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Abstract 
Global spread of infectious disease threatens the well-being of human, domestic, and wildlife 
health. A proper understanding of global distribution of these diseases is an important part of 
disease management and policy making. However, data are subject to complexities by hetero-
geneity across host classes. The use of frequentist methods in biostatistics and epidemiology is 
common and is therefore extensively utilized in answering varied research questions. In this pa-
per, we applied the hierarchical Bayesian approach to study the spatial distribution of tuberculo-
sis in Kenya. The focus was to identify best fitting model for modeling TB relative risk in Kenya. 
The Markov Chain Monte Carlo (MCMC) method via WinBUGS and R packages was used for simula-
tions. The Deviance Information Criterion (DIC) proposed by [1] was used for models comparison 
and selection. Among the models considered, unstructured heterogeneity model perfumes better 
in terms of modeling and mapping TB RR in Kenya. Variation in TB risk is observed among Kenya 
counties and clustering among counties with high TB Relative Risk (RR). HIV prevalence is identi-
fied as the dominant determinant of TB. We find clustering and heterogeneity of risk among high 
rate counties. Although the approaches are less than ideal, we hope that our formulations provide 
a useful stepping stone in the development of spatial methodology for the statistical analysis of 
risk from TB in Kenya.  
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1. Introduction 
The global spread of infectious diseases threatens the well-being of human population as well as that of domestic 
and wild animals. Therefore, a proper understanding of the pathways and global spread of communicable and 
infectious diseases is an important aspect of disease management and policy making. However, the data collected 
with the object of understanding these patterns are subjected to complications brought about by heterogeneity 
that can be of spatial or non-spatial in nature [2] [3]. Ignoring these complexities is likely to mislead inference 
which may results in erroneous conclusion [2] [3]. Disease data can be case-event or counts from non-over- 
lapping regions. Since the data provided for this study only have county level spatial resolution, the approach 
will be to analyses the data as regional or county specific count data. 

There exists a vast amount of literature concerning the development and application of disease mapping 
approaches [4]-[8]. Spatial distribution of a disease is often understood through application of statistical methods 
to the data and creating maps that visually describes spatial variation of disease risk [3]. However, disease 
counts maps are subjected to numerous problems. One such problem is the Modifiable Areal Unit Problem 
(MAUP), which occurs when inference at the areal level differs from that which is observed at the basic 
observational unit. This is likely to change conclusions drawn from a study of a count data. The MAUP can be 
addressed by scaling up to ensure smoothing or averaging of data and making inference at high aggregate level 
than that used in the analysis. MAUP can also be addressed by scaling down to enable inference at lower level 
than that used in the analysis. Multi-scale Analysis can also be used to addressed MAUP. This analysis concerns 
spatial units that are completely matched when aggregated [9]. Also differences in population between regions 
result in differences in variance of regional estimates. This problem is addressed by employing a hierarchical 
Bayesian model that smooths the risk from neighboring regions and clearly accounts for population difference 
by using a Poisson distribution for outcomes. 

Bayesian methods are widely used in disease mapping. [10] applied the the Empirical Bayes (EB) methods for 
smoothing a map of lip cancer rates. They assumed a multivariate normal for the log relative risks and allowed 
for spatial correlation via conditional autoregressive model. Their model could not be considered to be a “fully 
Bayesian”, since a quadratic approximation was used for the likelihood and this did not account for the 
uncertainty in the estimates of the hyper-parameters. [11] was the first example of fully Bayesian disease 
mapping. They used the convolution prior model described in Section 6.1 to model the log relative risk. They 
found that the model shrunk extreme disease rates towards the mean and detected spatial association that was 
apparent in the raw data. According to [11], the fully Bayesian model produced more accurate estimates than 
that produced by Clayton and Kaldor approach.  

[12] ecological study applied Bayesian hierarchical regression model to evaluate the urban spatial and spatio- 
temporal distribution of TB in Rilirão Preto, state of São Paulo, Southeast Brazil between 2006-2009 and to 
evaluate TB risk determinants. The study reveals that TB rates are correlated with measures of income, 
education and social vulnerability. They state that complex relationship may exist between TB incidence and a 
wide range of environmental and intrinsic factors, which need to be studied in future research. [13] applied both 
the Bayesian approach and the generalized mixed model to produce smooth relative risk maps of TB and to 
model relationship between TB new cases and national TB control program indicators. Their study discovered 
that high TB risk areas were clustered and TB distribution found to be associated with the number of patients 
lost to follow-up and the number house holds with more than one case. [14] study on assessing the prevalence of 
TB in New York from 1970-2000 using Bayesian analysis approach stated that decline in TB incidence could 
probably be as a result of good control programs and raised in TB prevalence could be attributed to social 
disruptions such as homelessness, drug abuse, poverty, and overcrowding. Their study confirmed that increase in 
TB is mainly due to HIV epidemic. [15] study of TB pattern in India, using the Bayesian conditional autore- 
gressive model revealed that north-eastern states have high risk of TB than other regions. 

In this paper our focus is to propose best fitting Hierarchical Bayesian approaches for modeling and mapping 
relative risk tuberculosis in Kenya. Specifically, we determine suitable spatial and non-spatial models for 
modeling TB in Kenya.  

In Section 2, we describe the data used followed by a Bayesian modeling framework in Section 3. In Section 
4, we describe two relative risk detection methods. In Section 5, we described Bayesian non-spatial models and 
spatial models in Section 6 for disease mapping. We give discussion and conclusion in Section 7. 
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2. Data Description 
The data used in this study is routine data from Kenya Demographic and Health Surveys (DHS). The data 
contain records of Kenya’s population size, tuberculosis cases, and some suspected determinants of tuberculosis 
for each period from 2002-2009 and for each 67 districts. To study the risk of TB infection in each county, the 
data from the 67 districts were aggregated to provide county level summaries. Some of the determinants of TB 
that were recorded are: HIV prevalence, poverty prevalence, illiteracy, population less then 5 km to health 
facility, firewood, altitude and mean house hold size. Summary Statistics for these determinants of TB are 
shown in Table 1. 

3. Bayesian Modeling Framework 
Bayesian methods define the posterior distribution which is the distribution of the parameter(s) given the 
observed data. This implies that we require a likelihood function for the observed data and a prior distribution 
for the unknown parameters. Let , 1, ,iy i n=   be a random variable with probability density function 
( )|iP y ϑ , where ( )1, , pϑ ϑ= ϑ  is a vector of relative risk parameters. The likelihood function of iy  is 

defined as  

( ) ( )
1

| | .
n

i
i

P P y
=

=∏y ϑ ϑ                                    (1) 

Equation (1) is based on the assumption that the sample values of ( )1, , ny y ′= y  given the parameters ϑ  
are independent [9]. Once the data model (likelihood function) is chosen, a Bayesian analysis requires the 
assertion of a prior distribution for the unknown model parameters. The prior distribution can be viewed as 
representing the current state of knowledge, or current description of uncertainty, about the model parameters 
prior to data being observed. A prior distribution is a distribution assigned to the parameter ϑ  before the data 

iy  are observed [9]. All parameters within the Bayesian models are stochastic and assigned appropriate prior 
distribution [9]. Given a single parameter, ϑ , the the prior distribution is denoted as ( )P ϑ , while for a 
parameter vector, ϑ , the joint prior distribution is denoted as ( )P ϑ . 

The posterior distribution is a probability distribution of the parameters given the data. The posterior 
distribution which is proportional to the product of the likelihood function and the prior distribution is defined as  
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where ( ) ( )| d
p

L P∫ y ϑϑ ϑ  is called the normalizing constant. It have been shown that posterior distribution of  

the parameters (2) can be written as  

( ) ( ) ( )| | ,P P P∝y yϑ ϑ ϑ                                  (3) 

 
Table 1. Summary statistics for TB determinants.                                                                                       

Variables No. of counties Mean SD Median Min Max 95% CI 

HIV prevalence (%) 47 4.289 2.797 3.800 1.000 16.430 (2.950, 4.700) 

Proportion of poor 47 0.5196 0.184 0.5013 0.1157 0.9434 (0.3778, 0.6369) 

Illiteracy (%) 47 24.47 19.958 16.00 2.80 77.30 (12.10, 29.80) 

Household 5 km 
away from hospital 

(%) 
47 77.76 16.399 80.80 19.20 99.00 (72.05, 86.72) 

Firewood (%) 47 78.52 20.175 84.60 1.80 96.70 (74.95, 90.65) 

Altitude (m) 47 1361 602.2214 1432 151 2274 (1138, 1813) 

Mean house hold 
size 47 5.383 0.799 5.250 3.800 6.900 (4.775, 6.050) 
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from which parameter estimates are drawn using Markov Chain Monte Carlo (MCMC) vis Gibbs sampling [16]. 
True parameter estimates are obtained when the the Markov chain converges. Convergence diagnostics for each 
parameter estimate under each implementation is shown. 

4. Cluster Detection 
This section discusses methods used in disease mapping to detect elevated risk. One such methods is the use of 
the posterior ( )|P yϑ  measures in posterior distribution (3). Another approach for risk detection is the use of 
the exceedence probability which relies on the posterior ( )|P yϑ  measures for cluster detection [9]. The most 
commonly criteria for cluster detection method is the exceedence probability in relation with the relative 
estimates for individual areas or counties [17]. The exceedence probability is defined as the probability that the 
relative risk ϑ  exceeds some threshold level  , defined by ( )P > ϑ . Exceedence probability is computed  

from the posterior sample values { }{ }1, 2, ,g
i g G= ϑ  through ( ) ( )

1

1ˆ
G

g
i i

g
P I

G =

> = >∑ ϑ ϑ , where  

( ) 1 if
0 Otherwise.

g
g i

iI
 >

> = 


 ϑ
ϑ                                  (4) 

In evaluating ( )iP > ϑ ,   and the threshold probability must be chosen such that ( )iP k> >ϑ . By 
convention, k can take the values of 0.95, 0.975, 0.99, etc. [18]. According to [9], exceedence probability is only 
capable of detecting hot spot cluster and does not consider any other information concerning possible forms of 
cluster or even neighborhood information. [9] defined Hot spot as any area displaying “excess” or “unusual” risk. 
According [9], Hossain and Lawson have made some attempts to enhance the exceedence probability by 
inclusion of neighborhoods. They stated that, for the neighborhood of the thi  area defined as ia  and the 
number of neighbors as in , then  
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 ϑ ϑ                   (5) 

These measures can be used to detect different forms of clustering [9]. However, the usefulness of the 
execeedence probability depends on the model that has been fitted to the data and that any poorly fitting model 
will not demonstrate exceedence relate to clustering [9]. 

5. Bayesian Hierarchical Non-Spatial Models for Disease Mapping 
This section presents two non-spatial models used in disease modeling and mapping. These are the Poisson- 
Gamma (PG) and the Poisson Log-Normal (LN) models. These models are often used to model small area count 
data and are appropriate when there is relatively low count of disease and the target population is relatively large 
in each small area. We present the PG model first followed by the LN model. 

5.1. The Poisson-Gamma Model (PG) 
The Poisson-Gamma model for relative risk estimation uses a gamma prior distribution for the relative risk 
combines with the Poisson likelihood function for the disease counts which gives a gamma posterior distribution 
for the relative risk. The Poisson-Gamma model is widely used in disease mapping to account for extra 
variability in the data through the prior distribution [18].  

5.2. Model Description 
Suppose that the unknown risk of TB in region i is given as , 1, 2, ,i i nϑ =  . Let iy  and iN  denote the 
number of TB cases and the population at risk respectively in region i. The expected number of TB cases in  

region i can then be written as i iE rN= , where 1

1

n

i
i
n

i
i

y
r

N

=

=

=
∑

∑
 is the overall disease risk in the study population.  
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Under the frequentist paradigm, we assume that ( )~i i iy Poisson Eϑ . Based on the sample { }1, , ny y= y , the 
likelihood function and the corresponding log-likelihood function are expressed as  

( ) ( ) ( ) ( )
1
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, |

!

iyn
i i i i

i
i i

E E
P

y
ϑ ϑ

ϑ
=

−
= =∏ y E ϑ                          (6) 

and  

( ) ( )
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The maximum likelihood estimator îϑ  of iϑ  is obtained via 
( )( )ln

0i
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ϑ
ϑ

∂
=

∂


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ϑ =                                         (8) 

This estimator, îϑ  is referred to as the standardized mortality ratio in region i. Under the Bayesian paradigm, 
assume that ( )~ Poissoni iy Eϑ , where µ  is i iEµ ϑ=  is the Poisson mean and ( )~ Gamma ,a bϑ  has a 
gamma distribution with shape and scale parameters a and b respectively. The likelihood function for iy  is 
denoted by  

( ) ( ) ( ) ( )
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and prior distribution for ϑ  is denoted by  

( ) ( )
( ) ( )

1

| , exp , , , 0.
a

aP a b b a b
a b
ϑ

ϑ ϑ ϑ
−

= − >
Γ

                         (10) 

5.3. Parameter Estimation 
We used Bayesian hierarchical methods for parameters estimation in the Poisson-Gamma model. That is, if in 
addition, a and b are given prior distributions such that ( )| ~ |a P aω ω  and ( )| ~ |b P bφ φ , where ( )|P a ω  
and ( )|P b φ  are the hyperprior distribution with hyper-parameters ω  and ( ),a bφ φ ∈φ  for a and b re- 
spectively, then we can obtain parameters using Bayesian hierarchical methods. This is a second stage hierarchical 
modeling using the Poisson-Gamma model. 

In this paper, we defined ( ) ( )| expP a aω ω ω= −  (as exponential distribution) and ( )| ,a bP b φ φ  as a 
gamma distribution. Therefore, the posterior distribution is given by  

( ) ( ) ( ) ( ) ( ), , , | , , | , , , | | .P a b P a b P P a P bϑ ϑ ϑ ω∝y E y E φ                   (11) 

Parameters estimation of the Poisson-Gamma model was carried out using MCMC via Gibbs Sampling. 
Convergence of the Chain occurs at 40,000 iterations after a burnin period of 1000 sample and thinning of every 
30th element of the sample. Figure 1 presents the MCMC convergence diagnostics plots. 

5.4. Markov Chain Monte Carlo Diagnosis 
Figure 1 presents Gelman and Rubin convergence diagnostics of the Poisson-Gamma model: Column-wise 
from the top left, Figures 1(a)-(j) are trace plots for a, b, the mean and variance respectively. Figures 1(b)-(k) 
are posterior marginal density plots for b, a, the mean and the variance respectively. Figures 1(c)-(l) are auto- 
correlation plots for b, a, the mean and the variance respectively. The Gelman and Rubin trace plots show the 
convergence of the two parallel chains (Chains with different initial values). “Vanishing” autocorrelation 
function (ACF) plots show that there is low correlation among parameters that constitute the chain. More satis- 
factory kernel density plots for parameters of interest would more bell-shaped or symmetric. The density plots 
for the parameters show that convergence of the chain has reached.  

The posterior statistics of the Poisson-Gamma model are shown in Table 2. Table 2 shows that the mean of  
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Figure 1. Poisson-gamma model: convergence diagnosis of Markov Chain Monte Carlo.                                                                                       
 
Table 2. Posterior statistics of the poisson-gamma model.                                                                                       

Parameters Posterior Means Credible Region 

a 4.717 (3.089, 6.707) 

b 5.046 (3.21, 7.29) 

mean 0.933 (0.8192, 1.075) 

variance 0.1955 (0.122, 0.3142) 

D  575,755 - 

pD 46.946 - 

DIC 622.701 - 

 
the posterior relative risk is 0.93 (95% credible interval = 0.82 - 1.08). The posterior mean is approximately the 
same as the mean of the standardized mortality ratio 0.93 (95% credible interval = 0.62 - 1.05) (Equation (8)). 
The standard deviation of the relative risk, 0.42 (95% credible interval = 0.35 - 0.56), is lower than the 
standardized mortality ratio's standard deviation 0.49 (95% credible interval = 0.62 - 1.05). Thus their standard 
deviation has been reduced by 82% by the Poisson-Gamma model. The significance of the variance indicates 
variation in risk among counties. In a situation of rare cases, standard deviation of the Poisson-Gamma model is 
expected to be much lower than that of the standardized mortality ratio [18]. 

Figure 2 shows standardized mortality ratio for TB prevalence in the counties of Kenya for 2002-2009. The  
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Figure 2. Kenya county level standardized mortality ratio’s maps: (a) The mean of the SMR and its 2.5% quantile (b), 
median (c) and 97.5% quantile (d).                                                                                       
 
SMRs vary around their mean, 0.93 with standard deviation, 0.49 (as discussed in Table 2). There is some 
suggestion of high TB prevalence in the North, West, North-West and Central counties of Kenya and low TB 
prevalence in the South-East counties except Mombasa (SMR > 2.0). 

From Figure 3, we observed high risk of TB prevalence in the North, West, North-West and Central counties 
of Kenya and low risk in the South-East counties except Mombasa. Nairobi and Mombasa have the highest 
relative risk (RR > 2.0) and Laikipia, Nandi, Narok, Nyamira, and Vihiga have the lowest risk (RR < 0.5). The 
mean of the posterior relative risk and the SMR are the same. The range of the posterior relative risk of the 
Poisson-Gamma remains the same as the SMR, each having lowest relative risk estimated at 0.40 and the 
highest risk at 2.38. Variability in risk remains the same due to abundant of information or data. 

The map of the exceedence probability in Figure 4 revealed 13 counties that exhibit high risk of TB above the 
national risk (RR > 1). These counties are: Nairobi, Mombasa, Kisumu, Turkan, Migori, Homa bay, Uasin 
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Figure 3. Kenya county level poisson-gamma posterior mean relative risk maps: (a) The mean of the posterior relative risk 
and its 2.5% quantile (b), median (c) and 97.5% quantile (d).                                                                                       
 
Gishu, Isiolo, Marsabit, Siaya, Tharaka-Nithi, Mandera, and Embu. This map confirms with Figure 3 concern- 
ing high and low TB prevalence areas.  

Despite the fact that assigning a gamma prior distribution for iϑ  is mathematically convenient, it is likely to 
be restrictive since covariate adjustment is difficult and there is no possibility for allowing spatial correlation 
between risk in nearby areas [18]. We therefore present models that nullify theses limitations in the next 
sections. 

5.4.1. Poisson-Log-Normal Model 
We now present a model which allows for flexibility of covariates adjustments or incorporation. [18] noted that 
in disease mapping, the log-normal model is important as it provides a specification that allows for incorporation 
of covariates. In section we consider LN model without incorporating random effects and covariates and LN 
model which takes into account random effects and covariates. The random effect term captures or explains  
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Figure 4. Poisson-Gamma posterior relative risk exceedence probability map: Row-wise from the top left figure: (a) the 
posterior mean relative risk exceedence probability and (b) its 3 2.5% quantile for relative risk, (c) median for the relative 
risk and (d) 97.5% quantile for the relative risk.                                                                                       
 
heterogeneity in relative risks of TB among counties. The LN mode with the random effect is often refer to as 
the unstructured heterogeneity (UH) model. 

5.4.2 Model Description 
Let iy  and iE  be the observed number and the expected number of disease counts in region , 1, 2, ,i i n=   
respectively. Further let iϑ  be the relative risk of disease in region i. We first consider a situation of a 
Poisson LN model with no area-specific random effect iu  and covariate. As stated in the previous section, 

( )( )~ Poisson expi i iy E η , where ( )expi iϑ η=  is the exponential of the linear link function and 
( )expi i iEµ η=  is the Poisson mean. Fitting a generalized linear model with a log-link function, we have 

( ) ( )log logi i iEµ η= + . By Bayesian paradigm, we assumed that ( )2~ ,i Nη µ τ  and its hyper-parameters, 
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( )6~ 0,1 10Nµ −×  and ( )2 ~ Gamma 0.5,0.05τ . Parameter estimation was carried out using Bayesin Markov 
Chain Monte Carlo via Gibbs Sampling. Convergence of the MCMC was reached at 11,000 iteration after a 
burnin period of 10,000 sample and thinning of every 30th element of the chain. Convergence diagnosis plots are 
presented in Figure 5 and posterior statistics of parameters are presented in Table 3. 

We now consider a Poisson LN model with area-specific random effect or uncorrelated heterogeneity (UH) 
effect iu  and c covariate(s) for region i denoted by icX . Let X  represents the covariates matrix. The 
Poisson LN non-spatial model is given by  

( )( )| , , ~ Poisson exp ,
ind

i i ic i i iy E X Eη η                              (12) 

where 0
1

P

i p ic i
p

X uη β β
=

= + +∑  is the linear link function, iu  are the residual random effects that capture the  

residual unexplained log relative risk in region i and 2
uτ  is the precision variance. This implies that  

( ) 0
1

log .
P

i i p ic i
p

X uϑ η β β
=

= = + +∑                                (13) 

From Equation (13), we can write the relative risk as  
 

 
Figure 5. Poisson log-normal model: convergence diagnosis of Markov Chain Monte Carlo.                                            
 
Table 3. Posterior statistics of Poisson log-normal model without covariate and random effect.                                            

Parameters Posterior Means Credible Region 

µ  −0.17 (−0.3093, −0.04605) 

2τ  5.012 (3.182, 7.235) 

σ  0.4558 (0.3719, 0.5608) 

D  575,821 - 

pD 47.013 - 

DIC 622.834 - 
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0
1

exp ,
P

i p ic
p

Xϑ β β
=

 
= + 

 
∑                                   (14) 

where iϑ  are the relative risk of region i, ( )0 , , pβ β ′= β  are regression parameters and 0β  is the intercept  

or the overall risk effect. Here, the mean iµ  of the Poisson distribution is  

( ) 0
1

exp exp
P

i i i i p ic
p

E E Xµ η β β
=

 
= = + 

 
∑ . Fitting a generalized linear model with a log-link function, we have  

( ) ( ) 0
1

log log .
P

i i p ic
p

E Xµ β β
=

= + +∑                              (15) 

5.4.3. Parameter Estimation 
Since ( )( )~ Poisson expi i iy E η , the likelihood function of iy  is defined by  

( )
( )( ) ( )( ) ( )

1

exp exp exp
, , , | , , , 1, 2, , .

!

iy
n

i i i i

i i

E E
P i n

y
η η

=

−
= = =∏ u y E uϑ β β ϑ           (16) 

We would need the prior distributions for β  and u  to obtain the posterior distribution for the parameters 
of interest. It is assumed that ( )2~ 0,N σu  with mean zero and variance 2σ . We assume a conjugate prior of 
the Gaussian distribution for the parameter β  defined as  

( ) 11exp
2

p β
− ′∝ − 

 
Σβ β β                                  (17) 

We now show that the posterior distribution of β  has the Gaussian distribution Section 5.2. 

5.5. The Likelihood Function of a Regression with Gaussian Random Effect 
Consider a response random variable ( )~ 0,Ny Σ , where Σ  is the variance-covariance matrix. The linear  

regression function of iy  on icX  is defined by 0
1

P

i p ic i
p

y X uβ β
=

= + +∑ . Therefore, the Gaussian process of  

regression density or likelihood function for iy  is given by  

( )
( )

( ) ( ) ( )1

1 2
2

1 1| , exp 0, ,
22π

Np N− ′= − − Σ − = 
 

y X y X y X Σ
Σ

β β β                (18) 

where X  is a design matrix of the covariates. Just to simplify analytic calculation, we can alternatively write 
the Gaussian linear model Equation (18) as  

( )
( )

( ) ( )
1 2

2

1 1| exp ,
22π

NP  ′= − − −  
y z M z M

Σ
β β β                      (19) 

where 2
i

i
i

yz
σ

= , 2
ci

ci
i

XM
σ

= , and 2
iσ  are the diagonal covariance matrix { }2 2 2

1 2, , , nσ σ σ= Σ  with the  

standard model: =y Xβ . Consider a general likelihood function, ( ) β  and let us take a second order Taylor 
expansion of the log-likelihood ( )ln  β  around its maximum, then we have  

( ) ( ) ( ) ( ) ( ) ( )
2

2
2

ln ln1ln ln ,
2

ML ML

ML ML ML
∂ ∂

= + − + −
∂ ∂
 

 

β β

β β
β β β β β β

β β
            (20) 

where MLβ  is the maximum likelihood estimator of β . Letting 
( ) 1 2

2

1=
2π

NΩ
Σ

 and taking log  of Eq-  
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uation (19), we have  

( ) ( )1ln | ln 2
2

P ′ ′ ′ ′= Ω − − +y z z z M M Mβ β β β                          (21) 

Finding the derivative of Equation (21), it follows that  

( )ln |
0

P∂
′ ′ ′= − =

∂
y

z M M M
β

β
β

                             (22) 

Solving Equation (22), we have  

( ) 1 .ML
−′ ′= M M M zβ                                   (23) 

Now finding the second derivative of Equation (25), we have:  

( ) ( )2

2

ln |
.

P
H

′ ′∂ ∂
′= − = − =

∂∂
y M M

M M
β β

ββ
                        (24) 

Hence, we can rewrite Equation (22) as  

( ) 1 1 .ML
− −′ ′ ′= =M M M z H M zβ                              (25) 

From the Taylor’s expansion in Equation (20), and by the Maximum Likelihood Principle (MLP) that  

( ) ( )ln |
0,

ML

ML
P∂

− =
∂

y

β

β
β β

β
 

it follows that 

( ) ( ) ( ) ( )1ln | ln |
2 ML

ML MLP P ′= − − −My y H
β

β β β β β β                   (26) 

Taking exponent on both side of Equation (26), we have  

( ) ( ) ( ) ( )1| | exp
2ML ML MLP P  ′= − − −  

y y Hβ β β β β β                    (27) 

or  

( ) ( ) ( )1| exp ,
2ML ML MLP  ′= − −  

y Hβ β β β β                        (28) 

where  

( )
( ) ( )

1 2
2

1 1exp .
22π

ML ML MLN
 ′= − − −  

 z M z M
Σ

β β                     (29) 

5.6. Posterior Function of Gaussian Process Regression 
Assuming that the prior distribution of β  is  

( ) 11exp .
2

p β
− ′∝ − 

 
Σβ β β                                (30) 

Then writing only the terms from the likelihood and prior which depend on the weights, and “completing the 
squares” for Multiple parameters model, the posterior function is defined as  

( ) ( ) ( )1 11 1| , exp exp
2 2

P β
− −   ′′ ′ ′∝ − − − −     

X y y X y XΣ Σ Σβ β β β               (31) 

Simplifying Equation (31), it follows that  

( ) ( )( )1| , exp 2 ,
2

P ν ν ν κ ′ ′ ′ ′ ′∝ − − + +  
X y y y X y X X Iβ β β β                 (32) 
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where 1ν −= Σ  and 1
pκ −= Σ  are the covariance of the likelihood function and the prior function respectively. 

The Equation (32) above is indeed Gaussian with the constant term ′y y . In “completing the squares”, we are 
given a quadratic form defining the exponent terms in a Gaussian distribution, and we need to determine the 
corresponding mean and covariance. To avoid computational complexity with “completing of squares”, we sort 
to using “kernel’s trick” TB324. The exponent of a general Gaussian distribution defined as ( ) ( ) ,µ µ′− −y yΛ  
where Λ  is the precision matrix can be expressed as  

( ) ( ) [ ]2 2 constant.tµ µ µ µ µ′ ′ ′ ′ ′− − = − + Λ = − +y y y y y μ y y yΛ Λ Λ Λ Λ              (33) 

Comparing Equation (32) with Equation (33), we have  
1,ν κ µ ν −′ ′= + =X X I X yΛ Λ                                (34) 

That is ( ) ( )1| , ~ | ,P N µ −y X Λβ β . Note that 1−Λ  must be invertible, that is 0≠Λ . The maximiser of 
the likelihood is the mean µ  which is again the mode of the likelihood. Therefore, the Maximum Posterior 
(MAP) is given by  

( ) ( ) 11 1 1 1MAP .βν ν κ
−− − − −′ ′ ′ ′= + = Σ Σ + ΣX X I X y X X I X y                    (35) 

In fact the MAP is similar to the maximum likelihood value ( ) 1
ML

−′ ′= M M M zβ . Therefore, the posterior 
mean and Covariance are respectively defined by  

( ) ( )1 11 1 1 1 1 1ˆ andβ β

− −− − − − − −′ ′ ′= Σ Σ + Σ = Σ + ΣX X I X y X X IΛβ                 (36) 

It follows that the posterior distribution for β  is also Gaussian defined by  

( ) ( ) ( )11 ˆ ˆ| , exp .
2

P − ′∝ − − − 
 

y X Λβ β β β β                        (37) 

Therefore, the prior distribution of β  is assumed to be normally distributed as  

( )
2 2

2
0

1 1 1exp
2π 2

PP P
p

p
P

β β

β
τ τ=

   = −            
∑β                          (38) 

and the prior distribution for the area-specific random effect defined by  

( )
2 2

2
1

1 1 exp .
2π 2

nn n
i

iu u

uP
τ τ=

   = −   
     

∑u                           (39) 

Therefore, the posterior distribution is defined as  

( ) ( ) ( ) ( )2 2, , , | , , , | , ,uP P P Pβτ τ ϑ ∝u y E y E u uβ ϑ β β                     (40) 

Hence,  

( ) ( )( ) ( )( )2 2

1

1 22 2 2 2

2 2 2
0 1

exp exp exp
, , , | , ,

!

1 1 1exp exp .
2π 2 2π 2

iy
n

i i i i
u

i i
PP P n

p u i

p i u

E E
P

y

u

β

β β

η η
τ τ ϑ

β τ
τ τ τ

=

= =

−
=

       × − × −                   

∏

∑ ∑

u y Eβ

                (41) 

The prior distribution for the linear regression coefficients is given by ( )2~ 0,N βτβ . The corresponding 
conjugate prior distribution for 2

βτ  is the inverse-gamma [16] [19] defined as  

( ) ( ) ( ) ( )12 2 2
2| , exp , , , 0.P

ω ω

β β β
β

φ φτ ω φ τ τ ω φ
ω τ

− +  
= − >  Γ  

                   (42) 

The Equation (42) is the hyperprior distribution for 2
βτ  with hyper-parameters ( ),ω φ . We defined 

( )2 ~ Gamma 0.05,0.005βτ  and modeled the random effect ( )2~ 0,i uu N τ  and hyper-prior distribution for the 
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precision parameter ( )2 ~ Gamma 0.05,0.005uτ . 
We first consider the LN without covariates. Parameter estimation was carried out using Bayesian Markov 

Chain Monte Carlo via Gibbs Sampling. MCMC convergence was reached at 100,000 iterations after a burnin 
period of 10,000 sample and thinning of every 30th element in the sample. Figure 5 presents convergence 
diagnostics plots of this model. Table 3 presents the Posterior statistics of the LN model. 

Table 3, revealed that the overall mean of the posterior relative risk is −0.17 (95% credible interval = (−0.31, 
−0.046). This indicates that the overall TB risk effect in Kenya estimated by the Poisson Log-Normal model 
decreases keeping all other determinants of TB constants. The standard deviation of the relative risk is 0.46 (95% 
credible interval = 0.37 - 0.56) with precision variation 2 = 5.01τ  (95% credible interval = 3.18 - 7.24) 
indicating significance of variability of TB risk among counties. In a situation of rare TB cases, standard 
deviation of the Log-Normal model is expected to be much lower than that of the standardized mortality ratio 
0.49 [18]. 

Figure 6, revealed that TB risk is expected to be high in the North,West, North-West and central counties of  
 

 
Figure 6. Kenya County level TB prevalence counts: Poisson log-normal model without covariate and random effect. 
(a) the posterior relative risk map and its 2.5% quantile (b), median (c) and 97.5% quantile (d).                                                                                       
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Kenya and low risk in the South-West counties. According to this model, Nairobi and Mombasa are expected to 
have the highest TB risk (RR > 2.0) and Nandi, Narok, Nyamira, Vihiga, and laikipia are expected to have the 
lowest TB risk (RR < 0.5). Counties with relative risk above the national risk (RR = 1) are apparent from Figure 
7. Again, due to abundant of data or information, the range of the posterior relative risk of the Poisson Log- 
Normal remains the same to that of the SMR. The lowest estimated risk is 0.40 and highest estimated risk is 2.38. 
There is no reduction of relative risk range compare to SMR's risk as would be expected in a case of rare 
information or data. 

The exceedence probability map Figure 7 confirmed with the Poisson-Gamma model that 13 counties have 
their TB risk above the national risk. These counties are: Nairobi, Mombasa, Kisumu, Turkan, Migori, Homa 
bay, Uasin Gishu, Isiolo, Marsabit, Siaya, Tharaka-Nithi, Mandera, and Embu. Figure 7 confirms with Figure 6 
that high risk of TB prevalence is observed in the North, West, North-West and central counties and low risk in 
the South-East counties except Mombasa.  

 

 
Figure 7. Kenya County level TB prevalence counts: poisson log-normal model without covariate and random effect. 
(a) the posterior relative risk exceedence probability map and its 2.5% quantile (b), median (c) and 97.5% quantile (d).                                            
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We now present the results of the Poisson log-normal model with with UH and covariates effects. Figure 8 
presents the Rubin and Gelman convergence diagnostics plots of this mode. Table 4 revealed that the overall level 
of relative risk effect estimated is 0 0.18β = −  (95% credible interval = (−0.30, −0.06)). The overall risk effect is 
significantly different from zero and negative. This indicates that overall TB risk effect would be decreasing 
keeping all other determinants of TB constants. Among the cova- riates considered as TB determinants, only 
HIV parameters is significantly different from zero 1.20 (95% credible interval = 0.50 - 2.60) but positive. This 
indicates that TB risk increases with increasing HIV prevalence. [18] noted that, the higher the 2

uτ , the higher 
the variability of TB risk among counties and and the lower it is the lower the variability. This means that, a 
very small 2

uτ  will indicate possibility of risk similarity between neighbouring counties. The precision for the 
UH 2 5.32uτ =  (95% credible interval = 3.35 - 7.76) is significant, indicating that there exist variation in risk 
among counties. The UH revealed high variability of relative risk compare to the Poisson Log-Normal without 
random and covariate effects 2 5.01τ =  (95% cre- dible interval = 3.18 - 7.24). 

Figure 9 also confirmed that out of the 47 counties in Kenya, 13 exhibit TB relative risk higher than the 
national risk (RR = 1). Table 5 presents counties in groups according to their relative risk level. High TB risk 
can again be observed that in the North, West, North-West and central counties of Kenya and low TB risk in the 
South-East counties except Mombasa.  

Table 5 presents the results of the UH model with counties categorised according to their range of relative 
risk. The results showed that 14 counties have their relative risk above 1 and the lowest risk counties are 5. The 
exceedence probability map in Figure 10 visually presents counties with risk above 1. Figure 10 shows 14 
counties having elevated risk of TB. These maps again confirmed high TB risk in the North, West, North-West 
and central counties of Kenya and low risk in South-East counties of Kenya except Mombasa. 

Figure 11 is the maps of the area-specific random effect ( )iu , which shows variation of risk among counties 
in Kenya. This map captures and displays true TB excess risk surface after covariates and confounding factors 
are considered TB21. Excess risk of TB is observed in Marsbit, Embu, Migori and Kisumu. 

 
Table 4. Posterior statistics of the poisson log-normal model with UH effect.                                                                                       

Model indicators UH 

0β  −0.1765 (−0.2957, −0.05936) 

HIV 1.198 (0.4928, 2.571) 

Firewood 0.2735 (−2.215, 2.144) 

five kilometer distance −1.317 (−3.423, 1.437) 

uσ  0.4409 (0.359, 0.5466 ) 
2
uτ  5.324 (3.347, 7.757) 

D  575,779 

pD 46.973 

DIC 622.753 

 
Table 5. UH results indicating counties with high and low TB risk.                                                                                       

RR > 2.0 RR: 1.5 - 2.0 RR: 1.0 - 1.5 RR < 0.5 

Nairobi, 2.159 (2.145, 2.174) Homa bay ,1.721 (1.702, 1.74) Embu, 1.199 (1.18, 1.219) Lakaipia,  
0.458 (0.4449, 0.4714) 

Mombasa, 2.383 (2.36, 2.407) Isiolo, 1.957 (1.906, 2.01) Mandera, 1.044 (1.02, 1.067) Nandi, 0.4033 (0.3941, 0.4127) 

- Kisumu, 1.975 (1.955, 1.995) Migori, 1.374 (1.357, 1.392) Narok, 0.482 (0.4715, 0.4928) 

- Marsabit, 1.969 (1.93, 2.008) Siaya, 1.401 (1.384, 1.419) Nyamira (Kisii North),  
0.4533 (0.4422, 0.4646) 

- - Tharaka-Nithi,  
1.064 (1.042, 1.086) Vihiga, 0.469 (0.4581, 0.4801) 

- - Turkan, 1.068 (1.051, 1.086) - 

- - Uasin Gishu,  
1.182 (1.166, 1.198) - 
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Figure 8. Poisson log-normal model with UH and covariates effects: convergence diagnostics of Markov Chain Monte 
Carlo.                                                                                                                                  

5.7. Summary of the Non-Spatial Models 
Though the Poisson-Gamma model provides good information about the TB prevalence in Kenya, one of its 
shortcomings is that it is unable to handle problem of spatial correlation and incorporation of covariates [18]. 
The Poisson Log-Normal model provides specifications that allow for incorporation of covariates. The Poisson 
Log-Normal model also enable us to capture the area random effect and to explain the extend of risk variability 
among counties through the unstructured random effect term iu .  

Though thinning reduces the speed of the MC but it significantly reduces the number of iterations and solves 
the issue of autocorrelation among parameters that form the chain. Thinning reduces storage demand while 
preserving the integrity of the MC process [19]. [19] noted that the value of every thk  element to be sampled is 
determined by the researcher and out most care must be taken since extremely large k value may results in lost 
of potentially an important information.  

The slower the chain to converge, the more careful one should be about the burn-in period. However, it 
should be noted that there is no standard, systematic or guaranteed way of determining the length of the burn-in 
period [19]. Nevertheless, considerable work on convergence diagnostics has been done to make specific 
recommendations and identify tests [19]. 

HIV is identified as significant among the covariates considered. Reason being that HIV patients have their 
immune system weakened or destroyed by the HIV rendering the body natural defence incapable of carrying out 
its function of protecting the body against other diseases. Since HIV has this capacity to weaken the immune 
system, it also implies that it has the effect of re-activating latent TB to active TB in individuals who are latently 
infected. Models that allow for handling spatial correlation are discussed in Chapter 6. 
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Figure 9. Kenya county level TB prevalence counts: UH smooth relative risk map (a) and its 2.5% quantile (b), median (c) 
and 97.5% quantile (d).                                                                                       

6. Bayesian Hierarchical Spatial Model for Disease Mapping 
This section presents spatial models used to identify and detect clustering of disease risk in the study area of 
interest. Spatial data are directly or indirectly referenced to a location on the surface of the earth. These models 
would allow for borrowing of strength between neighbouring counties such that neighbouring counties shall 
have similar risk whiles distant counties are expected to show variation in risk. The idea of spatial auto- 
correlation in spatial data analysis is that values of variables in near-by locations are more similar or related than 
those far apart. Waldo Tobler’s first law of spatial analysis states that “everything is related to everything else 
but near-by things are more related than distant things” [20]. In particular, we investigate the statistical pro- 
perties of the Conditional Autoregressive (CAR) model and the [11] models.  
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Figure 10. Kenya county level TB prevalence counts: UH smooth relative risk exceedence probability map (a) and its 2.5% 
quantile (b), median (c) and 97.5% quantile (d).                                                                                       

6.1. Conditional Autoregressive (CAR) Model 
Though conditional autoregressive models where introduced decades ago by [11], they were not widely used 
until the 1990s. Since they are defined conditionally, they are particularly suited for use with the Gibbs sampler 
[21]. The Conditional Autoregressive (CAR) models have been used extensively to identify and detect clustering 
in diseases risk. In these models, risks of disease at any given area is affected by the risk in the neighbouring 
areas. These models have been referred to as the structured model or the Correlated Heterogeneity (CH) models. 
That is, estimation of risk in any given area depends on risk at neighbouring areas [18]. The distances or 
boundaries between the regions are often used in determine neighbourhood properties within CAR models [22]. 

Generally, the CAR model is a continuous Markov random field with a conditional probability density 
function characterization and designed to model spatial phenomena that are highly related to a specific local 
context [23] [24]. Application of CAR models can found in [23] [15] [25]. Let { }1, 2, ,S n=   represents the  
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Figure 11. Area-specific random effect: the posterior map (a) and its 2.5% quantile (b), median (c) and 97.5% quantile (d).                                                                                                                                  
 
area to be studied. Let { }:iN j S i j= ∈ ∈  denote the set of all regions that are neighbouring region i. Let  

,iv i S∈  be a random variable. We define the corresponding random field v  as the vector ( )1 2, , , nv v v ′= v .  
In the Gaussian CAR model, we often assume that each observation of the outcome variable iv  has a 

conditional distribution defined by  

2| ~ , .i j i ij j i
i j

v v N v τ≠
≠

 
Φ 

 
∑                                  (43) 

These are full conditionals where ijΦ  is the weight of each observation on the mean of iv  and also denotes 
the spatial dependence parameter. The ijΦ  is non-zero only if j S∈ . Conventionally, we set 0ijΦ =  since 
we do not want to regress any observation on itself. Hence no region is a neighbour of itself. The jv  denotes a 
vector of all observation except iv . Note that iv  depends only on a set neighbours jv  only if location j is a 
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neighbourhood set iN  of iv . The 2
iτ  is a potential unique variance for iv . For instance, if state i has M  

neighbours and 1
ij M

Φ =  for every state that is a neighbour, and 0ijΦ =  otherwise, then the conditional  

expectation of a state's observation is the mean of all neighbours observations [25]. The Gaussian processes are 
specified by their mean and covariance function [26]. Assuming that each conditional distribution is Gaussian, 
we will need the mean and the variance-covariance to define the CAR model. The mean and the variance- 
covariance are respectively defined as  

( ) 2| and var | .
i

i j i i ij j i i j i
j N

E v v v v vµ µ τ≠
∈

   = + Φ − =   ∑                     (44) 

Therefore, conditional probability density function of a CAR random variable iv  is has the form [25]  

( )
( ) ( )

2

2 2
1| exp ,

2π 2
i

i i ij j j
j N

i j i
i i

v v
f v v S

µ ρ µ

τ τ
∈

≠

  
 − − Φ − 
  ∈ = − 
 
 
 

∑
                (45) 

where 2, , 1i iµ τ ρ+=∈ ∈ <  , ( ) ( ) ( ),ij ij jiΦ ∈ Φ = Φ , ( ) 0iiΦ = . The conditional joint probability density 
function of all the observations is  

( )
( ) ( )

( ) ( )1

1 22 1

1| exp ,
22π

i j i n
f v v

det

−

≠
−

 − −
= − 

 

D

D

v B v

B

Σ

Σ

µ µ
                (46) 

where ( )1 -dimensional vectorn n×∈µ , ( )1 2, , , nµ µ µ ′= µ , n n×∈B  invertible matrix defined as  

( ) ( ) ( )

1 if
with if ,

0 otherwise
iij ij

i j
B j Nρ ρ

 =


= − = − Φ ∈



B I Φ                      (47) 

n n+ ×∈DΣ  diagonal matrix; ( )2 2 2
1 , , n idiag τ τ τ= =DΣ  such that DΣ  is symmetric. It follows that the joint 

multivariate Gaussian distribution for iv  with 0µ =  has covariance matrix 1 1− −= =
vD D DB BΣ Σ Σ  which is  

symmetric such that ( ) ( )
2 2 , ,j iij ji i j Sτ τΦ = Φ ∈ . Thus, a conditional autoregressive model v  in (45) has a pro-  

bability density function defined as  

( ) ( ) 2| ~ , ,
i

i j i i j j iij
j N

v v N v i Sµ ρ µ τ≠
∈

 
+ Φ − ∈ 

 
∑                        (48) 

and the joint probability density function in (46) becomes  

( )1~ , .N µ −
Dv B Σ                                    (49) 

The necessary and sufficient condition for (49) to be a valid joint probability density function is that its 
covariance matrix should not only be symmetric, but also positive definite (that is, its eigenvalues 0, , ,i i nλ >  ) 
TB223. For iv  to be a Gaussian random variable, we need to show that DΣ  is symmetric. 

To show that DΣ  is symmetric, we defined a symmetric weighted adjacency matrix W , where  

( )( ) ( ) ( ) ( ) ( )

1 if
with , with : , ,

0 otherwise,
iij ij ij ji

j i
w w i j j N i j S w wϕ

 =


= = ∈ ∀ ∈ =



W              (50) 

where ( ),i jϕ  is a measure that quantifies the proximity between region i and region j; if ( ), 1,i jϕ =  then i 
and j share a common boundary (neighbours). The ( ),i jϕ  could be the distance between the centroids of 
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region i and j. Also, if ( ), 1i jϕ = , then j is one of the h nearest neighbours of i. Let DW  be the diagonal of the 
adjacency matrix W . The adjacency matrix of normalization or standardization DW  is defined as  

( ) ( ) ( )( )1 2diag , , , .nw w w+ + += DW                               (51) 

Suppose  

( ) ( ) , , ,
i

i ij
j N

w w i j S+
∈

= ∈∑                                   (52) 

then we define a matrix of interaction, Θ  to be a normalized adjacency matrix defined as  

( )
( )

( )
( ) ( )

1 2 2with , where , , .ij
j iij ij ji

i

w
i j S

w
τ τ−

+

= Θ = Θ = Θ ∈DW WΘ                (53) 

Suppose again that the matrix DW  corresponding to a constant diagonal matrix normalized as (53), then we 
have 
α   

( )

2
2 1 2 2with , , .i

i

i S
w
ττ τ τ− +

+

= = ∈ ∈D DW W                        (54) 

It follows that the conditional joint probability density function can be rewritten as  

( ) ( ) 1

1 2
1, , exp ,

2nP v v
τ

− ′∝ − − 
 



wD DWΨ Σ Σ Ψ                       (55) 

where ( )= −vΨ µ  and ( )= −
wDB WΣ . Hence, the CAR model structure for iv  is defined as  

2

| ~ , ,ij v
i j i j

j i i

w
v v N v

w w
τ

≠
+ +

 
 
 
∑                               (56) 

and the Equation (49) can be alternatively defined as  

( )
1

2
1~ , .
vτ

−   −    
Dv W Wµ ρ                               (57) 

The 2
vτ  controls the overall variability of iv , while ρ  represents the overall effect of spatial dependence. 

The value of ρ  is should be chosen appropriately [25].  

The row stochasticity of 1ˆ
i

diag
w +

 
=  

 
W W  indicates that the distribution is improper. This impropriety can 

be fixed by the parameter ρ . Redefining ( ) 11 ρ
−− = −

v wD D WΣ Σ  and choose ρ  such that 1−
vDΣ  is non singular, 

preferably with 
1

1 1,
n

ρ
λ λ

 
∈ 
 

, where 1 nλ λ< <  are the ordered eigenvalues of 1 2 1 2− −
w wD DWΣ Σ . Simplifying  

the bounds, we replace W  by Ŵ . It follows that  

( )1 ˆ .ρ− = −
v wD D I WΣ Σ                                 (58) 

If 1ρ < , then ( )ˆρ−
wD I WΣ  is non singular. Non-singularity is guaranteed if 

1

1 ,1ρ
λ

 
∈ 
 

 where 1λ  is  

the minimum eigenvalue of 1 2 1 2− −
w wD DWΣ Σ . The bound mostly preferred is ( )0,1ρ ∈ . This is a proper Intrinsic  

Autoregressive model which add parametric flexibility and 0ρ =  is an indication of independence. ρ  is the 
additional parameter which makes iv  independent when it is equal to zero. An improper choice of 1ρ =  may 
enable wider scope for posterior spatial pattern and may be preferable [27].  
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6.2. Parameter Estimation 
In this study, we estimate parameters in the CAR model using Bayesian hierarchical methods. In disease 
mapping, we assumed that disease counts  

( )( ) ( )~ Poisson exp , where exp is the mean of Poisson distribution.i i i i i iy E Eη µ η=         (59) 

The relative risk is defined as  

( )exp , where , and has a CAR structure.i i i i iv vϑ η η ′= = +X β                  (60) 

Fitting the generalized linear model with a log-link function, we have ( ) ( )log logi i iE vµ ′= + +X β . Under 
the Bayesian method, given the likelihood function of ϑ  defined as  

( )
( )( ) ( )( ) ( )

1

exp exp exp
, , , | , ,

!

iy
n

i i i i

i i

E E
P

y
η η

=

−
= =∏ v y Eβ ϑ β υ                 (61) 

the prior distribution for β  is  

( )
2 2

2
0

1 1 1exp
2π 2

PP P
p

p
P

β β

β
τ τ=

   = −            
∑β                          (62) 

and the prior distribution for the CAR random effect is defined by  

( ) ( )
2

2 2| , ~ , ~ 0, .ij v
i j i v j v

j i ij ij

w
P v v N v CAR

w w
ττ τ≠

≠

 
 =     

 
∑v                     (63) 

The posterior distribution is defined as  

( ) ( ) ( ) ( )2 2 2 2, , , | , , , , | , , , .v vP P P Pβ βτ τ τ τ∝v y E X E v vβ ϑ ϑ β β                  (64) 

Therefore,  

( ) ( )( ) ( )( )2 2

1

2 2 2

2
0

exp exp exp
, , , | , ,

!

1 1 1exp , .
2π 2

iy
n

i i i i
v

i i
PP P

p ij v
j

p j i ij ij

E E
P

y

w
v

w w

β

β β

η η
τ τ

β τ
τ τ

=

= ≠

−
=

    × −               

∏

∑ ∑

v y Eβ ϑ

                 (65) 

The hyperperprior distribution for the precision parameters 2
vτ  and 2

βτ  are ( )2 ~ Gamma 0.05,0.005vτ  and 
( )2 ~ Ggamma 0.5,0.05βτ  respectively. The linear regression coefficient distribution is defined by ( )2~ 0,N βτβ . 

Parameter estimation was carried out using Bayesin Markov Chain Monte Carlo via Gibbs Sampling. Con- 
vergence of the MCMC was reached at 11,000 iteration after a burnin period of 10,000 sample and thinning of 
every 30th element of the chain. Convergence diagnosis plots are presented in Figure 12 and posterior statistics 
of parameters presented in Table 6. We compare these results with the [11] model results in Section 6.3. 

6.3. The Besag, York and Mollié (BYM) Model 
Among the models proposed for performing risk smoothing which have appeared in literature, the [11] model 
has found most extensive application. The BMY model is divided into two components; the CAR model 
component iv , and the UH component, iu  (discussed in Section 6.1 and Section 5.1.1 respectively). The 
BYM model was introduced by [10] and latter developed by [11]. The BYM or convolution model is defines as  

i i iu vη µ= + +                                     (66) 

As noted earlier, we assume  

( )( ) ( )~ Poisson exp , where exp is the mean of the Poisson distribution.i i i i i iy E Eη µ η=         (67) 

The linear link function i i iu vη ′= + +X β . The log relative risk ( )log i iϑ η= . Therefore, the relative risk for  
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Figure 12. Poisson log-normal model with CAR model: convergence diagnosis of Markov Chain Monte Carlo.                                            
 
Table 6. Posterior statistics of the CAR and BYM models.                                                                                       

Model indicators CAR BYM 

0β  −0.1774 (−0.1805, −0.1743) −0.179 (−0.267, −0.0908) 

HIV 1.812 (0.7735, 2.758) 1.41 (0.488, 2.34) 

Firewood 0.2764 (−2.44, 2.822) −0.28 (−1.29, 0.793) 

five kilometer distance −1.505 (−4.19, 1.18) −0.852 (−1.81, 0.124) 

vσ  0.8298 (0.6751, 1.03) 0.372 (0.156, 0.678) 
2
vτ  1.559 (0.9432, 2.194) 11.3 (2.18, 40.8) 

uσ  - 0.298 (0.158, 0.416) 
2
uτ  - 13.4 (5.79, 40) 

D  578,018 50.969 

pD 49.191 77,062 

DIC 627.209 630.758 

 
the i area is defined by  

( )exp .i i iu vϑ ′= + +X β                                 (68) 
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The log log-link function is defined as  

( ) ( ) ( )log log exp ,i i i iE u vµ ′= + + +X β                            (69) 

where , ,y Eβ  and ϑ  are vectors of the covariate, the associated parameters, the expected number of cases, 
and the relative risks of TB prevalence respectively. The iu  is the county level random effect capturing the 
residual log RR of disease in county i. The iu  (UH) is sometime thought of as a latent variable which captures 
the effect of unknown or unmeasured area level covariates and iv  has a CAR model structure.  

Parameter Estimation 
We defined the likelihood function as  

( )
( )( ) ( )( ) ( )

1

exp exp exp
, , , , | , , .

!

iy
n

i i i i

i i

E E
P

y
η η

=

−
= =∏ u v y E u vβ ϑ β                (70) 

The prior distribution for β  is  

( )
2 2

2
0

1 1 1exp ,
2π 2

PP P
p

p
P

β β

β
τ τ=

   = −            
∑β                           (71) 

prior distribution for the area-specific random effect iu  is defined by  

( )
2 2

2
1

1 1 exp ,
2π 2

nn n
i

iu u

uP
τ τ=

   = −   
     

∑u                            (72) 

and prior distribution for the CAR structure iv  is  

( ) ( )
2

2 2| , ~ , ~ 0, .ij v
i j i v j v

j i ij ij

w
P v v N v CAR

w w
ττ τ≠

≠

 
 =     

 
∑v                     (73) 

Therefore the posterior distribution for the parameters of interest is defined as  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2, , , , , | , , , , | , , , , , .u v u vP P P P Pβ βτ τ τ τ τ τ∝u v y E y E β u v u vβ ϑ ϑ β            (74) 

Therefore,  

( ) ( )( ) ( )( )2 2 2

1

2 22 2 2

2 2
0 1

exp exp exp
, , , , , | , ,

!

1 1 1 1 1exp exp , .
2π 2 2π 2

iy
n

i i i i
u v

i i
P nP nP n

p j iji v

p i j iu ij iju

E E
P

y

v wu
w w

β

β β

η η
τ τ τ

β τ
τ ττ τ

=

= = ≠

−
=

          × − × − ×                         

∏

∑ ∑ ∑

u v y Eβ ϑ

        (75) 

The hyperprior disribution for the precision parameters 2
uτ , 2

vτ  and 2
βτ  are ( )2 ~ Gamma 0.5,0.005uτ , 

( )2 ~ Gamma 0.5,0.005vτ  and ( )2 ~ Gamma 0.5,0.01βτ  respectively. The linear regression coefficient are as- 
sumed to have normal distribution defined by ( )2~ 0,N βτβ . The 2

uτ  reflects the amount of extra-poisson 
variation in the data [18]. The precision variances 2

uτ  and 2
vτ  control the variability of u  and v  respec- 

tively. Parameter estimation was carried out using Bayesin Markov Chain Monte Carlo via Gibbs Sampling. 
Convergence of the MCMC was reached at 11,000 iteration after a burn-in period of 10,000 sample and thinning 
of every 90th element of the chain.  

Posterior statistics of the CAR and the BYM model are presented in Table 6. Table 6 revealed that the 
estimated overall relative risk effect of the CAR model is 0 0.177β = −  (95% credible interval = (−0.180, 
−0.174)) and BYM model 0 0.179β = −  (95% credible interval = (−0.267, −0.0908)). Each model’s overall risk 
effect is significantly different from zero and negative. These models confirmed with the UH model that overall 
TB risk would be decreasing keeping all determinants of TB constant. Again, only the HIV variable is signi- 
ficant and positive for the CAR model and the BYM model with parameter estimates 1.812 (95% credible 
interval = 0.7735 - 2.758) and 1.41 (95% = 0.488 - 2.34) respectively. We therefore infer that the relative risks 
of TB increases as HIV prevalence increases. 
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As noted previously, the smaller the precision variance 2
vτ , the risk in any given area is similar to that in the 

neighbouring areas. The CAR model’s precision variance, 2 1.56vτ =  (95% credible interval = 0.94 - 2.19) 
indicates high similarities of TB relative risk between neighbouring counties than the BYM model’s precision 
variance, 2 11.3vτ =  (95% credible interval = 2.1 8- 40.80). High variation of TB risk exhibited by 2

vτ  in the 
BYM model could be due to the presence of the iu  term with precision variation 2 13.4uτ =  (95% credible 
interval = 5.79 - 40.00). 

Although the CAR model and BYM model each provides important information about TB relative risk 
behaviour, we recommend the CAR model as the best fitting spatial model to Kenya TB data since it yields 
lower DIC (627.21) and lower pD (49.19) than the BYM model with DIC (630.76) and pD (50.97). The BYM 
model, though robust, its robustness as a spatial model is lost a in situation where there is over-fitting [28]. That 
is, adding spatially structured extra-variability to the data when such variability doe not actually exit, con- 
ditionally on the covariates included in the model, leads to over-fitting, and may bias the estimations of the 
medical association between covariates and relative risk towards the hypothesis that it has no significant effect. 
In other words, not accounting for an actual spatial variability may lead to major biases but if spatially, 
variability of health indicators is completely explained by that of the socio-economic and environmental factors 
taken into consideration, regression residuals could results to a biased estimate of the medical association. We 
therefore presents detailed results of the CAR model (43). Figure 12 shows the convergence diagnostics plots of 
the CAR model. The convergence diagnostics of the BYM model can be found in Figure 13 and Figure 14. 

Figure 15 also shows that out of the 47 counties in Kenya, 13 exhibit TB relative risk higher than the national 
risk (RR = 1). Table 7 grouped counties according to their respective relative risk ranges. The pattern of risk 
behaviour is similar to that reported in the previous models. High TB risk occurs in the North, West, North-West 
and central counties of Kenya and low risk in the South-East counties except Mombasa.  

Table 7 shows 4 counties (Nairobi, Mombasa, Isiolo, and Marsabit) having highest relative risk (RR > 2.0). 
Out of the 47 counties, 13 counties show high relative risk above 1. Counties with high TB relative risk are 
visually shown by the exceedence probability map Figure 16.  

Figure 16 confirms with the UH model’s results that there are 13 counties elevated risk (RR > 1). These 
counties exhibiting high relative risk are: Nairobi, Mombasa, Kisumu, Turkan, Migori, Homa bay, Uasin Gishu, 
Isiolo, Marsabit, Siaya, Tharaka-Nithi, Mandera, and Embu. Again, it can be observed that North, West, North- 
West and central counties of Kenya exhibit high TB prevalence and low prevalence in the South-West counties 
except Mombasa. Figure 17 captures areas with potential clusters of disease risk. Clusters of TB risk are 
suspected in Marsabit, Embu, Migori and Kisumu. 

6.4. Summary of the Spatial Models 
The CAR and the BYM models are used to capture clustering or clusters information about disease risk. Each 
model identified HIV as a major cause of high TB prevalence in Kenya. Each model revealed significance of 
risk similarities between neighbouring counties. Local clusters of TB risk occurs in neighbouring counties with 
high TB relative risk. Though each of the CAR model and the BYM provides interesting information about 
Kenya’s TB data, CAR model appears to provide best fit since it yields lower DIC (49.19) and lower pD (627.21) 
than the BYM model with DIC (50.97) and pD (630.76). 

7. Discussion and Conclusion 
This thesis provides a framework for application of non-spatial and spatial models for modeling and mapping 
TB in Kenya. We discuss the non-spatial and spatial models methodology as well as illustrate application of the 
non-spatial and spatial methods to TB in Kenya. We have also evaluated models performance using the DIC 
approach proposed by [1]. Our findings reveal that the CAR and the unstructured heterogeneity models may be 
suitable for modeling and mapping relative risk of TB in Kenya. Table 8 presents comparison of the non-spatial 
models (PG, LN and UH), spatial model (CAR) and BYM model (combination of CAR and UH models) used in 
this study. Though the Poisson-Gamma (PG) model yields the lowest DIC, it does not allow for incorporation of 
spatial structure. The overall relative risk estimated by the PG is 0.94 (95% credible interval = 0.82 - 1.10). The 
Log-Normal (LN) provides specifications that can be extended to include spatial structures. The UH, CAR, and 
BYM models confirm that with all determinants of TB kept constant, overall relative risk of TB will be 
decreasing. Also, the UH, CAR, and BYM confirm HIV as a major TB determinant and that TB prevalence in  
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Figure 13. BYM model: Rubin and gelman convergence diagnostics.                                            

 

 
Figure 14. BYM model: Rubin and gelman convergence diagnostics cont.                                                            
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Figure 15. Kenya county level TB prevalence counts: The CAR model’s posterior mean of the relative risk map (a) and its 
2.5% quantile (b), median (c) and 97.5% quantile (d).                                                                                       
 
Kenya increases with increasing HIV. Generally clustering of risk and elevated risk are observed in the North, 
West, North-West and the central counties of Kenya and low clustering and elevated risk in the South-West 
counties. 

The UH model captures and displays variability of relative in the study area through the area-specific random 
effect whiles the CAR model and the BYM model provide evidence of risk similarities between neighboring 
counties. Among the LN, the UH, the CAR and the BYM models, the UH model yielded the lowest DIC 
(622.75), hence considered as the best fitting model when fitted to Kenya TB data for 2002-2009. However, 
using the acceptable criteria that a DIC difference between two models greater than 10 implied significant 
difference while a DIC less than 5 implied a negligible difference [29], one could use any of the non-spatial and 
spatial models for fitting Kenya TB data for 2002-2009 depending on the issue at hand. Although these 
approaches are less than ideal, we hope that our results provide a useful starting point into the development of  
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Table 7. Poisson log-normal model with CAR model results indicating counties with high and low TB risk.                                            

RR > 2.0 RR: 1.5 - 2.0 RR: 1.0 - 1.5 RR < 0.5 

Nairobi, 2.159 (2.145, 2.174) Homa bay ,1.721 (1.702, 1.74) Embu, 1.199 (1.18, 1.219) Lakaipia,  
0.458 (0.4449, 0.4714) 

Mombasa, 2.383 (2.36, 2.407) Isiolo, 1.957 (1.906, 2.01) Mandera, 1.044 (1.02, 1.067) Nandi, 0.4033 (0.3941, 0.4127) 

Marsabit, 1.969 (1.93, 2.008) Kisumu, 1.975 (1.955, 1.995) Migori, 1.374 (1.357, 1.392) Narok, 0.482 (0.4715, 0.4928) 

- - Siaya, 1.401 (1.384, 1.419) Nyamira (Kisii North), 0.4533 
(0.4422, 0.4646) 

- - Tharaka-Nithi,  
1.064 (1.042, 1.086) Vihiga, 0.469 (0.4581, 0.4801) 

- - Turkan, 1.068 (1.051, 1.086) - 

- - Uasin Gishu,  
1.182 (1.166, 1.198) - 

 

 
Figure 16. Kenya county level TB prevalence counts: The CAR model posterior mean of the relative risk exceedence 
probability map (a) and its 2.5% quantile (b), median (c) and 97.5% quantile (d).                                            
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Figure 17. The correlated heterogeneity effect’s posterior map (a) and its 2.5% quantile (b), median (c) and 97.5% quantile 
(d).                                                                                                                                  
 
spatial methodology for modeling and mapping RR of TB in Kenya. 

Modeling of risk in space and time is important but is quite a challenging task. Further research is required 
determined suitable spatio-temporal models for modeling and mapping relative risk of TB in Kenya. This will 
allow to explain evolution of the relative risk of TB in space and time. 

Limitation of the study is that the specification of the adjacency matrix W  with 0 and 1 in the CAR model 
(43) is not internally consistent in a case in which the number of neighbors varies (occurs with most irregular 
lattices). In the CAR model, when ρ  is fixed at 1, the CAR models’ specification becomes an “intrinsic” CAR 
model (which is prevalent in empirical studies), and requires less computation time but presents theoretical and 
conceptual issues that undermine its validity [30]. For instance, the precision parameter 2τ  is unknown (which 
is always the case), the functional from of the joint distribution of the spatial random effects ( v ), are not 
identifiable under the “intrinsic” CAR specification. Thus one cannot be confident that his/her estimates, nor  
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Table 8. Posterior statistics of non-spatial and spatial models.                                                                 

Model indicators PG LN UH CAR BYM 

0β  - - −0.177  
(−0.296, −0.060) 

−0.177  
(−0.181, −0.174) 

−0.179  
(−0.267, −0.091) 

a 4.72 (3.10, 6.71) - - - - 

b 5.046 (3.21, 7.29) - - - - 

mean 0.94 (0.82, 1.10) −0.17  
(−0.31, −0.046) - - - 

variance 0.20 (0.12, 0.31) - - - - 

HIV - - 1.198 (0.493, 2.571) 1.812  
(0.774, 2.758) 1.41 (0.488, 2.34) 

Firewood - - 0.274 (−2.215, 2.144) 0.276  
(−2.44, 2.822) 

−0.28  
(−1.29, 0.793) 

five kilometer distance - - −1.317 (−3.423, 1.437) −1.505  
(−4.19, 1.18) 

−0.852  
(−1.81, 0.124) 

2τ  - 5.012 (3.20, 7.24) - - - 

σ  - 0.46 (0.37, 0.56) - - - 

vσ  - - - 0.8298  
(0.675, 1.03) 

0.372  
(0.156, 0.678) 

2
vτ  - - - 1.559  

(0.943, 2.194) 11.3 (2.18, 40.8) 

uσ  - - 0.441  
(0.359, 0.547 ) - 0.298  

(0.158, 0.416) 

2
uτ  - - 5.324  

(3.347, 7.757) - 13.4 (5.79, 40) 

pD 46.95 47.013 46.973 49.191 50.969 

DIC 622.70 622.83 622.753 627.209 630.758 

 
convergence of the parameters draw, due to potentially improper distributional assumptions. Conceptually, not 
including ρ  in the model blurs one's estimates and can lead to counter-intuitive interpretation [30]. 
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