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Abstract 
In several instances of statistical practice, it is not uncommon to use the same data for both model 
selection and inference, without taking account of the variability induced by model selection step. 
This is usually referred to as post-model selection inference. The shortcomings of such practice 
are widely recognized, finding a general solution is extremely challenging. We propose a model 
averaging alternative consisting on taking into account model selection probability and the like-
lihood in assigning the weights. The approach is applied to Bernoulli trials and outperforms 
Akaike weights model averaging and post-model selection estimators. 
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1. Introduction 
In statistical modeling practice, it is typical to ignore the variability of the model selection step, which can result 
in inaccurate post-selection inference (Berk et al. ([1] [2]), Belloni et al. ([3] [4]), Tibshirani et al. [5], and 
Chernozhukov et al. [6]). The model selection step is often a complex decision process and can involve 
collecting expert opinions, preprocessing, applying a variable selection rule, data-driven choice of one or more 
tuning parameters, among others. Except in simple cases, it is hard to explicitly characterize the form of the 
post-selection of interest while incorporating the variability of model selection. References for model selection 
include e.g. Zucchini [7] and Zucchini et al. [8]. An alternative to selecting a single model for estimation 
purposes is to use a weighted average of the estimates resulting from each of the models under consideration. 
This leads to the class of model averaging estimators. Model averaging can be done either in Bayesian and 
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frequentist approaches. The most common Bayesian approach is Bayesian model averaging (BMA) and its 
variants, using Bayesian information criterion (BIC) as approximation (Schwarz [9]). The seminal paper of 
Hoeting et al. [10] fully describes the basic of BMA. BMA and its applications can be found in Nguefack- 
Tsague ([11] [12]), Nguefack-Tsague and Ingo [13], Nguefack-Tsague and Zucchini ([14] [15]). Several options 
are available for specifying the weights in frequentist approaches; references on least squares regression types 
and like include Hansen ([16]-[21]), Hansen and Racine [22], Cheng and Hansen [23], Charkhi et al. [24], and 
Wan et al. [25]. The aforementioned weighting schemes perform model averaging on a set of nested candidate 
models with the weights vector chosen such that a specific criterion is minimized. 

References using Akaike’s information criterion, AIC (Akaike [26]) include Burnham and Anderson [27], 
Nguefack-Zucchini [28], Nguefack-Tsague ([29]-[32]). The R package [33] MuMIn is used to perform model 
averaging based on Burnham and Anderson [27]. Schomaker and Heumann [34], and Schomaker [35] developes 
model averaging schemes based on multiple imputation and shrinkage; the R package MAMI is used for 
practical implementations. This paper is organized as follows: In Section 2, we develop model averaging based 
on information criterion while, in Section 3, we propose a new approach for computing the weights for the 
competing models, one that takes both account the selection probability and the likelihood of each model. 
Section 4 illustrates with applications to Bernoulli trials. The paper ends with concluding remarks. 

2. Frequentist Model Averaging Based on Information Criterion  
Let { }1, , KM M=   be a set of K plausible models to estimate µ , the quantity of interest. Denote by ˆkµ  
the estimator of µ  obtained when using model kM . Model averaging involves finding non-negative weights, 

1, , Kw w , that sum to one, and then estimating µ  by  

1
ˆ ˆ .

K

k k
k

wµ µ
=

= ∑                                          (1) 

In model selection, the model selection criterion determines which model is to be assigned weight one, i.e. 
which model is selected and subsequently used to estimate the parameter of interest. We note that, since the 
value of the selection criterion depends on the data, the index, k̂ , of the selected model is a random variable. 
We therefore denote the selected model by 

k̂
M , and the corresponding estimator of the quantity of interest, µ , 

by ˆˆ
k

µ . In terms of the notation introduced above, we may write  

( ) ( )ˆ ˆ
1 1

ˆ ˆmodel is selected , model is selected .
K K

k kk k
k k

M I k M I kµ µ
= =

= =∑ ∑  

Clearly, the selected model depends on the set of candidate models,  , and on the selection procedure, 
which we denote by S. However, it is important to realize that, even if the same   and S, are used, different 
samples can lead to different models being selected; 

k̂
M  is a “randomly selected model”. In this section we 

focus attention on post-model selection estimators (PMSEs), which is the special case of model averaging 
estimators with zero/one weights only. 

Some classical model averaging weights base the weights on penalized likelihood values. Let kIC  denote an 
“information criterion”of the form  

2 log ,k k kIC L s= − +                                     (2) 

where ks  is a penalty term, and kL  is the maximized likelihood value for the model kM . The Akaike infor- 
mation criterion (AIC, Akaike [26]) is the special case with 2k ks q= , where kq  is the number of parameters 
of model kM . Buckland et al. [36] proposed using weights of the form:  

( )

( )

( )

( )
1 1

exp 2 exp 2
.

exp 2 exp 2

k k k
k K K

l l l
l l

s L IC
w

s L IC
= =

− −
= =

− −∑ ∑
                           (3) 

“Akaike weights” (denoted by ,aic kw ) refer to the case with k kIC AIC= . Numerous applications of Akaike 
weights are given in Burnham and Anderson [27]. 

3. Likelihood and Selection Probability in Assigning the Weights  
Since the selection procedure (S) and likelihood are important for model selection, we therefore suggest 
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estimating µ  by a weighted average of the ˆkµ  in which the weights take account of S, specifically where 
they depend on estimators ( )  ( )| Pr is selected | , 1, ,k kp M S M S k K= =  .  

( )

( )
,

1

|
, 1, 2, , .

|

k k
al k K

i i
i

p M S L
w k K

p M S L
=

= =
∑

                             (4) 

The likelihoods are taken into account because they quantify the relative plausibility of the data under each 
competing model; the estimated selection probability ( )|kp M S  adjusts the weights for the selection pro- 
cedure. Both of these components are required. If one were to use only the likelihoods to determine the weights 
then complex models (i.e. models having many parameters) would automatically be assigned larger weights. 
The weights ,al kw  are similar to the weights kw  defined in (3) but they differ in the way the likelihood is 
adjusted. With the proposed method a “bad” model will be penalized by any reasonable selection procedure 
through the probability ( )|kp M S , even if it is complex in terms of the number of parameters. We let the 
selection procedure determine in how far a model is penalized. 

If the selection probabilities depend on some parameter for which a closed form expression exists, and if one 
can find an estimator of the parameter, then it is possible to obtain estimators for these probabilities. 

4. Applications to Bernoulli Trials  

Let 1, , nX X  be n independent Bernouilli trials, that is ( )~iX Be θ , 1
n

iiY X
=

= ∑  is the number of successes;  
Y-binomial (n, θ), θ unknown. Inference will be based on Y, since the likelihood function of the Xi’s is  

( )1 n YYθ θ −−  and involves the sufficient statistic Y. ( ) ( )| 1 n yyn
f y

y
θ θ θ − 

= − 
 

, 0,1, , ,y n=   is the proba-  

bility mass function (PMF) of Y; the quantity of interest is θ∆ = . Sensitivity analyses showed that the finding 
obtained here are insensitive to parameter choice, irrespective of the sample size n.  

4.1. A Two-Model Selection Problem  
(a) Consider the choice between the 2 models: 1 1:M θ θ=  and 2 2:M θ θ= . The true model may not belong 

to these 2 models. Suppose that the selection procedure chooses the model with smaller AIC. In this case, this 
entails to choosing the model with higher likelihood, since there is no parameter to be estimated for each model. 

1M  will be chosen if ( ) ( )1 2| |f y f yθ θ>  or equivalently if ( )( ) ( )( )1 2log | log | 0R f y f yθ θ= − > . 

( ) ( )

( ) ( ) ( ) ( )

( )

1 1 2 2

1 1 2 2

1 1 1 1 1

2 2 2 2 2

log 1 log 1

log log log 1 log log log 1

1 1 1log log log log log
1 1 1

n y n yy yn n
R

y y

n n
y n y y n y

y y

y n y y n

θ θ θ θ

θ θ θ θ

θ θ θ θ θ
θ θ θ θ θ

− −      
= − − −      

      
    

= + + − − − − − − −    
    

     − − −
= + − = − +    − − −    


 
 

 

( )
( )

( )
1

2
1 2

1 2

2 1

1log
1

0 , .
1

log
1

n

n
R y a

θ
θ

θ θ
θ θ
θ θ

 −
−  − > ⇔ > =

 −
 − 

 

Let ( )1 | ,P M AICθ   and ( ) ( )2 1| , 1 | ,P M AIC P M AICθ θ= −   be the probabilities of choosing models 
1 and 2, respectively.  

( ) ( )( ) ( )( ) ( ) ( )( )1 1 2 1 2 1 2,| , , 1 , 1 , ,n n nB nP M AIC P Y a P Y a F aθ θ θ θθ θ θ θ θ θ= > = − ≤ = −  

where ( ),B nF θ  is the cumulative distribution function of binomial (n, θ). 
The estimated probabilities are given by ( ) ( ) ( )( )1 1 2ˆ,

| 1 ,nB n
p M AIC F a

θ
θ θ= − , where ˆ = y nθ  and  
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( ) ( )1 1| 1 |p M AIC p M AIC= − . The PMSE 1θ θ=  if ( )1 2,ny a θ θ>  and 2θ  otherwise. The properties of θ  
are given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 1 2

1 2 1 2

1 2, ,

1 2 1 1 2 2, ,

E | |

| | .
n n

n n

y a y a

y a y a

f y f y

f y f y p p

θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ
> ≤

> ≤

= +

= + = +

∑ ∑
∑ ∑



 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
1 2 1 2

2 2

1 2, ,

2 22 2 2
1 1 2 2 1 1 2 2

Var E | E |

E E .

n ny a y af y f y

p p p p

θ θ θθ θ θ θ

θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ

> ≤
= − + −

= − = + − +

∑ ∑  

 

 

( ) ( )Bias E .θ θθ θ θ= −   

( ) ( ) ( )2MSE Var Bias .θ θ θθ θ θ= +     

The Akaike weights are defined by  

( )
( ) ( )1

1

1 2

|
| |a

f y
W

f y f y
θ

θ θ
=

+
, ( )

( ) ( )2

2

1 2

|
| |aka
f y

W
f y f y

θ
θ θ

=
+

.  

The adjusted likelihood weights are defined by  

( ) ( )
( ) ( ) ( ) ( )1

1 1

1 1 2 2

| |
| | | |al

p M AIC f y
W

p M AIC f y p M AIC f y
θ

θ θ
=

+
,  

( ) ( )
( ) ( ) ( ) ( )2

2 2

1 1 2 2

| |
| | | |al

p M AIC f y
W

p M AIC f y p M AIC f y
θ

θ θ
=

+
. 

The weighted estimators are  

1 21 2â a aW Wθ θ θ= + . 

1 21 2âl al alW Wθ θ θ= + . 

( ) ( ) ( )
2

0
ˆ ˆMSE |n
a ay

f yθ θ θ θ θ
=

= −∑ . 

( ) ( ) ( )
2

0
ˆ ˆMSE |n
al aly

f yθ θ θ θ θ
=

= −∑ . 

Figure 1 shows model selection probabilities for 1 0.6θ = , 2 0.4θ =  and 41n =  for the range of parameter 
space. The two curves cross at 0.5θ =  showing different values of the parameters space used for weighting. 

Figure 2 compares PMSE to estimators based on Akaike weights and adjusted weights using true model 
selection probabilities. It can be seen that adjusted likelihood is always better than PMSE and Akaike weights 
estimators. However, for some values of the true parameter, the risk of Akaike weight tends to be slightly bigger 
than that of PMSEs. Maxima occur at 0.5θ =  while minima occur at 0.4 and 0.6. 

(b) Consider now a choice between the following two models: 
( )1 1: ~ binomial ,M Y nθ  and ( )2 : ~ binomial ,M Y nθ . 

AIC is used to select a model, 2̂ y nθ = , for illustration, we choose 1 0.5.θ =  

( )( ) ( )( )1 21 2̂2 log | , 2 log | 2M MAIC f y AIC f yθ θ= − = − + . 

Model 1 is chosen if 

1 2M MAIC AIC> , ( ) ( )1 21 | , ,M MP M AIC P AIC AICθ= >  ( ) ( )1 22 | , M MP M AIC P AIC AICθ= ≤ . 

( )1 |p M AIC  and ( )2 |p M AIC  are obtained by replacing θ  by 2̂ y nθ = . 
The PMSE 1θ θ=  if 

1 2M MAIC AIC>  and 2̂θ  otherwise.  
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Figure 1. Model selection probabilities as a function θ, 1θ =

0.6  and 2 0.4θ = .                                             
 

 
Figure 2. Risk of two simple proportions comparing PMSEs, 
Akaike weights estimators and adjusted estimators as a function 
of θ.                                                           
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and the adjusted weights is defined by 

( ) ( )
( ) ( ) ( ) ( )1

1 1

1 1 2 2

| |
ˆ| | | |

al
p M AIC f y

W
p M AIC f y p M AIC f y

θ

θ θ
=

+
,  

( ) ( )
( ) ( ) ( ) ( )2

2 2

1 1 2 2

ˆ| |
ˆ| | | |

al

p M AIC f y
W

p M AIC f y p M AIC f y

θ

θ θ
=

+
. 

Figure 3 displays model selection probabilities with both curves crossing at 0.6 and 0.4. At 0.5, while Model 
2 is at the minimum, Model 1 is at maximum. Figure 4 displays risks performance of estimators. It can be seen 
that Akaike weighting does not perform better than PMSEs when the true parameter is between ( )0,0.3  and 
between ( )0.7,1 . However, the adjusted weights perform better than both. 

4.2. Multi-Model Choice  
Consider also a choice between the following models: ( ): ~ binomial ,k kM Y nθ  for arbitrary K models; kθ  
known. For a choice using AIC criterion, since there is no unknown parameter, this is the same as selecting the 
model with higher likelihood. Model maxM  is chosen if { }max , 1, ,kL L k K≥ ∀ ∈  . 

PMSE kθ θ=  if kM  is selected. 

( )( )max1 |K
k k kk I f y Lθ θ θ

=
= =∑ , 1kI =  if kM  is chosen and 0 otherwise. Model selection probability for  

model kM  is given by: ( ) ( )( )max| , |k kP M AIC P f y Lθ θ θ= = . 
The estimated model selection probabilities ( )|kp M AIC  are given by replacing θ  by the estimated  

ˆ y nθ = . The Akaike weights are defined by 
( )
( )1

|

|k

k
a K

ii

f y
W

f y

θ

θ
=

=
∑

, and the adjusted weights by  

( ) ( )
( ) ( )1

| |

| |k

k k
al K

i ii

p M AIC f y
W

p M AIC f y

θ

θ
=

=
∑

. 

Numerical computations of the properties for these estimators are for 41n = , 30K = , models are between 
0.1 and 0.9 and are given in Figure 5. One can see that Akaike weights are not better than PMSEs for certain  

 

 
Figure 3. Model selection probabilities as a function θ.                            
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Figure 4. Risk of two proportions comparing PMSEs, Akaike weights 
estimators and adjusted estimators as a function of θ.                            

 

 
Figure 5. Risk of 30 models comparing PMSEs, Akaike weights esti- 
mators and adjusted estimators as a function of θ.                           

 
regions of the parameter space, but the adjusted likelihood weights are better than both. 

5. Concluding Remarks  
In this paper, we have considered model averaging in frequentist perspective; and proposed an approach of 
assigning weights to competing models taking account model selection probability and likelihood. The method 
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appears to perform well for Bernoulli trials. The method needs to be applied in variety of situations before it can 
be adopted. 
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