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Abstract 
The main theorem of the present paper is the bistability theorem for a four dimensional cancer 
model, in the variables MC C GF GI, , ,  representing primary cancer C, metastatic cancer MC , 
growth factor GF and growth inhibitor GI, respectively. It says that for some values of the para- 
meters this system is bistable, in the sense that there are exactly two positive singular points of 

this vector field. And one is stable and the other unstable. We also find an expression for ( )C
t

d 0
d

 

for the discrete model T of the introduction, with variables ( )C GF GI, , , where C is cancer, 
GF GI,  are growth factors and growth inhibitors respectively. We find an affine vector field Y 

whose time one map is T2 and then compute ( )C
t

d 0
d

, where ( ) ( ) ( )( )C t GF t GI t, ,  is an integral 

curve of Y through ( )GF GI 3
0 00, , ∈ . We also find a formula for the first escape time for the vector 

field associated to T, see section four. 
 

Keywords 
Bistability, Cancer, Mass Action Kinetic System, Discrete Dynamical System 

 
 

1. Introduction 
1.1. Summary of the Paper 
We continue the study of the cancer model from Larsen (2016) [1]. The model is 

3 3:T →   
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( )T y Ay g c= + +  

where 

1
1 0

0 1
F

I

A
γ α β

δ µ
σ µ

+ 
 = + 
 + 

 

( ) 3T, ,C F Ig g g g += ∈  are birth rates and T denotes transpose. Here ( )T
1 1, 0,0 , 0c c c= <  is chemotherapy  

and ( )T
3 30,0, , 0c c c= >  is immune therapy. The parameters , ,γ δ σ ∈ , α +∈ , ,F Iµ µ −∈ , β −∈ . 

We have shown previously Larsen (2016) [1], that there are affine vector fields on 3 , such that their time one 
map is T, when the eigenvalues of A have positive real part. This enables you to find a formula for the rate of 
change of cancer growth in 0C = . The characteristic polynomial of A is 

( ) ( ) ( )( )1 1 1λ λ γ λ αδ βσ− − + − − −  

when 0.F Iµ µ= =  The discriminant of this polynomial is 

( )2 4γ αδ βσ∇ = + +  

The eigenvalues are 
2 1 1

2 2
γλ λ±

+
= ± ∇ =  

In section two we prove the Bistability Theorem for a mass action kinetic system of metastatic cancer MC  
and primary cancer C. The model also has GF  growth factors and GI  growth inhibitors. We show that for 
some values of the parameters there are exactly two positive singular points ( )* * * * *= , , , ,Mc C C GF GI− − − −  

( )* * * * *= , , , ,Mc C C GF GI+ + + +  where * * * *, .M MC C C C− + − +< <  We prove that *c+  is unstable and *c−  is stable, 
when one of the rate constants is small. 

For 0∇ <  we have: if the eigenvalue a ib+  of A has 2 2a b>  then one can find an affine vector field, 
whose time one map is 2T . Similarly, when 0, 0αδ βσ∇ > + <  and the eigenvalues ,λ λ− +  of the cha- 
racteristic polynomial of A are nonzero, then one can find an affine vector field on 3 , whose time one map is 

2T . This enables us to find a formula for the rate of change of cancer growth in 0.C =  This is the subject of 
Section 3. 

The phase space of our model T is 3
+ . In section four we show, that when 0F Iµ µ= = , 0g = , 0∇ < , 

( ) 0λ+ℜ >  orbits of the vector field associated to T will escape phase space for both 0t >  and 0t < . We 
obtain a formula for the first escape time. There is a similar treatment for 0.∇ >  

1.2. The Litterature 
uPAR (urokinase plasminogen activator receptor) is a cell surface protein, that is associated with invasion and 
metastasis of cancer cells. In Liu et al. (2014) [2] a cytoplasmic protein Sprouty1 (SPRY1) an inhibitor of the 
(Ras-mitogen activated protein kinase) MAPK pathway is shown to interact with uPAR and cause it to be de-
graded. Overexpression of SPRY1 in HCT116 or A549 xenograft in athymic nude mice, led to great suppression 
of tumor growth. SPRY1 is an inhibitor of the MAPK pathway. Several cancer cells have a low basal expression 
of SPRY1, e.g. breast, prostate and liver cancer. SPRY1 promotes the lysosomal mediated degradation of uPAR. 
SPRY1 overexpression results in a decreased expression of uPAR protein. This paper suggests that SPRY1 re-
gulates cell adhesion through an uPAR dependant mechanism. SPRY1 inhibits proliferation via two distinct 
pathways: 1) SPRY1 is an intrinsic inhibitor of the Raf/MEK/ERK pathway; 2) SPRY1 promotes degradation of 
uPAR, which leads to inhibition of FAK and ERK activation. 

According to Luo and Fu (2014), [3] EGFR (endoplasmic growth factor receptor) tyrosine kinase inhibitors 
(TKIs) are very efficient against tumors with EGFR activating mutations in the EGFR intracytoplasmic tyrosin 
kinase domain and cell apoptosis was the result. However some patients developed resistance and this reference 
aimed to elucidate molecular events involved in the resistance to EGFR-TKIs. The first EGFR-TKI s to be 
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approved by the FDA (Food and Drug Administration, USA) for treatment of NSCLC (non small cell lung 
cancer) were gefitinib and erlotinib. The mode of action is known. These drugs bind to the ATP binding site of 
EGFR preventing autophosphorylation and then blocking downstream signalling cascades of pathways RAS/ 
RAF/MEK/ERK and PI3K/AKT with the results, proliferation inhibition, cell cycle progression delay and cell 
apoptosis. 

There are several important monographs relevant to the present paper, see Adam & Bellomo (1997), [4], Geha 
& Notarangelo (2012), [5], Murphy (2012), [6], Marks (2009), [7], Molina (2011), [8]. 

2. A mass Action Kinetic Model of Metastatic Cancer 
The main result of this section is Theorem 1 below that proves the bistability of the mass action kinetic system 
(1) to (8). Consider then the mass action kinetic system from Larsen (2016), [9], in the species , , ,MC C GF GI  
primary cancer cells, metastatic cancer cells, growth factor, growth inhibitor respectively. 

GF C→                                               (1) 

MGF C→                                             (2) 

0C GI+ →                                            (3) 

0MC GI+ →                                           (4) 

2C C→                                               (5) 

2M MC C→                                            (6) 

0 GF                                               (7) 

0 GI                                                (8) 

The complexes are ( ) ( ) ( ) ( ) ( ) ( )1 , 2 , 3 , 4 , 5 0, 6 ,M MC GF C C C C C C GI C C C GI= = = = + = = +   
( ) ( ) ( )7 2 , 8 2 , 9 .MC C C C C GI= = =  And this defines the rate constants ijk . With mass action kinetics the 

ODE s become 
21 54 72C k GF k C GI k C′ = − ⋅ +  

31 56 83M M MC k GF k C GI k C′ = − ⋅ +  

( )21 31 51 15GF k k k GF k′ = − + + +  

54 56 95 59MGI k C GI k C GI k k GI′ = − ⋅ − ⋅ + −  

all 0.ijk >  We shall now find the singular points of this vector field denoted 
4 4:f →   

But first we state a theorem, we shall next prove. A positive (nonnegative) singular point ( ), , ,MC C GF GI   

of f is a singular point of f, such that ( ) 4, , , ,MC C GF GI +∈  ( )( )4
, , , .MC C GF GI +∈  Define 

15 15
1 21 2 31

21 31 51 21 31 51

,k kk k k k
k k k k k k

= =
+ + + +

 

Theorem 1 Assume 72 54 83 56, .k k k k= =  When 95 59 1 2 0,k k k k k= − − − >  ( )2
59 1 24 0,k k k k∇ = − + >  there 

are exactly two positive singular points 

( ) ( )* * * * * * * * * *, , , , , ,M Mc C C GF GI c C C GF GI− − − − + + + += =  

where * * * *, .M MC C C C− + − +< <  *c+  is unstable. Given 0 0 0 0
95 95 1 1 2 2 59 59, , , ,k k k k k k k k += = = = ∈  such that  

0 0 0 0
0 95 59 1 2 0k k k k k k= = − − − >  and, ( )0 2 0 0 0

0 59 1 24 0,k k k k∇ = − + >  then there exists 0
590, k> <   such that *c−   
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is stable when 59 .k <   
Consider a singular point ( )* * * * *, , ,Mc C C GF GI=  of f and linearize 

( )

72 54 * 21 54 *

83 56 * 31 56 *
*

21 31 51

54 * 56 * 59 54 * 56 *

0
0
0 0 0

0

M

c

M

k k GI k k C
k k GI k k C

B Df
k k k

k GI k GI k k C k C

− − 
 − − = =
 − + +
 

− − − − − 

 

Setting the last coordinate of f equal to zero gives 

95
*

54 * 56 * 59
M

kGI
k C k C k

=
+ +

 

when * *, 0.MC C ≥  Now insert this into the first and second coordinates of f to get 

( ) ( )1 54 * 64 * 59 54 95 * 72 * 54 * 64 * 59 0M Mk k C k C k k k C k C k C k C k+ + − + + + =                      (9) 

and 

( ) ( )2 54 * 64 * 59 56 95 * 83 * 54 * 64 * 59 0M M M Mk k C k C k k k C k C k C k C k+ + − + + + =                   (10) 

When * *, 0MC C >  we get from (9) 

1 72 * 54 95
54 *

* 54 * 56 * 59
M

k k C k kk GI
C k C k C k
+

= =
+ +

 

and from (10) we get 

2 83 * 56 95
56 *

* 54 * 56 * 59

M

M M
k k C k kk GI

C k C k C k
+

= =
+ +

 

This means that B simplifies to 

( )

1
21 54 *

*

2
31 56 **

*

21 31 51

54 * 56 * 59 54 * 56 *

0

0

0 0 0
0

M
Mc

M

k k k C
C

k k k CB Df
C

k k k
k GI k GI k k C k C

 − − 
 
 

− −= =  
 
 − + +
  − − − − − 

 

Let B  denote the matrix you obtain by deleting row three and column three in B. Then 

( )

( ) ( )

1 2
59 54 * 56 *

* *

2 54 1 56
* 1 72 * * 2 83 *

* * * *
2 2

1 2 59 2 54 72 * 1 56 83 *

* *

det M
M

M
M M

M

M

k kB k k C k C
C C
k k k kC k k C C k k C
C C C C

k k k k k k C k k k C
C C

= − + +

+ + + +

− + +
=



 

Also 

( )1 2
59 54 * 56 *

* *

trace M
M

k kB k k C k C
C C

σ = = − − − + +  

The characteristic polynomial of B  is denoted 
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( ) 3 2det idB λ λ σλ τλ δ− = − + − +  

Finally 

( )

( )

1 72 *1 2 1
59 54 * 56 * 54 *

* ** *

2 83 *2
59 54 * 56 * 56 *

* *
2 2

1 2 1 59 * 2 59 * 1 56 * 2 54 *
72 54 * 83 56 *

* *

M
M

M
M M

M M

M M
M

M

k k Ck k k k k C k C k C
C CC C

k k Ck k k C k C k C
C C

k k k k C k k C k k C k k C k k C k k C
C C

τ +
= + + + −

+
+ + + −

+ + + +
= − −

 

In Larsen (2016) [9], we found two cubic polynomials , MP P  such that 

( ) ( )0, 0M MP C P C= =  

whenever ( ), , ,MC C GF GI  is a nonnegative singular point of f. We shall need the following lemma. 
Lemma 1 Assume 72 54 83 56, .k k k k= =  Then 

( ) 2
2 1 0M M M MP C b C b C b= + +  

where 
( )2 2

2 56 54 95 1 2b k k k k k= − +  

2
1 2 54 56 95b k k k k k=  

2 2
0 2 59 54 95b k k k k= −  

Proof. The coefficient to 4
MC  is according to Larsen (2016), [9] 

2 0M Ma a f fa− =  

( )2
56 56 95 59 2 2 59 2 54 56 54, , , ,a k b k k k k c k k d k k f k k= − = − − = − = =  and ( )2

54 54 95 59 1, ,M Ma k b k k k k= − = − −   
1 59 1 56 56 54, , .M M Mc k k d k k f k k= − = =  The coefficient to 3

MC  is according to Larsen (2016), [9] 

( ) ( )
( ) ( )

2

3 2 3 2 2 3
1 56 54 56 54 95 59 2 54 56 95 59 2

2 3 2
54 95 59 1 56 56 54 56 54 2

2

2
M M M M Md f f bf a ab b af f ad

k k k k k k k k k k k k k

k k k k k k k k k k

− − + + −

= − − − − + − −

+ − − − +

 

Everything cancels out and leaves a zero. The coefficient to 2
MC  is according to Larsen (2016), [9] 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 22 2 2
54 56 95 59 2 1 59 56 54 54 95 59 1 56 2 54

2
56 54 95 59 2 2 54 54 95 59 1 56 95 59 2 54 56

2 2
54 56 2 59 56 54 2 59 56 54 1 2 5

2 2

2 2

M M M M M M M Ma b c f b ad f bd b bf a ac d df f cf

k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k

+ + − + + − −

= − − − − + − − −

− − − + − − − −

+ − − − − − − 2 2
4 56k

 

Square 2b  and multiply Mb b  to get 

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 22 2 2
54 56 95 59 2 2 95 59 1 59 56 54

2 2
54 95 59 1 56 2 54 56 54 95 59 2 2 54

22 2
54 56 95 59 1 2 95 59 1 2

2 2 2 2
54 56 2 59 56 54 2 59 56 54 1 2 54 56

2

2 2

k k k k k k k k k k k k

k k k k k k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k k k k k k

= − − + − − −

+ − − − − − −

+ − − + − +

+ − − − − − −
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Everything cancels out except 

( )2 2
56 54 95 1 2k k k k k− +  

The coefficient to MC  is according to Larsen (2016), [9] 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2

2
54 95 59 1 2 59 56 54 1 59 2 54 56

2 2
54 56 2 59 2 54 1 56 2 54 54 56 95 59 2 2 59

54 95 59 1 56 95 59 2 2 54

2 2

2

2

M M M M M Mb cf c df f cd d d a bc b bd

k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k

k k k k k k k k k k

+ − − + +

= − − − + −

+ − + − − − −

+ − − − −

 

Multiply 

( ) ( ) ( )( )22
54 56 95 59 95 59 1 2 1 2 2Mb bd k k k k k k k k k k k= − − − + +  

Everything cancels out except 
2 2 2 2 2 2

2 56 54 95 59 2 54 56 95 2 54 56 95 1 2 54 56 95
2

2 54 56 95

k k k k k k k k k k k k k k k k k k

k k k k k

= − + − −

=
 

Finally the constant term is 

( ) ( ) ( ) ( )

2 2

2 22
1 59 2 54 54 2 59 54 95 59 1 2 59 2 54

2 2
95 54 59 2

M M Mc d a c b cd

k k k k k k k k k k k k k k k

k k k k

+ +

= − − + − − −

= −

 

The lemma follows. 
Theorem 2 Assume 72 54 83 56,k k k k= =  When 95 59 1 2 0,k k k k k= − − − >  ( )2

59 1 24 0k k k k∇ = − + >  there 
are exactly two positive singular points of f 

( ) ( )* * * * * * * *, , , , , , ,M MC C GF GI C C GF GI− − − + + +  

where 

* * * *, M MC C C C− + − +< <  

Proof. We have 

( ) ( )2 2
2 1 0 2 1 0, M M M MP C a C a C a P C b C b C b= + + = + +  

where 

( )2 2
2 56 54 95 1 2=a k k k k k− +  

2
1 56 54 1 95a k k k k k=  

2 2
0 1 59 56 95a k k k k= −  

and 

( )2 2
2 56 54 95 1 2b k k k k k= − +  

2
1 56 54 2 95b k k k k k=  

2 2
0 2 59 54 95b k k k k= −  
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due to symmetry of , .MP P  When 0, 0,k > ∇ >  P and MP  have two positive roots 

* *C C− +<  

in P and 

* *
M MC C− +<  

in MP , see (15) and (16) below. We are going to verify that 

( ) ( )* * * * * * * *, , , , , , ,M MC C GF GI C C GF GI− − − + + +                             (11) 

are singular points of f and that 

( ) ( ), ,
* * * * * * * *, , , , , , ,M MC C GF GI C C GF GI− + − + + − + −                            (12) 

are not singular points of f. Here 

, 95
*

54 * 56 * 59
M

kGI
k C k C k

− +
− +=
+ +

 

and 

, 95
*

54 * 56 * 59
M

kGI
k C k C k

+ −
+ −=
+ +

 

Also 

95
*

54 * 56 * 59
M

kGI
k C k C k

+
+ +=
+ +

                               (13) 

95
*

54 * 56 * 59
M

kGI
k C k C k

−
− −=
+ +

                               (14) 

We have 

( )* 1
54 1 22
kC k

k k k
± ± ∇
=

+
                                    (15) 

and logically equivalent 

( )* 2
56 1 22

M kC k
k k k

± ± ∇
=

+
                                   (16) 

where ( )2
59 1 24 0.k k k k∇ = − + >  To see (15) compute 

( )
( )( )

2
1 0 2
4 2 2 2 2 2 2 2 2
56 54 1 95 1 59 56 95 56 54 95 1 2

4 2 2 2 2
56 54 1 95 59 1 2

4

4

4

a a a

k k k k k k k k k k k k k k

k k k k k k k k

∇ = −

= − ⋅ +

= − +



 

So 

( )
2 2
56 54 1 95 56 54 1 95

* 2 2
56 54 95 1 22

k k k k k k k k kC
k k k k k

± − ± ∇
=

− +
 

and from this the formula follows. And (16) is a similar computation. 
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We shall insert (15), (16) in the first coordinate of f, multiplied with ( )54 * 56 * 59 0Mk C k C k± ±+ + >  

( )( )

( ) ( ) ( ) ( )

54 * 1 54 * 56 * 59 54 95 *

1 1 1 2 59 95 1
1 2 1 2 1 2 1 2

0
2 2 2 2

Mk C k k C k C k k k C

k k k kk k k k k k k
k k k k k k k k

± ± ± ±+ + + −

  ± ∇ ± ∇ ± ∇ ± ∇
= + + + − =    + + + +  

 

Now abbreviate x k= ± ∇  and find 

( ) ( )1 1 59 95 1
1 2 1 2

0
2 2 2

x x xk k k k k
k k k k

  = + + − =   + +  
 

Multiply with ( )1 22 0k k+ >  to get 

( )( )1 1 2 1 59 95 12 0
2
xk x k k k k k k x + + + − = 

 
 

But this amounts to 

( )2
1 59 1 2

1 2
2

k x kx k k k = − + + 
 

 

and this vanishes due to the formula for roots of quadratic polynomials. That the second coordinate vanishes is 
logically equivalent. So (11) are singular points of f. 

We shall now argue, that 

( ),
* * * *, , ,MC C GF GI− + − +  

is not a singular point of f. To this end define 

,y k x k= + ∇ = − ∇  

Insert the formulas (15), (16) for * *, MC C− +  in the first coordinate of f multiplied with 54 * 56 * 59
Mk C k C k− ++ +  

to get 

( ) ( )
( )
( ) ( )1 1 1 2 59 95 1

1 2 1 2 1 2 1 22 2 2 2
y x xx x xk k k k k k k

k k k k k k k k
  − +

+ + + −    + + + +  
 

Multiply with ( )1 22 k k+  to find 

( )( )1 1 2 59 952
2
xk x k k k k x  + + + −  

  
                                (17) 

( ) ( )1 1 2
1 22
xk k k y x

k k
 

+ + −  + 
                                    (18) 

But (17) is zero by the above and (18) is nonzero. So ( ),
* * * *, , ,MC C GF GI− + − +  is not a singular point. That  

( ),
* * * *, , ,MC C GF GI+ − + −  is not a singular of f is logically equivalent. The theorem follows. 
In the remainder of the proof of Theorem 1, we assume, that 

72 54 83 56, , 0, 0k k k k k= = > ∇ >  

We shall now verify that ( )* * * *, , ,MC C GF GI+ + +  is unstable. We shall show that det 0.B >  
But we have 

( ) ( )2 22 2
1 56 * 2 54 * 1 2 59

* *

det
M

M

k k C k k C k k k
B

C C

+ +

+ +

+ −
=  
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Simply insert (15) and (16) in the numerator 

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

2 2

2 2
1 2 1 2 1 2 59

1 2 1 2

2

1 2 1 2 59
1 2

2
1 2 59

1 2

21 2
59 1 2

1 2

2 2

2

1 2
4

2 4
4

k kk k k k k k k
k k k k

kk k k k k
k k

k k k k k
k k

k k k k k k k
k k

   + ∇ + ∇
+ −      + +   

  + ∇ = + −   +  
 

= + ∇ + ∇ −  + 

= + ∇ + ∇ − +
+

 

Now we use that 

( )2
59 1 24 2k k k k+∇ − + = ∇  

so 

2 2 0k∇ + ∇ >  

is equivalent to 

k∇ > − ∇  

The right hand side here is negative and the left hand side is positive. Thus B  has a positive eigenvalue. So 
( )* * * *, , ,MC C GF GI+ + +  is unstable. 

We shall now show that ( )* * * *, , ,MC C GF GI− − −  is stable, when 59k  is small. We shall use the Routh Hurwitz 
criterion. So we start by showing, that det 0.B <  But similarly to the above 

( ) ( ) ( )

( ) ( )( )

( ) ( )

2 2

2 2
1 2 1 2 1 2 59

1 2 1 2

21 2
59 1 2

1 2

1 2

1 2

numerator det
2 2

2 4
4

2 2 0
4

k kB k k k k k k k
k k k k

k k k k k k k
k k
k k k
k k

   − ∇ − ∇
= + −      + +   

= + ∇ − ∇ − +
+

= ∇ − ∇ <
+



 

But this amounts to 

k∇ < ∇  

which is equivalent to 
2 2k∇ < ∇  

and this again is equivalent to 
2k∇ <  

and from this it follows that det 0.B <  We have the following formula for τ  

( ) ( )(
( ) ( ) )

2 2

1 2 1 59 * 2 59 * 1 56 * 2 54 *
* *

2 22 2
54 * * 56 * *

1 M M
M

M M

k k k k C k k C k k C k k C
C C

k C C k C C

τ − − − −
− −

− − − −

= + + + +

− −
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And a formula for σ  

1 2
59 54 * 56 *

* *

M
M

k k k k C k C
C C

σ − −
− −= − − − − −  

Define 

( )1 22
kx
k k
− ∇

=
+

 

so that 

1 2
* *

54 56

, Mk kC x C x
k k

− −= =  

Now introduce these two formulas in the formulas for ,σ τ  

54 56
59 1 2

k k k k x k x
x x

σ = − − − − −  

2 22 2
2 2 3 31 2 1 2

1 2 1 59 2 2 59 1 1 2 1 2
56 54 56 54 56 54

2
1 2

54 56

1

k k k kx x x xk k k k k k k k k k k k x x
k k k k k k

k k x
k k

τ
+ + + + − −

=  

Notice that 0τ >  for small 0.x >  Also 
2 2

59 1 2

2

54 56

1
k k x k x

x
k k

δ − + +
=  

is negative for small 0.x >  The Routh Hurwitz criterion says in our framework, that 0, 0, 0,σ τ δ< > <   
0στ δ− + >  is equivalent to stability of ( )* * * *, , , .MC C GF GI− − −  But 0στ δ− + >  is equivalent to  

( )3 0x στ δ− + >  because our assumptions imply 0.x >  So ( )3 0x στ δ− + >  is equivalent to 

( )

( )

2 2 3 3
2 2

54 56 59 1 2 59 2 1 1 2 54 56
56 54 56 54 56 54

2 2
59 1 2 56 54

1

0

x x x x x xk k k x k x k x k k k k k k k
k k k k k k

x k k x k x k k

  
+ + + + + + + + − −     

+ − + + >

 

This equation holds for small 59k . So ( )* * * *, , ,MC C GF GI− − −  is stable for small 59k . This follows by writing 

( )1 1

0 0

d 11 1 1 d d
d 2 1

z zs s z s zh z
s zs

− + = − + = − =
+∫ ∫  

where ] [1,1z∈ −  and h is smooth. This is the standard trick from singularity theory. Then 

( )

( )

( )
( ) ( )

( )

59 1 2
2

1 2

59 1 2 59 1 2
2 2

1 2

59 1 259
2

4
1 1

2

4 4
2

4
2

k k k
k

k
x

k k

k k k k k kk h
k k k k

k k kk
h

k k

 +
 − −
 
 =

+

− + + 
= − 

+  
+ 

= − − 
 
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And from this it follows that ( )* * * *, , ,MC C GF GI− − −  is stable for small 59k . To be precise, given 0
95 95 ,k k=  

0 0 0
1 1 2 2 59 59, , ,k k k k k k += = = ∈  such that 0 0 0 0

0 95 59 1 2 0k k k k k k= = − − − >  and, ( )0 2 0 0 0
0 59 1 24 0,k k k k∇ = − + >  

then there exists 0
590, kε ε> <  such that *c−  is stable when 59 < .k ε  Theorem 2 follows. 

Consider the mass action kinetic system in the species , , ,C GF GI P  cancer cells, growth factor, growth 
inhibitor and a protein, respectively. 

GF C→                                             (19) 

0C GI+ →                                          (20) 

2C C→                                             (21) 

0 GF                                             (22) 

0 GI                                              (23) 

0 C P→                                          (24) 

2 3C P C+ →                                         (25) 

The complexes are ( ) ( ) ( ) ( ) ( ) ( )1 , 2 , 3 , 4 0, 5 2 , 6 ,C GF C C C GI C C C C C GI= = = + = = = ( )7 ,C P=  
( ) ( )8 2 , 9 3 .C C P C C= + =  And this defines the rate constants ijk . With mass action kinetics the ODE s 

become 

( ) 2
21 43 52 42 72 24 98C k GF k C GI k C k k C k k C P′ = − ⋅ + − + + + ⋅  

( )21 41 14GF k k GF k′ = − + +  

43 64 46GI k C GI k k GI′ = − ⋅ + −  

2
72 98P k C k C P′ = − ⋅  

see Horn and Jackson (1972), [10]. Notice that (24), (25) are the Brusselator, which is known to have oscillating 
solutions for some values of the parameters, see Sarmah et al. (2015), [11]. Subtracting 2C  on both sides of 
(25) gives the reaction .P C→  Let 21 43 52 72 980.01, 0.01, 0.01, 2, 0.9,k k k k k= = = = =  46 640.01, 0.01,k k= =  

24 42 14 411, 1, 0.01, 0.01.k k k k= = = =  With these parameter values and initial conditions ( )0 0 0 0, , ,C GF GI P =  
( )1,1,1,1  the system oscillates, see Figure 1. 

3. Eigenvalues with Negative Real Part 
In this section 0, 0F I gµ µ= = =  in the discrete model T of the introduction. The purpose of this section is to 
find a formula for the rate of change of cancer growth 
 

 
Figure 1. The oscillating mass action kinetic system. I have 
plotted P versus C.                                         
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( )d 0
d
C
t

 

on the hyperplane 0.C =  Here ( ) ( ) ( )( ), ,C t GF t GI t  is an integral curve of the vector field Y, defined below. 
There are four cases to consider. First assume, that 0.∇ <  Let 1 2.a ib iλ λ λ+ = + = +  We shall assume that 

2 2 0.a b− >  Define 

0 1
0
0

a b
U β δ

α σ

− − 
 = − 
 − − 

 

and compute, when det 0U ≠  

( ) ( ) ( )

1

0
1 0

det
1 1

b b
U b b

U
a a

σ δ
α β

αδ βσ α β

−

− 
 = − − 
 − + − − − − 

 

If λ+  has negative real part we might be able to find an affine vector field whose time one map is 2T . 
Notice that 

( )2 2T y A y Ac c= + +  

By Larsen (2016), [1], 

1

1 0 0
0
0

U AU a b
b a

−

 
 =  
 − 

 

Then 

1 2 2 2

2 2

1 0 0
0 2
0 2

U A U a b ab
ab a b

−

 
 = − 
 − − 

 

Define the vector field 

( ) 2 2

2 2

0 0 0
0
0

X z a b z d
b a

 
 = + 
 − 

                                (26) 

3,d z∈  and let 

2 2
2

2 2

a b
L

b a
 

=  − 
 

where 2 2, .a b ∈  The flow of X is 

( ) 1 11,X t w x tdΦ = +                                        (27) 

( ) ( ) ( )( )1
2 2 22,3, exp exp idX t w L t x L L t d−Φ = + −                  (28) 

where ( ) ( ) ( )3 2
1 2 3 2 3 2 3 1 1, , , , , , , , .w x x x x x x d d d x d= ∈ = = ∈ ∈    Also 

( )
2 2

2 2

2 2
2

2 2

e cos e sin
exp

e sin e cos

a t a t

a t a t

b t b t
L t

b t b t
 

=  
− 
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If 

2 2 2
2e cosa b a b= −  

2
2e sin 2a b ab=  

then 

( )
2 2

2 2 2

2
exp

2
a b abL

ab a b
 −

=  
− − 

 

Assume that 2 2.a b>  Then we can let 

1
2 2 2

2tan abb
a b

−  =  − 
 

But this means that 

2 2 2
2sin abb

a b
=

+
 

because we have 

( )( )1

2
sin tan

1
xx

x
− =

+
 

π π, .
2 2

x  ∈ −  
 So we get 

2 2 2ea a b= +  

i.e. ( )2 2
2 ln .a a b= +  Consider first the immune therapy model 

3

3

0
0 , 0c c
c

 
 = > 
 
 

 

So assuming det 0U ≠  

( )
( ) ( )

2 3
1

2 3

3 3 1

2
1 2

det
2 1

c
U Ac c c

U
c c

δλ
βλ

β αδ βσ β λ

−

− 
 + = − 
 − + − − 

 

We want to have 

( )1
1 1=d U Ac c− +  

and 

( )( ) ( )( )21 1
2 2 2,3

3

exp id
d

L L U Ac c
d

− − 
− = + 

 
 

such that 

( ) ( ) ( )1 2 1
1
X w U A U w U Ac c− −Φ = + +  

Here 1
XΦ  denotes the time one map of X and 3.w∈  Define 
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( ) ( )1Y w DU X U w−=    
Then 

( ) ( )1, ,Y Xt w U t U w−Φ = Φ  

Thus 
( ) ( )2 2

1
Y w A w Ac c T wΦ = + + =  

Now 

( ) ( )

12 2
2 32

22 2
3 1 33

21 21
2 1det 2 1

cd a b ab
L

c cd U ab a b
βλ

β λ β αδ βσ

−
−     − −

=      − − − +− − −    
 

Define 

( )22 2 2 21 4p a b a b= − − +  

Let 1U  denote the first row in U. Compute letting 

1
0

0

0
x U GF

GI

−

 
 =  
 
 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( )
( )

( )
( ) ( )

2 22
1 0 0 1 2

2 2
1 2 2 2

2 2 3

2 2
2 2

1 2 32 2
2 2

d d0 0, 1
d d det

1
1 2 2

det

1 21 1 ,
det 2 1

X bC U x GF GI
t t U

b a b aba c
p U

b a b aba
c

p U abb a b a

α β λ λ

λ λ
β

λ λ β αδ βσ

= Φ = − + − +

− +
+ − − − −

 − − −
 + − − − +
 + − − 



 

where ( ) ( ), ,C GF GI t  is an integral curve of Y through ( ) 3
0 00, , .GF GI ∈  And, because ( )2 2

1 21 λ λ− + =  
( )αδ βσ− +  this is equal to 

( ) ( ) ( )( )

( )( ) ( ) ( )(
( ) ( )( ) ( )( )

( )( ) ( ) )

2
0 0

2 2
2 2 3

2 2
2 2 3

2 2
2 2 3

d 0
d det

1 1 2 2
det

1 1 2

2 1

bC GF GI
t U

b a b aba c
p U

a b a b aba c

b abb a a b c

α β αδ βσ

β αδ βσ

αδ βσ β

αδ βσ β

= − + − +

+ − − − +

+ − − − − − +

+ + − − +

 

Now suppose 0, , 0, 0λ λ αδ βσ+ −∇ > ≠ + <  and 1, ,λ λ+ −  distinct and define 

0 1 1
D

λ λ
β δ δ
α σ σ

+ −− − 
 = − − 
 − − − 

 

Then 

1

1 0 0
0 0
0 0

D AD λ
λ

−
+

−

 
 =  
 
 
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when det 0,D ≠  because the columns of D are eigenvectors of A corresponding to eigenvalues 1, ,λ λ+ −  
respectively. Compute, when det 0,D ≠  the inverse 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

0
1 1 1

det
1 1

D
D

σ λ λ δ λ λ
βσ αδ α λ β λ
βσ αδ α λ β λ

+ − + −
−

− −

+ +

− − − 
 = + − − 
 − + − − − − 

 

Then 

( )
( )

( ) ( )
( ) ( )

3 3
1 1

3 3

3 3 3

2
10 2 1

det
2 2 1

c c
D Ac c D c c

D
c c c

β δ λ λ
β αδ βσ β λ
β αδ βσ β λ

+ −
− −

−

+

−  
  + = = + + −  

   − + − −   

 

Define the vector field 

( ) 2

2

0 0 0
0 ln 0
0 0 ln

X z z dλ
λ

+

−

 
 = + 
 
 

                               (29) 

3, .z d ∈  X has flow 

( ) ( )
( )

( )( )( )
( )( )( )

1

2 2
22

2
2

32

1 0 0
1, 0 exp ln 0 exp ln 1

ln
0 0 exp ln 1 exp ln 1

ln

X

d t

t z t z t d

t
t d

λ λ
λ

λ
λ

λ

+ +
+

−

−
−

 
        Φ = + −         −  
 

             (30) 

and the time one map is 

( )

1
2

1 2
1 22

2

32

1
ln

1
ln

X

d

z D A Dz d

d

λ
λ

λ
λ

− +

+

−

−

 
 
 
 − Φ = +
 
 − 
 
 

 

and we want this to be 

( ) ( )1 2 1
1
X z D A Dz D Ac c− −Φ = + +  

Then define the vector field 

( ) ( )1Y z DXD z−=  

This vector field has time one map 

( ) ( )2 2
1
Y z A z Ac c T zΦ = + + =  

Then arguing as before 

( )
( )

( ) ( )( )
2

2
3 32

1 1 2 1
detln

d
c c

D
λ

β αδ βσ β λ
λ

+
−

+

−
= + + −  

and 

( )
( )

( ) ( )( )
2

3
3 32

1 1 2 1
detln

d
c c

D
λ

β αδ βσ β λ
λ

−
+

−

−
= − + − −  

We can now find 
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( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( )

( ) ( )( )

1

2 2
0 0

2

3 3 1

2

3 3 1

d d0 0,
d d

1 ln ln
det

ln 1 2 1
1 det

ln 1 2 1
1 det

XC D x
t t

GF GI
D

c c
D

c c
D

α β βσ αδ λ λ

λ β αδ βσ β λ
λ

λ β αδ βσ β λ
λ

+ −

+

+

−

−

= Φ

= + − + −

− + + −
+

+ + + −
+



 

Next consider the chemo therapy model 

1

10 , 0
0

c
c c

 
 = < 
 
 

 

and initially, that 2 20,det 0, 0.U a b∇ < ≠ − >  Define the vector field X by (26). It has flow (27), (28). Define 
the vector field 

1Y DU X U −=    
We want this vector field to have time one map 

( ) ( )2 2
1
Y z A z Ac c T zΦ = + + =  

Then we find 

( ) ( )
( ) ( ) ( ) ( )

1
1

1 1

0
1

det
2 1

U Ac c bc
U

c a c
αδ βσ

αδ βσ γ αδ βσ

−

 
 + = − + 
 − + + − − + 

 

Now compute arguing as above 

( )( )

( )
( ) ( ) ( ) ( )

12 2
2 1

22 2 2,3
3

2 2
2 2

2 2
2 2

1

1 1

1 2
2 1

1 21
det 2 1

2 1

d a b ab
L U Ac c

d ab a b

a ba b ab
b ap U ab a b

bc
c a c
αδ βσ

αδ βσ γ αδ βσ

−

−   − −
= +  

− − −   
  − − −

=   −− −   
 − + 
⋅  − + + − − + 

 

Finally we can find 

( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )( )(
( ) ( ) ( )( )

( )( ) ( )( )
( ) ( )( ) ( )( ))

1

2
0 0 1 2 2 3

2
0 0

2 2
1 1 2 2

2 2
1 2 2

2 2 2
1 2 2

2 2 2
1 1 2 2 2

d d0 0,
d d

1
det

det
1 1 2 1 2

det

2 2 1

1 2

1 1 2

XC U x
t t

b GF GI d d
U

b GF GI
U

c a b b aba
p U

b c abb a a b

b c a b b aba

c b a b b aba

αδ βσ α β λ λ

αδ βσ α β

λ αδ βσ γ

αδ βσ γ

αδ βσ

λ αδ βσ

= Φ

= − − + + + − −

= − − + +

+ − − + + − − −

+ + + + − −

+ − + − − −

+ − − − − − +


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and this becomes 

( ) ( )( ) ( )

( ) ( ) ( ) ( )( )(
( ) ( )( )
( )( ) ( )( ) )

2
0 0

2 2
1 1 2 2

2 2
1 2 2

2 2 2 2
1 2 2 2 1

d 0
d det

1 2 1 2
det

2 2 1

1 1 2

bC GF GI
t U

c a b b aba
p U

b c abb a a b

b a b aba c

αδ βσ α β

αδ βσ
λ γ

γ

λ λ

= − − + +

+
+ − − + − − −

+ + + − −

− − + − − −

 

Now consider the chemo therapy model, when 0, , 0, 0λ λ αδ βσ+ −∇ > ≠ + <  and 1, ,λ λ+ −  distinct. Define 
the vector field X by (29). It has flow (30). Here 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1 1 1

1 1 1

0
1 2 1 1

det
2 1 1

D Ac c c c c
D

c c c
γ αδ βσ α λ δ β λ σ
γ αδ βσ α λ δ β λ σ

−
− −

+ +

 
 + = + + + − + − 
 − + + − − − − 

 

The second coordinate here should be equal to 

( )2
2

2

1

ln

dλ

λ
+

+

−
 

while the third coordinate should be equal to 

( )2
3

2

1

ln

dλ

λ
−

−

−
 

in order that the time one map of 1DXD−  is 2T . Now we can find 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1

2 2
0 0

2

1 12

2

1 12

d d0 0,
d d

1 ( ln ln
det

ln1 2 1
1

ln1 2 1
1

XC D x
t t

GF GI
D

c c

c c

α β αδ βσ λ λ

λλ γ αδ βσ αδ βσ λ
λ

λλ γ αδ βσ αδ βσ λ
λ

+ −

+
+ −

+

−
− +

−

= Φ

= + − + −

+ − + + + + −
−

− − + + + + −
−



 

and this is simplified to 

( ) ( ) ( ) ( )

( )
( ) ( )( ) ( )

( ) ( )( )

2 2
0 0

2 2
1 1

d 0 ln ln
d det

ln ln
2 1 2 1

1 1

C GF GI
t D

c c

αδ βσ
α β λ λ

λ λ
γ λ γ λ

λ λ

+ −

+ −
− +

+ −

+
= − + −




− + + − + + + −
+ + 

 

Remark 1 When 3, 1, 3.2525γ α δ σ β= − = = = = −  then 10, , 0.05,
2

a b∇ < = − =  that is 2 2 0.a b− >  So  

by the above you can find an affine vector field whose time one map is 2T . Similarly when  
93, 1, ,
4

γ α δ σ β= − = = = = −  then 0∇ >  and 1 3, .
2 2

λ λ+ −= = −  So by the above, you have a formula for 
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( )d 0
d
C
t

 on 0.C =  

4. Escaping Phase Space 
In this section 0, 0.F I gµ µ= = =  The phase space of our model T of the introduction is 3

+ . When 
det 0, 0, 0U a≠ ∇ < >  integral curves of B from theorem 1 in Larsen (2016), [1], starting in 3

+  will always 
escape phase space for both 0t >  and 0.t <  Here 

1 1

1 1

0 0 0
0
0

F a b
b a

 
 =  
 − 

 

and 1,B DU F U −=    where 

( )2 2 1
1 1

1 ln , tan .
2

ba a b b
a

−  = + =  
 

 

U as in section 3. This vector field, B, has time one map T, see Larsen (2016), [1], or argue as in Section 3. 
The purpose of this section is to prove, that there exists a first escape time 0t > , i.e. the existence of a 

smallest 0t > , such that 

( ) ( )T3 3
0 0 0, , , ,B t c c C GF GI+ +Φ ∉ = ∈   

When 3 , 0, , 0, 0,det 0,c Dλ λ αδ βσ+ − +∈ ∇ > > + < ≠  we prove, that either 

( ) 3, , 0B t c t+Φ ∈ ∀ >  

or there exists a smallest 0t >  such that 

( ) 3,B t c +Φ ∉  

Proposition 3 Suppose det 0, 0, 0.U a≠ ∇ < >  Given ( ) 3
0 0 0, ,c C GF GI += ∈  then there exists 1 0,t >  

2 0t <  such that 

( )1, 0B
it cΦ =  

1, 2.i =  

Proof. We have the following formula for the flow of B 

( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )( )1

1
11

1 1 1 1

, ,

e 1 cos sin sin cos

B F

a t

t c U t U c

a b t y b t z b b t y b t z

−Φ = Φ

= − + − − +



 

Here 
0

1
0

0

,
x C
y U GF
z GI

−

  
   =   

   
   

 

( )1 0,1 ,U a b= − −  
and 

( ) ( )( )
( ) ( )( )

1

1

1 1

1 1

, e cos sin

e sin cos

a tF

a t

x x
t y b t y b t z

z b t y b t z

       Φ = +   
     − +    
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Define 

( ) 01v a y bz C= − − =  

( )1w a z by= − +  

Since 0 0C >  we can define [ [0, 2πφ ∈  by 

2 2 2 2
cos , sinv w

v w v w
φ φ= =

+ +
 

It follows that we have the following formula 

( ) ( )1 2 2
11, e cosa tB t x b t v wφΦ = − +  

Since 1
1 tan 0bb

a
−  = ≠ 
 

 the proposition follows. 

Remark 2 By the proof we have 

1

1 π
2

p
t

b

φ + + 
 =  

implies ( )1, 0.B t cΦ =  Here p∈ . Let 1s  denote the smallest positive solution to ( )1, 0, 0.B t c tΦ = >  
When det 0, 0, , 0, 0D λ λ αδ βσ+ −≠ ∇ > > + <  we have the following proposition using the definitions 

0 0
0

1 GF GIy C α βλ
λ λ λ λ

+

− + − +

+−
= −

− −
 

0 0
0

1 GF GIz C α βλ
λ λ λ λ

−

− + − +

+−
= − +

− −
 

These formulas are explained in the proof of Proposition 4. 
Let 1,B D F D−=    where 

0 0 0
0 ln 0
0 0 ln

F λ
λ

+

−

 
 =  
 
 

 

D as in section 3. B has time one map T, see Larsen (2016), [1], or argue as in section three. 
Proposition 4 Suppose det 0, 0, , 0, 0.D λ λ αδ βσ+ −≠ ∇ > > + <  Let ( ) 3

0 0 0, ,c C GF GI += ∈  be given. (i) 
If 0,y <  then there exists a unique 0t >  such that 

( )1, 0B t cΦ =  
If 0y ≥  then 

( )1, 0B t cΦ >  

for all 0t > . 
(ii) If 0z <  then there exists a unique 0t <  such that 

( )1, 0B t cΦ =  
If 0z ≥  then 

( )1, 0B t cΦ >  
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for all 0t < . 
Proof. First of all the flow of F is 

( ) ( )
( )

( ) 3, exp ln , , ,
exp ln

F

x
t w t y w x y z

t z
λ
λ
+

−

 
 Φ = = ∈ 
 
 



   



  

0
1

0

0

x C
y D GF
z GI

−

  
   =   

   
   







 

We have the following formula 

( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )( )

1
11, ,

exp ln exp ln

exp ln exp ln ln

B Ft c D t D c

t y t z

t y t z

λ λ

λ λ λ

−

+ −

+ − +

Φ = Φ

= +

= + −



 

where 1D  is the first row of D. From this equation, (i) follows. For (ii) write 

( ) ( )( ) ( )( )( )1, exp ln exp ln lnB t c t z t yλ λ λ− + −Φ = + −  

From this formula, (ii) follows. 
Remark 3 In case (i) of the proposition, if 0y <  we have 

1

ln

ln ln

y
zt

λ λ− +

 − 
 =
−

 

implies 

( )1 1, 0B t cΦ =  

In case (ii) of the proposition, if 0z <  we have 

ln

ln ln

z
y

t
λ λ+ −

 
− 
 =
−

 

implies 

( )1 , 0B t cΦ =  

We shall now derive a formula for the first escape time .FET +∈  To start with, assume that 3 ,c +∈  
0, 0,det 0.a U∇ < > ≠  Notice that 

( ) ( ) ( ) ( )( )
( ) ( )( )1

1
2

1 1

, , , 0 ,

e cos sin

B F
F

a t

g t t c t U c

x b t y b t z

β δ

β δ

−= Φ = − Φ

= − +  

 

and 

( ) ( ) ( ) ( )( )
( ) ( )( )( )1

1
3

1 1

, , , 0 ,

e cos sin

B F
I

a t

g t t c t U c

x b t y b t z

α σ

α σ

−= Φ = − − Φ

= − − +  
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where 

( )0 0
1

det
x GF GI b

U
σ δ= −  

( )0 0
1

det
y GF GI b

U
α β= − +  

( ) ( ) ( )( )0 0 0
1 1

det
z C a GF GI

U
αδ βσ α β= − + + − +  

i.e. 

0
1 3

0

0

x C
y U GF
z GI

−

  
   = ∈  

   
   








 

Compute 

( ) ( ) ( )( )1
1 1e cos sina t

Fg t v b t w b tδ′ = − +  

( ) ( ) ( )( )1
1 1e cos sina t

Ig t v b t w b tσ′ = − +  

where 

1 1 1 1,v a y b z w a z b y= + = −    

If ( ) ( ), 0, 0v w =  let , .F Is s= +∞ = +∞  If ( ) ( ), 0,0v w ≠  define [ [0, 2πψ ∈  by 

( ) ( )
2 2

,
cos ,sin

v w

v w
ψ ψ =

+
 

Then we have the following formulas 

( ) ( )1 2 2
1e cosa t

Fg t v w b tδ ψ′ = − + −                             (31) 

( ) ( )1 2 2
1e cosa t

Ig t v w b tσ ψ′ = − + −                             (32) 

Assume that 1 0, 0.a xβ< ≠  Then there exists 0T >  such that 

( ) 0Fg t ≠  

for .t T≥  If there exists [ ]0,Ft T∈  such that 

( ) 0F Fg t =  

we claim that there are atmost finitely many such solutions and hence that there exists a smallest 0Fs >  such 
that 

( ) 0F Fg s =  

Assume for contradiction, that there are infinitely many solutions to 

( ) [ ]0, 0,Fg s s T= ∈  

By (31) there are exactly 0n∈  solutions to 

( ) [ ]0, 0,Fg s s T′ = ∈  
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Since there are infinitely many solutions to ( ) [ ]0, 0, ,Fg s s T= ∈  there exist 

1 2 2nt t t +< < <  

in [ ]0,T  such that 

( ) 0F ig t =  

By the mean value theorem, there exists ] [1,i i it tζ +∈  such that 

( ) ( ) ( ) ( )1 10 F i F i F i i ig t g t g t tζ+ +′= − = −  

1, , 1.i n= +  Hence 

( ) 0F ig ζ′ =  

1, , 1.i n= +  A contradiction and there are only finitely many solutions to ( ) [ ]0, 0, .Fg s s T= ∈  If there 
exists a 0,Ft >  such that ( ) 0F Fg t =  let 0Fs >  denote the smallest such number, and otherwise let 

.Fs = +∞  
If 0xβ =  then 

( ) ( ) ( )( )1
1 1e cos sina t

Fg t b t y b t zδ= − +   

Since ( )0 0,Fg ≠  then 0.y ≠  Define [ [0, 2πψ ∈  by 

( ) ( )
2 2

,
cos ,sin

y z

y z
ψ ψ =

+

 

 

 

                                   (33) 

so 

( ) ( )1 2 2
1e cosa t

Fg t b t y zδ ψ= − − +    

By Fs  denote the smallest positive solution to ( ) 0.Fg t =  Suppose 0xβ ≠  and 1 0,a =  if ( ) ( ), 0, 0y z =   
let ,Fs = +∞  otherwise write (33). If 

2 2x y zβ δ> +    

let Fs = +∞  otherwise let 

1
1 2 2

cos πp
xb t p

y z
βψ

δ
± −

 
 − = ± +
 + 





 

 

,p∈  so that 

( ) 0F pg t± =  

By Fs  denote the smallest positive pt± . Here 

[ ] [ ]cos : 0, π 1,1→ −  

Suppose 10, 0.x aβ ≠ >  If ( ) ( ), 0, 0y z =   let ,Fs = +∞  otherwise write (33). Then there exists 0,T >  
such that ( ) 0.Fg T =  By Fs  denote the smallest positive solution to ( ) [ ]0, 0, ,Fg t t T= ∈  arguing as above. 
If ( ) 0Ig t >  for all 0t >  let ,Is = +∞  otherwise denote by Is  the smallest positive solution to ( ) 0.Ig t =  
Now define the first escape time FET  by 

{ }1min , ,F IFET s s s=  

We shall now find the first escape time when det 0, 0, , 0, 0.D λ λ αδ βσ+ −≠ ∇ > > + <  Then we have 
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( ) ( ) ( )( ) ( ) ( )
( )( ) ( )( )

1 1
22, , , , ,

exp ln exp ln

B F F
Fg t t c D t D c t D c

x y t z t

β δ δ

β δ λ δ λ

− −

+ −

Φ = Φ = − − Φ

= − −

 

  

 

and 

( ) ( ) ( ) ( )
( ) ( )

1
3, , , ,

exp ln exp ln

B F
Ig t t c t D c

x y t z t

α σ σ

α σ λ σ λ

−

+ −

Φ = − − − Φ

= − − −



  

 

where 

( ) ( )( )0 0
1

det
x GF GI

D
σ λ λ δ λ λ+ − + −= − − + −  

( ) ( ) ( )( )0 0 0
1 1 1

det
y C GF GI

D
βσ αδ α λ β λ− −= + + − + −  

( ) ( ) ( )( )0 0 0
1 1 1

det
z C GF GI

D
βσ αδ α λ β λ+ += − + − − − −  

i.e. 

0
1

0

0

x C
y D GF
z GI

−

  
   =   

   
   







 

Assume in the notation of Proposition 4, that 0y <  and let 

1

ln

ln ln

y
zs

λ λ− +

 − 
 =
−

 

If 0y ≥  let 1 .s = +∞  Now compute 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )( )
ln exp ln ln exp ln

exp ln ln ln exp ln ln

Fg t y t z t

t y z t

δ λ λ δ λ λ

λ δ λ δ λ λ λ

+ + − −

+ + − − +

′ = − −

= − − −

 

 

 

and 

( ) ( ) ( )( ) ( ) ( )( )ln exp ln ln exp lnIg t y t z tσ λ λ σ λ λ+ + − −′ = − −   

There are atmost two solutions to ( ) 0, 0.Fg t t= >  If there exists 0Ft >  such that ( ) 0, 0,F F Fg t t= >  let 
0Fs >  denote the smallest such solution, otherwise let .Fs = +∞  If there exists 0It >  such that ( ) 0,I Ig t =  

0,It >  let 0Is >  denote the smallest such solution, otherwise let .Is = +∞  Now define the first escape time, 
when ( ) ( )1, , , ,F Is s s ≠ +∞ +∞ +∞  

{ }1min , ,F IFET s s s=  

5. Summary and Discussion 
In this paper we proved that the model of primary and metastatic cancer in Section 2 is bistable, in the sense, 
that there are exactly two positive singular points. One of them is unstable, and when one of the rate constants is 
small the other is stable. Then we found formulas for the rate of change of cancer growth for the model T of the 
introduction, when for 0∇ >  the eigenvalues ,λ λ+ −  are nonzero and for 0∇ <  when 2 2 0.a b− >  In 
section four we proved that there is a first escape time for the flow of the affine vector field associated to T when 

0.∇ <  A similar result when 0∇ >  was also treated. 
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It would be interesting to figure out what happens if the polynomials , MP P  of section 2 are cubic 
polynomials and not quadratic as in Theorem 1. 

About the References 
How do cancer cells coordinate glycolysis and biosynthesis. They do that with the aid of an enzyme called 
Phosphoglycerate Mutase 1. In the reference [12], the authors suggest a dynamical system for their findings in a 
figure at the end of the paper. In the reference [13], A. K. Laird showed that solid tumors do not grow exponen-
tially, but rather like a Gompertz function. The publications of the author are concerned with semi Riemannian 
dynamical systems, e.g. Lorentzian Geodesic Flows, see [14] and electrical network theory of countable graphs, 
see [15], [16]. 
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