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Abstract 
In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference 
equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s 
contraction principle are used. At the end of the manuscript, we have an example that illustrates 
the key findings. 
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1. Introduction 
Importance of fractional differential equations appears in many of the physical and engineering phenomena in 
the last two decades [1]-[3]. Problems with nonlocal conditions and related topics were studied in, for example 
[4], and the nonlocal Cauchy problem [5]. The attention of researchers subject of q-difference equations ap-
peared in recent years [6] [7]. Initially, it was developed by Jackson [8] [9]. Noted recently the attention of many 
researchers is in the field of fractional q-calculus [10] [11]. Recently nonlocal fractional q-difference problems 
have aroused considerable attention [12] [13]. 

In this paper, we obtain the results of the existence and uniqueness of solutions for the Cauchy problem with 
nonlocal conditions for some fractional q-difference equations given by 
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Here, α
C qD  is the Caputo fractional q-derivative of order α , [ ]: 0,1f × →   and [ ]( ): 0,1 ,g C →    

are given continuous functions. It is worth mentioning that the nonlocal condition ( ) ( ) 00u g u u+ =  which can be 
applied effectively in physics is better than the classical Cauchy problem condition ( ) 00u u= , see [14]. 

Several authors have studied the semi-linear differential equations with nonlocal conditions in Banach space, 
[15] [16]. In [17], Dong et al. studied the existence and uniqueness of the solutions to the nonlocal problem for 
the fractional differential equation in Banach space. Motivated by these studied, we explore the Cauchy problem 
for nonlinear fractional q-difference equations according to the following hypotheses. 

(H1) :f X X× →  is jointly continuous. 
(H2) ( ) ( )1 2 1 21 2, ,, ., ;f t u f t u L u u u Xt u− ≤ − ∈ ∈∀   

(H3) :g C X→  is continuous and ( ) ( )1 2 1 2 1 2, , .g u g u b u u u u C− ≤ − ∀ ∈  

(H4) ( ) ( ) ( ), , , ,f t u t t u I Xµ≤ ∀ ∈ ×  where ( )1 , .L Iµ +∈   

The problem (1) is then devolved to the following formula 

( ) ( ) ( ) ( )( ) ( )( ) [ ]1
0

0

1 , d , 0, .
t

q
q

u t u g u t qs f s u s s t Tα

α
−= − + − ∈

Γ ∫                 (2) 

See reference [18] for more details. 

2. Preliminaries on Fractional q-Calculus 

Let ( )0, 1q∈  and define 

[ ] 11 1, .
1

−−
= = + + ∈

−
�

a
a

q

qa q a
q

  

The q-analogue of the Pochhammer symbol was presented as follows 

( ) ( ) ( ) { }
1

0
0

; 1, ; 1 , , .
=

−

= = − ∈ ∈ ∞∏ ∪k
n

k

n

a q a q aq a n   

In general, if α ∈  thereafter 

( ) ( ) ( ) ( )
( )0

;
; 1 , ; .

;
i

i

a q
a q aq a q

aq qα α

∞
∞

∞
=

∞

= − =∏  

The q-gamma function is defined by 

( ) ( ) ( ) { }1
1Γ ; 1 , \ 0, 1, 2, , 0 1,x

q xx q q q x q−

−
= − ∈ − − < <�  

and satisfies ( ) [ ] ( )1 .q qqx x xΓ + = Γ  

The q-derivative of a function ( )f x  is here defined by 

( ) ( ) ( ) ( )
( )

d
,

d 1
q

q
q
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D f x

x q x
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The q-integral of a function f defined in the interval [ ]0,b  is provided by 
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( ) ( ) ( ) [ ]
00

d 1 , 0 1, 0, .
∞

=

= − ≤ < ∈∑∫
x

n n
q

n
f t t x q f xq q q x b  

Now, it can be defined an operator n
qI , as follows 

( )( ) ( )0
qI f x f x=  and ( )( ) ( )( )1 , .−= ∈�n n

q q qI f x I I f x n   

We can point to the basic formula which will be used at a later time, 

( ) [ ] ( )1
1; ; ,s q qD t s t q t q s t qα α

α α
α −

−
= −  

where s qD  denotes the q-derivative with respect to variable s. 
See reference [7]-[10] for more details. 
Definition 2.1. [19] Let 0α ≥  and f be a function defined on [ ]0,1 . The fractional q-integral of the Rie-

mann-Liouville type is ( )( ) ( )0
qI f x f x=  and 

( )( ) ( ) ( ) ( ) [ ]
1

1
0

; d , , 0,1 .
Γ

α
α

α
α

α

−
+

−
= ∈ ∈∫

x

q q
q

xI f x qt x q f t t x  

Definition 2.3. [19] The fractional q-derivative of the Caputo type of order 0α >  is defined by 

( )( ) [ ] [ ]( )( ).C q q qD f x I D f xα α αα −=  

where [ ]α  is the smallest integer greater than or equal to α . 
Theorem 2.1. [20] Let 0x >  and \α +∈ � . Then, the following equality holds 

( )( ) ( ) ( )
[ ]

( )( )
1

0
0 .

1

k
k

q C q q
k q

xI D f x f x D f
k

α
α α

−

=

= −
Γ +∑  

Theorem 2.2. [18] [19] (Krasnoselskii) 
Let M be a closed convex non-empty subset of a Banach space ( ), .X . Suppose that A and B maps M into X, 

such that the following hypotheses are fulfilled: 
1) 1 2Au Bu M+ ∈  for all 1 2,u u M∈ ; 
2) A is continuous and AM is contained in a compact set; 
3) B is a contraction mapping. 
Then there exists z M∈  such that .z Az Bz= +  

3. Main Results 
Now, the obtained results are presented. 

Theorem 3.1. 

Let (H1)- (H3) hold, if 1
2

b <  and 
( )1
2

qL
Tα

αΓ +
≤ , the problem (1) has a unique solution. 

Proof. Define :F C C→  by 

( )( ) ( )

( ) ( )( ) ( )( )

0

1

0
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1 , d .
t

q
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 and let ( )sup ,0
t I

M f t
∈

= . So, we can prove that FP P⊂ , where  
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{ }: : , 0P u C u r r= ∈ ≤ > . For it, let u P∈  and ( )sup
u C

G g u
∈

= . Consequently, we find that 
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This shows that ( ) ,Fu t r u P≤ ∀ ∈  therefore, FP P⊂ . 
Now, for 1 2,u u C∈ , we obtain 

( )( ) ( )( )
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Thus 

( )( ) ( )( )1 2 1 2F u t F u t K u u− ≤ − , 

where 
( ), , , , 1.

1b L T q
q

LK b Tα
α α

= Ω = + <
Γ +

 

Thus, by the Banach’s contraction mapping principle, we find that the problem (1) has a unique solution. 
Our next results are based on Krasnoselskii’s fixed-point theorem. 
Theorem 3.2. 
Let (H1), (H2), (H3) with 1b <  and (H4) hold, then the problem (1) has at least one solution on I. 

Proof. Take 
( )0 1q

MTr u G
α

α
≥ + +

Γ +
, and consider { }: : , 0 .P u C u r r= ∈ ≤ >  

Let A and B the two operators defined on P by  

( )( ) ( ) ( ) ( )( )
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and 



M. Al-Yami 
 

 
163 

( )( ) ( )0: ,Bu t u g u= −  
respectively. Note that if 1 2,u u P∈  then 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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∫

∫
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Thus 1 2 .Au Bu P+ ∈  
By (H2), it is also clear that B is a contraction mapping. 
Produced from Continuity of u, the operator ( )( )Au t  is continuous in accordance with (H1). Also we observe 

that 

( ) ( ) ( ) ( )( ) ( )
1

1

1
0

; , d .
1

t
L

q
q q

TtAu t q s t q f s u s s
αα

α

µ
α α

−
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≤ ≤
Γ Γ +∫  

Then A is uniformly bounded on P.  
Now, let 1 2 2 1, ,t t I t t∈ ≤  and .u P∈  That’s where f is bounded on the compact set .×I P  it means 

( )
( ) 0

,
sup , : .

t u I P
f t u c

∈ ×
= < ∞  We will get 
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≤ + − 
Γ   

∫

∫ ∫

 

which is autonomous of u and head for zero as 1 2 0.t t− →  Consequently, A is equicontinuous. Thus, A is rela-
tively compact on P. Therefore, according to the Arzela-Ascoli Theorem, A is compact on P. Thus, the problem 
(1) has at least one solution on I. 

Example 4.1 Consider the following nonlocal problem 

( )
( )

( ) ( )( ) ( ) ( ) [ ]

( ) ( ) 1 2
1

e
, 0,1 , 0,1 , 0,1 ,

7 e 1

0 0, 0 1,

t

C q t

m

i i m
i

u t
D u t q t I

u t

u a u t t t t

α α
−

=


= ∈ ∈ ∈ =

+ +



+ = < < < < <


∑ �

                (3) 

where 0, 1,2, , .ia i m> = �  
Set 

( ) ( )( )
( ) [ ]e, , , 0, ,

7 e 1

t
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uf t u t u I r
u

−
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and 

( ) ( )
1

.
m

i i
i

g u a u t
=

= ∑  

Let 1 2,u u X∈  and .t I∈  Then we have  

( ) ( )1 2 1 2 1 2
e 1, , ,

109 e

t

tf t u f t u u u u u
−

− ≤ − ≤ −
+

 

and 

( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 2 1 2
1 1

max .
m m

i i i i i i
i i

g u g u a u t u t a u t u t
= =

− = − ≤ −∑ ∑  

It is obviously that our assumptions in Theorem 3.1 holds with 1
10

L =  and for appropriate values of 

( ) ( )0,1 , 0,1qα ∈ ∈  with 1T =  and 1.
2ia <∑  Indeed  

( ) ( )
1

1 2 0.2.
2

q
qL L

α
α

Γ +
≤ ⇔ Γ + ≥ =                             (4) 

Therefore the problem (3) has a unique solution on [ ]0,1  for values of α  and q sufficient stipulation (4). 
For illustration 

• If 1
8

α =  and 1
2

q =  then ( ) 0.5
91 0.957935
8q α  Γ + = Γ = 

 
 and 

( )1 0.957935 0.4789675 0.1.
2 2

q αΓ +
= = >  

• If 2
5

α =  and 1
2

q =  then ( ) 0.5
71 0.920684
5q α  Γ + = Γ = 

 
 and 

( )1 0.920684 0.460342 0.1.
2 2

q αΓ +
= = >  
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