
Communications and Network, 2011, 3, 133-140
doi:10.4236/cn.2011.33016 Published Online August 2011 (http://www.SciRP.org/journal/cn)

Copyright © 2011 SciRes. CN

Enterprise Service Bus: A Performance Evaluation

Sanjay P. Ahuja, Amit Patel
School of Computing, University of North Florida, Jacksonville, United States

E-mail: {sahuja, n00168553}@unf.edu
Received May 31, 2011; revised June 26, 2011; accepted July 5, 2011

Abstract

The flexibility offered by an Enterprise Service Bus (ESB) in enabling various applications to exchange data
makes it a very important middleware layer that is responsible for transporting data in a Service-Oriented
Architecture (SOA). The popularity of the ESB has given rise to a number of commercial off the shelf
(COTS) products as well as open source ESBs. In this study, we evaluated three open source ESBs and
compared them both qualitatively and quantitatively. The empirical results were statistically tested to deter-
mine the statistical significance of the results.

Keywords: Enterprise Service Bus, Service Oriented Architecture, Web Service, Mule, WSO2, Apache

ServiceMix, Performance

1. Introduction

The complexity of application integration for a point to
point model (Figure 1) rises substantially with every
new application that needs to communicate and share
data with it. Every new application needs to have custom
code written to ‘glue’ it to the existing network, and thus,
increasing maintenance costs.

This inefficient model gave rise to a new ‘spoke and
wheel’ paradigm (Figure 2) called the Enterprise Appli-
cation Integration (EAI). In this architecture, all commu-
nication is facilitated by the message broker. The mes-
sage broker was designed not just for routing, but often
used for data transformation as well. However, this ar-
chitecture has scalability issues and introduces a single
point of failure in the network.

A B

C D

Figure 1. Point-to-point.

The Enterprise Service Bus (Figure 3) is an improve-
ment over these two architectures and plays a critical role
in connecting heterogeneous applications and services in
a Service-Oriented Architecture [1,2]. This middleware
layer is responsible for not only transporting data, but
also serves as a ‘transformation’ layer. This ‘transforma-
tion’ of data allows legacy systems to communicate and
share data with newer applications. The ESB takes on the
responsibility and the burden of ensuring the data sent by
the service consumers match the format requirements of
the service providers. This core functionality of an ESB
is a very important feature for any organization develop-
ing applications with an eye towards scalability.

Routing of consumer requests and messages is another
important role of the ESB. This functionality of the ESB
helps simplify the integration efforts of disparate appli-

C D

B A

Message
Broker

Figure 2. Message broker.

S. P. AHUJA ET AL. 134

C D

B A

Enterprise Service Bus

Figure 3. Enterprise service bus.

that need to communicate with each other. The routing
decisions made by the ESB can be based upon a number
of factors, such as message content, message header, and
transport type. Thus, the ESB takes on the role of trans-
porting the data, transforming it, and routing it to the
appropriate service providers [1,3]. The ESB simplifies
the task of both service consumers and service providers
by adding a layer of abstraction that shields the consum-
ers and the providers from having to worry about the
specifics of message format or message transport.

Virtualization, or proxying, is another role that an ESB
can play. In this role, the ESB acts as a proxy for the
service provider and handles the requests of the service
consumer. The ESB can handle authentication, authori-
zation, and auditing, so the service provider can focus
solely on the business logic.

Contrary to common belief, an ESB is not based solely
on Web Services. Based on the Enterprise Application
Integration (EAI) pattern, an ESB is a flexible and stan-
dards based architecture that supports a wide array of
transport mediums. Thus, an ESB is a standards-based
integration platform that combines:

1) Messaging
2) Web services
3) Data transformation
4) Intelligent routing
Each ESB selected for study for this paper offers a

wide array of features and enhancements like support for
‘Java Business Integration’ and ‘Business Process Exe-
cution Language’. However, documenting and compre-
hensively evaluating every feature of the ESB was be-
yond the scope of this study. The intention was to evalu-
ate the core features of the ESB, according to the metrics
listed in Chapter 5. The open source ESBs selected for
study and evaluation were Mule, WSO2 ESB, and Ser-
viceMix.

2. ESB Core Functionality

Virtualization, Content Based Routing and Mediation are

often referred to as the three core features of an ESB. For
our study, we captured metrics to evaluate the ESBs on
each of these core features. To test load-handling and
scalability for each scenario, we ran two sets of tests.
They included:

1) Multiple clients sending a fixed payload of 100 KB.
The number of clients tested was 1, 20, 40, 80, and 160.

2) A single client sending an increasing payload. The
payloads tested were 1 KB, 10 KB, 50 KB, 100 KB, 500
KB, and 1 M.

2.1. Virtualization

Virtualization, or proxying, is one of the core capabilities
of an ESB. In this test scenario, the ESB received an in-
coming request and forwarded it the real WebService, as
shown in Figure 4. There was no other processing done
by the ESB in this scenario.

The ESB received the request from the client and for-
warded it to the WebService. The web service received
the payload, appended a string to the payload, and sent it
back to the ESB. The ESB, in turn, returned this payload
to the client.

2.2. Content Based Routing

The ESB has the capability to route the incoming re-
quests on a single endpoint to the appropriate service.
The ESB can look at a wide array of things like the mes-
sage content or the message header to determine where
the request should be routed.

In this scenario, the ESB received the request from the
client and inspected the payload for a keyword to deter-
mine the WebService to which the request should be sent.
The WebService received the payload, appended a string
to the payload, and sent it back to the ESB. The ESB, in
turn, returned the payload to the client as shown in Fig-
ure 5.

2.3. Mediation

Mediation, or message transformation, is another core
feature of an ESB. The ESB has the capability to take an
incoming request and transform the message payload
before sending it to the end WebService [4,5].

In this scenario, the ESB got a request from the client
and transformed the message payload using XSLT. It
then forwarded the message to the WebService as shown
in Figure 6.

3. Evaluation Metrics

Different factors were considered when comparing the

Copyright © 2011 SciRes. CN

S. P. AHUJA ET AL.

Copyright © 2011 SciRes. CN

135

Figure 4. Direct proxy.

Figure 5. Content based routing proxy.

Figure 6. Transformation proxy.

S. P. AHUJA ET AL. 136

open source ESBs in this project. The metrics are used to
determine performance and efficiency [6,7]. This section
explains these metrics.

3.1. Mean Response Time

We calculated the Mean Response Time as the amount of
time elapsed from the moment the request was sent to the
time a reply was received.

3.2. Throughput

We calculated Throughput, as measured in transactions
per second. A transaction was counted as successful, if it
matched the expected response for the given request.

4. Statistical Analysis Methods

After retrieving the test data to compare the perfor mances,
we need a method to analyze the results. Simply cal-
culating the throughput or the mean response times and
generating graphs is not sufficient for the analysis.

4.1. Student’s Paired T-Test

For our tests, we used Student’s Paired T-Test to validate
our null hypothesis that all three ESBs would have a
similar performance. Thus, the mean difference between
any two ESBs compared over a set of matched pairs of
data points would be zero [8].

The P-Value threshold chosen for statistical signify-
cance for our tests was 0.05. Thus, if the calculated P-
Value was below 0.05, the null hypothesis was rejected.

For each test, a P-Value was calculated for the metric
collected: transactions per second, mean response time,
ESB CPU usage, and the CPU usage of the WebServices
machine. The P-Value was calculated when comparing
the performance was:

1) Mule [9-11] vs. WSO2
2) Mule vs. ServiceMix [12-14]
3) WSO2 [15] vs. ServiceMix
This P-Value helped us analyze the test results by al-

lowing us to focus on P-Values below the set threshold,
and thus, of significance. This also helped us prove
whether or not the performance of an ESB was equal to
its peer, for a particular testing scenario.

5. Results and Analysis

In order to obtain the best results, each test was run a
minimum of 10 times each. Testing was done using
Grinder, an open source stress testing tool.

To test scalability of the 3 core scenarios for each ESB,

we configured the Grinder script file to simulate 1, 20,
40, 80 and 160 Clients. For this test, we had a fixed pay-
load of 100 KB.

To test load-handling of the 3 core scenarios for each
ESB, we configured the Grinder script file to simulate a
single client sending varying payloads of 1 KB, 50 KB,
100 KB, 500 KB and 1MB.

5.1. Direct Proxy Scenario

The ESBs were configured to act as a proxy and forward
all incoming requests to the end WebService. There was
no other processing done by the ESB in this scenario.

5.1.1. Scalability Test
Each ESB had the best throughput when the number of
clients was 40, as shown in Figure 7. For 40 clients,
ServiceMix had the best throughput of 15.78TPS; while
Mule had a throughput of 14.69TPS.

Mean Response times of all three ESBs increased
dramatically when the number of clients exceeded 80, as
shown in Figure 8.

5.1.2. Load Handling Test
The throughputs for all three ESBs (Figure 9) were
similar, with a higher throughput when the payload was
in the range of 10 KB to 100 KB. There was a drop in
throughput when the payload was 1 MB. The throughput
for WSO2 and ServiceMix was higher than that of Mule,
regardless of the payload.

The mean response time (Figure 10) was similar for
all three ESBs for payloads up to 100 KB. The response
time increased as the payloads increased. There was a
rise in response times for all three ESBs once the pay-
loads exceeded 100 KB. ServiceMix had a better re-
sponse time than WSO2 for payloads ranging from 10 K

Scenario 1 : Direct Proxy
Test 1

Fixed Payload (100K) vs Increasing # of Clients

0

5

10

15

20

of Clients

Transactions Per Second

(TPS)

Mule

WSO2

ServiceMix

0.85 8.44 7.29 1.12
1 20 40 80 160

Figure 7. TPS for direct proxy.

Copyright © 2011 SciRes. CN

S. P. AHUJA ET AL. 137

Scenario 1 : Direct Proxy
Test 1

Fixed Payload (100K) vs Increasing # of Clients

0
10000
20000
30000
40000
50000
60000

of Clients

Mean Response Time

(msec) Mule

WSO2

ServiceMix

1 20 40 80 160

Figure 8. Mean response time for direct proxy.

Scenario 1 : Direct Proxy
Test 2

Increasing Payload vs Single Client

0
0.5

1
1.5

2
2.5

3
3.5

Payload

(KB)

Transactions Per Second

(TPS)
Mule

WSO2

ServiceMix

1 10 25 50 100 500 1000

Figure 9. TPS for direct proxy.

Scenario 1 : Direct Proxy
Test 2

Increasing Payload vs Single Client

0
2000
4000
6000
8000

10000

Payload
(KB)

Mean Response Time

(msec) Mule

WSO2

ServiceMix

1 10 25 50 100 500 1000

Figure 10. Mean response time for direct proxy.

to 1 M. Mule had the highest response time when the
payload exceeded 100 KB.

5.2. Content-Based Routing Proxy Scenario

The ESBs were configured to act as a proxy and forward

all incoming client requests to the appropriate end web
service. The ESBs looked for a keyword in the message
payload that determined the appropriate web service for
the given client request.

5.2.1. Scalability Test
The throughput for all three ESBs (Figure 11) was simi-
lar in this test. The highest throughput achieved was by
ServiceMix at 40 clients. Mule had the lowest throughput
at 160 clients.

The trend of the mean response time (Figure 12) was
similar for all three ESBs. The response time increased
as the number of clients increased. There was an increase
in response times for all three ESBs once the number of
clients exceeded 80.

5.2.2. Load Handling Test
The throughputs for all three ESBs (Figure 13) were
similar with a higher throughput when the payload was
in the range of 1 KB to 100 KB. There was a drop in

Scenario 2 : Content Based Routing Proxy
Test 1

Fixed Payload (100K) vs Increasing # of Clients

0

1

2

3

4

5

6

7

of Clients

Transactions Per Second

(TPS)

Mule

WSO2

ServiceMix

1 20 40 80 160

Figure 11. TPS for content-based routing proxy.

Scenario 2 : Content Based Routing Proxy
Test 1

Fixed Payload (100K) vs Increasing # of Clients

0

10000

20000

30000

40000

50000

60000

of Clients

Mean Response Time

(msec)

Mule

WSO2

ServiceMix

1 20 40 80 160

Figure 12. Mean response time for content-based routing
proxy.

Copyright © 2011 SciRes. CN

S. P. AHUJA ET AL. 138

Scenario 2 : Content Based Routing Proxy
Test 2

Increasing Payload vs Single Client

0 0.2

0.4
0.6
0.8

1
1.2

Payload
(KB)

Transactions Per Second

(TPS) Mule

WSO2

ServiceMix

1 10 25 50 100 500 1000

Figure 13. TPS for content-based routing proxy.

throughput when the payload was 1 MB. ServiceMix had
a better throughput than Mule, regardless of the payload
size.

The mean response time (Figure 14) was similar for
all three ESBs for payloads up to 100 KB. The response
time increased as the payloads increased. There was an
increase in response times for all three ESBs once the
number of payloads exceeded 100 KB.

5.3. Transformation Routing Proxy Scenario

The ESBs were configured to act as a proxy and forward
all incoming client requests to the appropriate end Web-
Service. Before the request is forwarded to the WebSer-
vice, the ESBs transform the message payload using
XSLT. XSLT is a very powerful tool that can be used to
transform the layout and the content of the message pay-
load to suit the requirements of the end application.

5.3.1. Scalability Test
The throughput for all three ESBs (Figure 15) was simi-
lar in this test. The highest throughput achieved was by
ServiceMix at 40 clients. WSO2 had the lowest through-
put at 160 clients.

The trend of the mean response time (Figure 16) was
similar for all three ESBs. The response time increased
as the number of clients increased. There was a dramatic
rise in response times for all three ESBs once the number
of clients exceeded 80.

5.3.2. Load Handling Test
The throughputs for all three ESBs (Figure 17) were
similar with a higher throughput when the payload was
in the range of 10 KB to 100 KB. There was a drop in
throughput when the payload was 1 MB. The throughput
for WSO2 and ServiceMix was similar for payloads of
25 KB and higher.

Scenario 2 : Content Based Routing Proxy
Test 2

Increasing Payload vs Single Client

0

5000

10000

Payload
(KB)

Mean Response Time

(msec)

Mule

WSO2

ServiceMix

1 10 25 50 100 500 1000

Figure 14. Mean response time for content-based routing
proxy.

Scenario 3 : Transformation Proxy
Test 1

Fixed Payload (100K) vs Increasing # of Clients

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

of Clients

Mean Response Time

(msec) Mule

WSO2

ServiceMix

1 20 40 80 160

Figure 15. TPS for transformation routing proxy.

Scenario 3 : Transformation Proxy
Test 1

Fixed Payload (100K) vs Increasing # of Clients

0

5

10

15

20

25

30

35

40

45

of Clients

ESB

% CPU Usage

Mule

WSO2

ServiceMix

1 20 40 80 160

Figure 16. Mean response time for transformation routing
proxy.

The mean response time (Figure 18) was similar for
all three ESBs for payloads up to 100 KB. The response
time increased as the payloads increased. There was a
rise in response times for all three ESBs once the pay-
load exceeded 100 KB. ServiceMix had a better response

Copyright © 2011 SciRes. CN

S. P. AHUJA ET AL. 139

Scenario 3 : Transformation Proxy
Test 2

Increasing Payload vs Single Client

0
2000
4000
6000
8000

10000

Payload

(KB)

Mean Response Time

(msec) Mule

WSO2

ServiceMix

1 10 25 50 100 500 1000

Figure 17. TPS for transformation routing proxy.

Scenario 3 : Transformation Proxy
Test 2

Increasing Payload vs Single Client

0
1
2
3
4
5
6
7

Payload
(KB)

ESB
% CPU Usage

Mule

WSO2

ServiceMix

1 10 25 50 100 500 1000

Figure 18. Mean response time for transformation routing
proxy.

time than WSO2 for payloads between 10 K and 1 M.
Mule had the highest response time when the payload
exceeded 100 KB.

5.4. Subjective Observations

We established a set of criteria for our subjective as-
sessment of the ESBs. We created a three point scale,
with ‘A’ being the best and ‘C’ being the worst. The
ESBs were assigned a score based on this scale for each
criterion and the results were recorded, as illustrated in
Table 1.

6. Conclusions

Although the graphs give us visual representation how
the ESB performs for a given metric, a statistical analysis
is needed to give meaning to the data collected. As stated
earlier, we ran ‘Student’s T-Test’ on each metric
collected and looked for P-Values that were below the

Table 1. Subjective assessment.

 Mule WSO2 ServiceMix

Installation A A B

Code base / Examples B A B

Ease of Development B A C

Features A B A

API / Documentation A A A

Online Help B B B

Community / Forums A A A

set threshold of 0.05. We tested our null hypothesis that
all ESBs would have comparable numbers against this
threshold.

Looking at the direct proxy P-Values for load handling
in Table 2, throughput was comparable for all three
ESBs. When we look at the direct proxy P-Values for
scalability, we see a difference in throughput, when
comparing Mule to ServiceMix and WSO2. The com-
puted average throughput for Mule in our scalability test
for direct proxy was 0.29 TPS, while the computed
average throughput for ServiceMix and WSO2 were 1.79
and 1.57 TPS respectively. Thus, looking at the com-
puted average throughput for the statistically significant
data, we can conclude ServiceMix and WSO2 handled
scalability better than Mule.

Looking at the content based routing proxy P-Values
for loading handling and scalability; we saw a difference
in throughput when comparing Mule to WSO2. The
average throughput computed for Mule in load handling
and scalability was 2.11 TPS and .46 TPS respectively.
The average throughput computed for WSO2 in load
handling and scalability was 2.33 TPS and 0.57 TPS
respectively. Thus, looking at the computed average
throughput for the statistically significant data, we can
conclude that WSO2 performed better than Mule in the
content-based routing scenario.

Looking at the P-Values table (Table 3) for mean
response times, we see that the only statistically signi-
ficant data is for the scalability test in the direct proxy
scenario and the transformation proxy scenario, com-
paring WSO2 and ServiceMix.

In the scalability test of the direct proxy scenario, the
computed average of the mean response times for WSO2
was 772.27 ms, whereas the computed average of the
mean response times for ServiceMix was 704.36 ms.
Thus, looking at the computed average response times
for the statistically significant data, we can conclude that
ServiceMix handled scalability better than WSO2.

In the transformation proxy scenario, the computed

Copyright © 2011 SciRes. CN

S. P. AHUJA ET AL.

Copyright © 2011 SciRes. CN

140

Table 2. P-Values for throughput.

Direct Proxy Content Based Routing Proxy Transformation Proxy

TPS
Increasing

Clients
Increasing
Payloads

Increasing
Clients

Increasing
Payloads

Increasing
Clients

Increasing
Payloads

Mule vs. ServiceMix 0.1485 0.0016 0.2819 0.0844 0.2595 0.3103

Mule vs. WSO2 0.3196 0.0015 0.0286 0.0015 0.4004 0.0158

WSO2 vs. ServiceMix 0.2864 0.0859 0.1858 0.1341 0.1983 0.0835

Table 3. P-values for mean response time.

Direct Proxy Content Based Routing Proxy Transformation Proxy

Mean Response Time Increasing
Clients

Increasing
Payloads

Increasing
Clients

Increasing
Payloads

Increasing
Clients

Increasing
Payloads

Mule vs. ServiceMix 0.4363 0.0939 0.1853 0.0897 0.2531 0.0933

Mule vs. WSO2 0.1645 0.0860 0.0972 0.0827 0.4523 0.0851

WSO2 vs. ServiceMix 0.1899 0.0210 0.2079 0.4369 0.2535 0.0118

average of the mean response times for WSO2 was
821.12 ms, whereas the computed average response
times for ServiceMix was 730.20 ms. Thus, looking at
the computed average of the mean response times for the
statistically significant data, we can conclude ServiceMix
handled scalability better than WSO2.

7. References

[1] G. Ziyaeva, E. Choi and D. Min, “Content-Based Intelli-
gent Routing and Message Processing in Enterprise Ser-
vice Bus,” 2008 International Conference on Conver-
gence and Hybrid Information Technology, Washington,
28-29 August 2008. doi:10.1109/ICHIT.2008.267

[2] K. Ueno and M. Tatsubori, “Early Capacity Testing of an
Enterprise Service Bus,” IEEE International Conference
on Web Services, Chicago, 18-22 September 2006, pp.
709-716. doi:10.1109/ICWS.2006.57

[3] M. Luo, B. Goldshlager and L.-J. Zhang, “Designing and
Implementing Enterprise Service Bus (ESB) and SOA
Solutions,” IEEE International Conference on Web Ser-
vices, Washington, 11-15 July 2005.
doi:10.1109/SCC.2005.43

[4] N. Fu, X. S. Zhou, K. B. Wang and T. Zhan, “Distributed
Enterprise Service Bus Based on JBI,” The 3rd Interna-
tional Conference on Grid and Pervasive Computing -
Workshops, Washington, May 2008, pp. 292-297.
doi:10.1109/GPC.WORKSHOPS.2008.32

[5] S. Ortiz Jr., “Getting on Board the Enterprise Service
Bus,” Computer Archive, Vol. 40, No. 4, pp. 15-17.
doi:10.1109/MC.2007.127

[6] R. Woolley, “Enterprise Service Bus (ESB) Product
Evaluation Comparisons,” Department of Technology
Services, Utah Department of Technology Services, Salt
Lake City, 2006.

[7] Y. Liu, I. Gordon and L. M. Zhu, “Performance Predic-
tion of Service-Oriented Applications based on an Enter-
prise Service Bus,” 31st Annual International Computer
Software and Applications Conference, Vol. 1, 2007, pp.
327-334. doi:10.1109/COMPSAC.2007.166

[8] D. W. Zimmerman, “A Note on Interpretation of the
Paired-Samples t-Test,” Journal of Educational and Be-
havioral Statistics, Vol. 22, No. 3, 1997, pp. 349-360.

[9] P. Aston and C. Fitzgerald, “Getting Started,” 2009.
http://grinder.sourceforge.net/g3/getting-started.html

[10] J. Dirksen and T. Rademakers, “Pattern Based Devel-
opment with Mule 2.0,” 2009.
http://architects.dzone.com/articles/pattern-based-develop
ment-with

[11] J. Wheeler, “What Is Mule,” 2009.
http://www.mulesoft.org/display/MULE2INTRO/What+i
s+Mule,

[12] ServiceMix Overview, 2009.
http://servicemix.apache.org/home.html,

[13] J. Dutton, “Comparing Enterprise Service Bus Options
for System z,” 2007.
http://www.ibm.com/developerworks/websphere/library/t
echarticles/0707_dutton/0707_dutton.html

[14] Wheeler, J., “Understanding the Messaging Framework,”
2009.
http://www.mulesoft.org/display/MULE2INTRO/Underst
anding+the+Messaging+Framework, last revision 2009,
last accessed September 31, 2009.

[15] WSO2 ESB Documentation.
http://wso2.org/project/esb/java/2.1.0/docs/index.html,
last revision June 7, 2009, last accessed September 31,
2009.

http://doi.ieeecomputersociety.org/10.1109/ICHIT.2008.267
http://dx.doi.org/10.1109/ICWS.2006.57
http://dx.doi.org/10.1109/SCC.2005.43
http://dx.doi.org/10.1109/GPC.WORKSHOPS.2008.32
http://dx.doi.org/10.1109/MC.2007.127
http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2007.166
http://www.jstor.org/stable/1165289
http://www.jstor.org/stable/1165289
http://grinder.sourceforge.net/g3/getting-started.html
http://architects.dzone.com/articles/pattern-based-development-with
http://architects.dzone.com/articles/pattern-based-development-with
http://www.mulesoft.org/display/MULE2INTRO/What+is+Mule
http://www.mulesoft.org/display/MULE2INTRO/What+is+Mule
http://servicemix.apache.org/home.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_dutton/0707_dutton.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_dutton/0707_dutton.html
http://www.mulesoft.org/display/MULE2INTRO/Understanding+the+Messaging+Framework
http://www.mulesoft.org/display/MULE2INTRO/Understanding+the+Messaging+Framework
http://wso2.org/project/esb/java/2.1.0/docs/index.html

