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Abstract

In this paper, we consider L” estimates of eigenfunction, or more generally, the L* estimates of
equation —Au= fu.We use heat flow to give a new proof of the L* estimates for such type equa-
tions.
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1. Introduction

Let QcR" (n > 2) be a bounded domain. Assume u e C? (Q) , We consider the Laplacian equation
—Au = fu,

2 2
where |f|eL”(Q) and A=§—2+-~+§—2 with x=(x,---,x,)eR". This is a second order differential
X Xa
equation. If f =4 is a constant, then u is an eigenfunction with eigenvalue 1. By a standard Moser’s
iteration in [1]-[5], we have L” interior estimates of u controlled by the L° norm of u for p>0. In this
paper, we use heat flow to consider the L” estimate and give a new proof of the L” estimates without using
iteration. First, we recall the definition of the heat kernel. Forany x,yeR" and t >0, let

P

e 4t

X, - -
pt ( y) 41’[t)n/2

—_

How to cite this paper: Ge, H.B. and Shi, Y.P. (2016) A Remark on Eigenfunction Estimates by Heat Flow. Advances in Pure
Mathematics, 6, 512-515. http://dx.doi.org/10.4236/apm.2016.67038



http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2016.67038
http://dx.doi.org/10.4236/apm.2016.67038
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

H.B. Ge, Y. P. Shi

be the heat kernel in R". For fixed yeR", we know that
(at _Ax)pt (X1 y) =0,
where A, is the standard Laplacian in R" with respect to x. Our main result is the following
Theorem 1. Let Q< R" be a bounded domain with n>2. Assume ueC?(Q) and
—Au = fu

on Q with |f|s A. Then for any p>n/2 and any compact sub-domain Q' < Q, we have the interior L”
estimate

suplu[< C(p,n, A dist (€, 00)) (j lul® ( y)w, (1)

xeQ'

where dist(Q’,aQ) is the distance of Q' and the boundary of Q.
Remark 2. Following from the proof, one can consider equation —Au= fu+g or Z. i _3;0,0;u=fu by

choosing appropriate kernel function p, .

2. Proving the Theorem

To estimates on Q' = Q, by the translation invariant and scaling invariant of the estimates, we only need to
consider Q=B,(0) and Q'=B,,(0). By using heat flow, we have the following lemma.
Lemmal.Let B (0)cR" beaunite ball. Assume ueC?(B,(0)) and

—Au = fu
on B, (0) with |f|<A.Thenforany yeB,,(0),we havethe interior L* estimate
Juj(x)

—————dy. 2
y|

IUI(y)SC(n,A)IWX_

Proof. Let ¢(x) be a standard smooth cutoff function with support in B, (0) and ¢=1 on B,,(0),
moreover, |Ag|+|Vg|<C(n).Forany yeB,(0), let
)= Joof (U (x) (X y)dx.

By the heat equation (&, —A, ) p, (x, y) =0, integrating by parts, we have

)= [0 (u(x)2 (x y)dx ®3)
=IBl(o)¢(X)U(X)Axpt(x' y)dx (4)

= [0 (#0) A1 (. y) X (5)

= [ o) (AU + 98U +2(V§,VU)) py (%, y)dX (6)

= IBl(O)(—Agﬁu +¢Au—2(Vg,Vlog p, (X, y))u) g, (%, y)dx @
=i [ Agu+gfu+= <V¢x y)u jpt(x,y)dx, ®)

where we use integrating by parts for term Z(Vqﬁ,Vu)pt (x, y) to get (7) from (6). By direct estimate, since
V$(x)=0 for xeBy,(0) and yeB,,(0),then [(V4,x—y)|<C(n).Therefore, for t<1,we have

(|A¢| +t (Ve x— y>|) (%, y)<C (Nt 9 <C (n),

G2)
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Hence, for t <1 and noting that |¢|<1, we have

|6t‘Pt(y)|sC(n)jBl(O)|u|( )+C(n j [ F100)-Jul(x) 20 (%, y) .
Since |f|< A, then we have
|5t‘1’t(Y)|SC(”)IBl(O)|U|(X)+C(“ Aj |u| (x) ¢ (%, y)dx.
By the property of heat kernel, we have ¥, (u)=u(y). Then we have
u(y) = ()= flow (ylde<c (),  lul()+C(nA) ], o lul(x) 2 (x y)oxdt

On the other hand, as n > 2, we have

-y

I:pl (x,y)dt = Lj(41rt)'”/2 el gy (4n)"" J'fsfzief s ds<C(n)x—y[". 9)
Combining with [, (y)|<C(n I |u| x)dx , we have
ul(x)
u C(n,A) | —d
u jm(o>|x_y| 2
Hence we finish the proof.
The following lemma is fundamental.
Lemma2. Forany yeB (0) andany 0<p<n,we have
j dx<C(n, p).
- yl"
Proof. Let =27 and A =B_ (y)\ B,( ). Then
| dx 10
J. |X y|P ZJ.A' |X y|p ; J. ( )
sirI ”C(n)riﬂlsC(n)iri”’p <C(n,p). (11)
i=0 i=0

Now we are ready to prove Theorem 1.
Proof of Theorem 1. Refmaintheorem. For any compact subset Q' Q, let 2r = dist(Q’, aQ). For any
xeQ', wehave B, (x)c Q. Consider equation

—Au = fu,
on B, (x) . By Lemma 1, since the estimates are scaling invariant, we have
| | p yp p(n- ) (p-1)/p
|u(x)|sC(r,n,A)J'Br T 2 _dy<c(r,n,A) (J'Br(x)|u| (y)dy) (J' |x y| » ] :

If p>n/2,then p(n-2)/(p-1)<n.ByLemma 2, we have
Yp Yp
luj(x)<C(r,n, A, p)(fsr(x)|u|p (y)dy) <C(r,n,A, p)(fQ|U|P (y)dy)
Hence we finish the proof.
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