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Abstract 

In this paper, we consider L∞  estimates of eigenfunction, or more generally, the L∞  estimates of 
equation u fu−∆ = . We use heat flow to give a new proof of the L∞  estimates for such type equa-
tions. 
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1. Introduction 
Let ( )2n nΩ ⊂ >  be a bounded domain. Assume ( )2u C∈ Ω , we consider the Laplacian equation  

,u fu−∆ =  

where ( )f L∞∈ Ω  and 
2 2

2 2
1 nx x

∂ ∂
∆ = + +

∂ ∂
  with ( )1, , n

nx x x= ∈  . This is a second order differential  

equation. If f λ=  is a constant, then u is an eigenfunction with eigenvalue λ . By a standard Moser’s 
iteration in [1]-[5], we have L∞  interior estimates of u controlled by the pL  norm of u for 0p > . In this 
paper, we use heat flow to consider the L∞  estimate and give a new proof of the L∞  estimates without using 
iteration. First, we recall the definition of the heat kernel. For any , nx y∈  and 0t > , let  
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be the heat kernel in n . For fixed ny∈ , we know that  

( ) ( ), 0,t x t x yρ∂ − ∆ =  

where x∆  is the standard Laplacian in n  with respect to x. Our main result is the following  
Theorem 1. Let nΩ ⊂   be a bounded domain with 2n > . Assume ( )2u C∈ Ω  and  

u fu−∆ =  

on Ω  with f A≤ . Then for any 2p n>  and any compact sub-domain ′Ω ⊂ Ω , we have the interior L∞  
estimate  

( )( ) ( )( )1, , , , d ,sup
pp

x
u C p n A dist u y y

Ω′∈Ω
′≤ Ω ∂Ω ∫                      (1) 

where ( ),dist ′Ω ∂Ω  is the distance of ′Ω  and the boundary of Ω .  
Remark 2. Following from the proof, one can consider equation u fu g−∆ = +  or , 1

n
ij i ji j a u fu

=
∂ ∂ =∑  by 

choosing appropriate kernel function tρ .  

2. Proving the Theorem  
To estimates on ′Ω ⊂ Ω , by the translation invariant and scaling invariant of the estimates, we only need to 
consider ( )1 0BΩ =  and ( )1 2 0B′Ω = . By using heat flow, we have the following lemma.  

Lemma 1. Let ( )1 0 nB ⊂   be a unite ball. Assume ( )( )2
1 0u C B∈  and  

u fu−∆ =  

on ( )1 0B  with f A≤ . Then for any ( )1 2 0y B∈ , we have the interior L∞  estimate  

( ) ( ) ( )
( )

1 20
, d .nB

u x
u y C n A y

x y −≤
−∫                            (2) 

Proof. Let ( )xφ  be a standard smooth cutoff function with support in ( )1 0B  and 1φ ≡  on ( )3 4 0B , 

moreover, ( )C nφ φ∆ + ∇ ≤ . For any ( )1 2 0y B∈ , let  

( ) ( ) ( ) ( ) ( )
1 0

, d .t tB
y x u x x y xφ ρΨ = ∫  

By the heat equation ( ) ( ), 0t x t x yρ∂ − ∆ = , integrating by parts, we have  

( ) ( ) ( ) ( ) ( )
1 0

, dt t t tB
y x u x x y xφ ρ∂ Ψ = ∂∫                           (3) 

( ) ( ) ( ) ( )
1 0

, dx tB
x u x x y xφ ρ= ∆∫                              (4) 

( ) ( ) ( )
1 0

, dtB
u x y xφ ρ= ∆∫                                 (5) 

( ) ( ) ( )
1 0

2 , , dtB
u u u x y xφ φ φ ρ= ∆ + ∆ + ∇ ∇∫                         (6) 

( ) ( )( ) ( )
1 0

2 , log , , dt tB
u u x y u x y xφ φ φ ρ ρ= −∆ + ∆ − ∇ ∇∫                    (7) 

( ) ( )
1 0

2 , , d ,tB
u fu x y u x y x

t
φ φ φ ρ = −∆ + + ∇ − 

 ∫                      (8) 

where we use integrating by parts for term ( )2 , ,tu x yφ ρ∇ ∇  to get (7) from (6). By direct estimate, since 

( ) 0xφ∇ =  for ( )3 4 0x B∈  and ( )1 2 0y B∈ , then ( ), x y C nφ∇ − ≤ . Therefore, for 1t ≤ , we have  

( ) ( ) ( ) ( ) ( )1 1 2, , e .C n tn
tt x y x y C n t C nφ φ ρ −− − −∆ + ∇ − ≤ ≤  
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Hence, for 1t ≤  and noting that 1φ ≤ , we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 10 0

, d .t t tB B
y C n u x C n f x u x x y xρ∂ Ψ ≤ + ⋅∫ ∫  

Since f A≤ , then we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 10 0

, , d .t t tB B
y C n u x C n A u x x y xρ∂ Ψ ≤ +∫ ∫  

By the property of heat kernel, we have ( ) ( )0 u u yΨ = . Then we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1
1 0 0 0 0

d , , d d .t t tB B
u y y y t C n u x C n A u x x y x tρ−Ψ ≤ ∂ Ψ ≤ +∫ ∫ ∫ ∫  

On the other hand, as 2n > , we have  

( ) ( ) ( ) ( )
2

2 21 1 22 24 2 4
0 0 1

, d 4π e d 4π e d .
x yn s nn nx y t

t x y t t t s s C n x yρ
−

− + −∞ −− −− −= = ≤ −∫ ∫ ∫          (9) 

Combining with ( ) ( ) ( ) ( )
1

1 0
d

B
y C n u x xΨ ≤ ∫ , we have  

( ) ( ) ( )
( )

1 20
, d .nB

u x
u y C n A x

x y −≤
−∫  

Hence we finish the proof.  
The following lemma is fundamental.  
Lemma 2. For any ( )1 0y B∈  and any 0 p n< < , we have  

( ) ( )
1 0

1 d , .pB
x C n p

x y
≤

−∫  

Proof. Let 2 i
ir

−=  and ( ) ( )
1

\
i ii r rA B y B y
−

= . Then  

( )1 0
0 0

1 1d d d
i i

p
ip pB A A

i i
x x r x

x y x y

∞ ∞
−

= =

≤ ≤
− −

∑ ∑∫ ∫ ∫                       (10) 

( ) ( ) ( )1
0 0

, .p n n p
i i i

i i
r C n r C n r C n p

∞ ∞
− −

−
= =

≤ ≤ ≤∑ ∑                        (11) 

Now we are ready to prove Theorem 1.  
Proof of Theorem 1. Refmaintheorem. For any compact subset ′Ω ⊂ Ω , let ( )2 : ,r dist ′= Ω ∂Ω . For any 

x ′∈Ω , we have ( )rB x ⊂ Ω . Consider equation  
,u fu−∆ =  

on ( )rB x . By Lemma 1, since the estimates are scaling invariant, we have  

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( ) ( )121
1

2, , d , , d .
r r r

p pp np
p

p
nB x B x B x

u y
u x C r n A y C r n A u y y x y

x y

−−
−

−
−

 
≤ ≤ − 

−  
∫ ∫ ∫  

If 2p n> , then ( ) ( )2 1p n p n− − < . By Lemma 2, we have  

( ) ( ) ( ) ( )( ) ( ) ( )( )
1 1

, , , d , , , d .
r

p pp p

B x
u x C r n A p u y y C r n A p u y y

Ω
≤ ≤∫ ∫  

Hence we finish the proof.  
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