_)t)

and
g, (t) YOk (t C)3 =(—a,—a,—0')(DF (t, D’lc)
=—afX—-oyexp(InA,t)-ocZexp(InAt)
where
.1
x:detD(—a(ﬂ+—ﬂ_)GF0+5(/1+—/1_)GIO)
o1
y:m((ﬂ(wra&)co+a(1—/1_)GFO+ﬁ(l—ﬂ_)GIO)
Z=detD(—(ﬁ'a+a§)Co—a(l—L)GFO—ﬂ(l—/L)GIO)
ie.
% C,
y |=D"| GF,
z Gl,

Assume in the notation of Proposition 4, that y <0 and let

In(—yj
:—Z

B Ini —InA,

If y>0 let s =+o. Now compute
gr (t)=-07In(4, Jexp((In A, )t)-5ZIn(A_ )exp((InA)t)
=exp((In2,)t)(-69In(4,)-6ZIn(2 )exp((In 2 ~In 2, )t))
and

g (t)=—c¥In(2,)exp((In 4, )t)-oZIn(A )exp((In A )t)

There are atmost two solutions to g (t)=0,t>0. If there exists t. >0 such that g (t-)=0,t- >0, let
s. >0 denote the smallest such solution, otherwise let s =+oo. If there exists t, >0 such that g, (t,)=0,
t, >0, let s, >0 denote the smallest such solution, otherwise let s, =-+oo. Now define the first escape time,

when (s;,s¢, S, ) # (400, +00, +0)

FET =min{s,s;,s, }

5. Summary and Discussion

In this paper we proved that the model of primary and metastatic cancer in Section 2 is bistable, in the sense,
that there are exactly two positive singular points. One of them is unstable, and when one of the rate constants is
small the other is stable. Then we found formulas for the rate of change of cancer growth for the model T of the
introduction, when for V >0 the eigenvalues A ,,4 are nonzero and for V<0 when a’-b*>>0. In
section four we proved that there is a first escape time for the flow of the affine vector field associated to T when

V <0. Asimilar result when V >0 was also treated.
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It would be interesting to figure out what happens if the polynomials P,R, of section 2 are cubic
polynomials and not quadratic as in Theorem 1.

About the References

How do cancer cells coordinate glycolysis and biosynthesis. They do that with the aid of an enzyme called
Phosphoglycerate Mutase 1. In the reference [12], the authors suggest a dynamical system for their findings in a
figure at the end of the paper. In the reference [13], A. K. Laird showed that solid tumors do not grow exponen-
tially, but rather like a Gompertz function. The publications of the author are concerned with semi Riemannian
dynamical systems, e.g. Lorentzian Geodesic Flows, see [14] and electrical network theory of countable graphs,
see [15], [16].
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