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Abstract 
In this study, several vegetation indices were examined in order to determine the most sensitive 
vegetation index for monitoring southern Appalachian wetlands. Three levels of platforms (in situ, 
airborne, and satellite) for sensors were also examined in conjunction with vegetation indices. Net 
primary production (NPP) data were gathered to use as a measure of wetland function. Along with 
the in situ radiometers, National Agricultural Imagery Program (NAIP) data and Landsat 8 Opera-
tional Land Imager (OLI) data were gathered in order to calculate vegetation indices at three plat-
forms. At the in situ level, VARI700 was the most sensitive vegetation index in terms of NPP (r2 = 
0.65, p < 0.05). At the airborne level, the NDVI was the most sensitive vegetation index to NPP (r2 = 
0.35, p = 0.11). At the satellite level, the DVI appeared to have a positive relationship with NPP. For 
most indices there was a drop in the coefficient of determination with NPP when the platform al-
titude increased, with the exception of NDVI when increasing altitude from in situ to airborne. This 
study provides a novel methodology comparing reflectance and vegetation indices at three plat-
form levels. 

 
Keywords 
Net Primary Production, Montane Wetland, In Situ, Airborne, Satellite 

 
 

1. Introduction 
The use of remote sensing in vegetation-related studies is a rising trend as it allows for the estimation of vegeta-
tion characteristics (chlorophyll content and net primary production, NPP) over large areas [1]. Remote sensing 
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is beneficial because of the low cost and short analysis time, both of which are advantageous for the monitoring 
of wetland health. Proximal sensing, the use of hand-held radiometers in the field, is becoming a larger part in 
the field of remote sensing than it has been previously [2]-[5]. 

In all of the aforementioned in-situ remote sensing studies, two inter-calibrated hyperspectral radiometers 
were used. This methodology was employed because the use of two radiometers allows for one to capture in-
coming radiation while the other captures the ground reflectance simultaneously [3] [4]. This practice allows for 
smaller errors when estimating irradiance because irradiance is being captured while the upwelling radiance is 
also captured, resulting in more accurate reflectance values [3] [4]. Computing radiance is also possible during 
times of inconstant irradiance [4], which might be a difficulty with remote sensing. 

Remote sensing allows for the estimation of vegetation characteristics over large areas in a short amount of 
time, though error is introduced because of atmospheric interference (e.g. Rayleigh and Mie scattering). Differ-
ences in platform (airborne vs. satellite) might determine the amount of the aforementioned error due to the 
amount of atmosphere with which light must interact. Thus, using data from an airborne platform for compari-
son to proximally sensed data might serve as an intermediate step between comparing proximally sensed and 
satellite data. 

The National Agricultural Imagery Program (NAIP) generates plane platform data that served the purpose of 
this comparison. NAIP was selected among the varieties of remotely sensed data for a few reasons. The spatial 
resolution of NAIP data is 1 m of ground distance with ground control points within 6 m [6]. High spatial reso-
lution was a top priority for this study given the size of the wetlands in this study (average = 0.06 ha, n = 3) as 
well as the quadrats within the wetlands (0.09 m2) [5]. The other priority for remotely sensed data were the 
spectral resolution, specifically focusing on the need for green, red, and near infrared (NIR) bands. NAIP data 
records visible bands (red, green, and blue) for all states with some states having NIR data recorded as well. The 
NIR band is important for most, if not all, of the vegetation indices that have been generated [2]. However, NIR 
is not available for all states and NAIP has low temporal resolution relative to many satellite sensors, like Land-
sat 8 Operational Land Imager (OLI). 

While Landsat 8 OLI has limitations associated with spatial resolution (30 m) for visible and NIR bands, im-
agery from Landsat 8 is available at 16 day intervals [7]. Landsat 8 OLI also offers 11 bands, including three 
bands covering the visible portion of the electromagnetic spectrum (band 2-blue, band 3-green, band 4-red) and 
NIR (band 5) [7]. With high temporal and spectral resolution, Landsat 8 OLI provides useful imagery for man-
agement of sensitive areas, such as southern Appalachian wetlands. 

Attempts to estimate biomass from remotely sensed data have been numerous [8]. Over forty vegetation in-
dices have been developed [9] but the primary vegetation index used in remote sensing is the normalized differ-
ence vegetation index (NDVI). Wetlands are not a typical environment for the use of vegetation indices to pre-
dict biomass or NPP, but [10] found that NDVI can be used but it can be modified to improve its prediction of 
biomass. This lack of biomass prediction accuracy is in part due to the saturation of NDVI and a traditional non- 
linear relationships with aboveground vegetation characteristics [10]-[14], though it is still useful for measuring 
biomass and should be the starting point for any study trying to predict biomass from vegetation indices. For that 
reason, efforts have been made to improve NDVI and develop other vegetation indices [14]. However, the 
NDVI still serves as a point against which to measure any new vegetation index. The difference vegetation in-
dex (DVI) has shown the ability to explain a high amount of variance in biomass estimates (r2 = 0.8546) [8] [15]. 
The DVI is calculated as: 

( )DVI NIR Red ,ρ α ρ= −                                     (1) 

where ρNIR is the reflectance of NIR, ρRed is the red reflectance, and α = 0.96916 [16] [17]. The wide dynamic 
range vegetation index (WDRVI) was found to have the best correlation (r2 = 0.52) with biomass in the coastal 
marsh study conducted by [5]. According to [13], the WDRVI is calculated as: 

( ) ( )WDRVI a NIR Red a NIR Red ,ρ ρ ρ ρ= × − × +                        (2) 

where a serves as an estimation of the vegetation fraction (VF) and can range from 0.05 to 0.2. Other vegetation 
indices that have been found to have linear relationships with aboveground vegetation characteristics are the 
modified simple ratio (MSR) [14] [18], calculated as: 
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( ) ( )NIR red 1 NIR red 1 1 2,ρ ρ ρ ρ− +                                 (3) 

and the Renormalized Difference Vegetation Index (RDVI) [14] [19], which is calculated as: 

( ) ( )NIR red NIR red 1 2,ρ ρ ρ ρ− +                                    (4) 

The Soil-Adjusted Vegetation Index (SAVI), which was developed by [20], was created in an attempt to im-
prove upon the NDVI through transformation that allowed for the physical effect of soil interference through 
reflectance to be eliminated. SAVI is useful for examining wetland vegetation, like reeds [21], especially when 
vegetation cover is low and soil exposure is high [22]. SAVI is calculated as: 

( ) ( ) ( )NIR red NIR red L 1 L ,− + + × +                                (5) 

where L is a correction factor based on LAI [20]. 
Two indices were developed by [23] based on the Atmospherically Resistant Vegetation Index (ARVI), called 

the Visible Atmospherically Resistant Index, using green reflectance in one calculation (VARIGreen) and red edge 
reflectance in the other (VARI700) [23]. They are calculated as: 

( ) ( )Green green red green red blueVARI R R R R R= − + −                           (6) 

and 

( ) ( )700 700 red blue 700 red blueVARI R 1.7 R 0.7 R R 2.3 R 1.3 R= − × + × + × − ×               (7) 

where Rgreen is green reflectance, Rred is red reflectance, Rblue is blue reflectance, and R700 is the reflectance at 700 
nm (red edge). 

All vegetation indices have benefits and drawbacks (Table 1). Methods for examining ecosystems, NPP in 
particular, have evolved and will continue to evolve as knowledge and technology expand. 

NPP is an important indicator of ecosystem function. Gross primary productivity (GPP) is the amount of car-
bon (C) converted from inorganic forms in the atmosphere to part of the plant body through the process of pho-
tosynthesis. NPP is the GPP minus the amount of C lost to the environment through cellular respiration in the 
root system and herbivory. NPP is important because it serves as a marker of C storage as well as an indication 
of ecosystem function, where more productive systems will result in higher NPP values. Thus, NPP is important 
as a measure of both C sequestration and ecological function. The importance of this study is, in part, tied to the 
importance of NPP. 

The significance of this research lies in the study of NPP in montane wetlands, an ecosystem that is little stu-
died, as well as the methods used in this study. As already discussed, NPP is an important factor to study and the 
development of a model that can estimate NPP in southern Appalachian montane wetlands using vegetation in-
dices would provide a useful tool in management of montane wetlands with less disturbance. In order to create 
this model, we employed a methodology using proximally sensed data to help improve the accuracy of remotely 
sensed data for the model. The model developed in this study could be employed in other settings to also im-
prove management, while limiting disturbance. 
 
Table 1. Summary of vegetation index needs.                                                                     

Vegetation Index Bands Needed Ancillary Data Needed? Can Be Used with  
Multispectral Data? 

NDVI Red, NIR No Yes 

DVI Red, NIR No Yes 

WDRVI Red, NIR Yes Yes 

RDVI Red, NIR No Yes 

SAVI Red, NIR Yes Yes 

MSR Red, NIR No Yes 

VARI700 Red Edge (700 nm), NIR No No 

VARIGreen Blue, Green, Red, NIR No Yes 
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The objective of this study was to create a model using vegetation indices generated from remotely sensed 
data in order to estimate NPP to best serve in the management of southern Appalachian wetlands. Among the 
myriad of vegetation indices in existence, NDVI, DVI, RDVI, WDRVI, SAVI, MSR, and VARI will be ex-
amined. The model is designed to inform wetland managers to which type of data acquired and used (platform, 
spatial resolution, spectral resolution, and temporal resolution) to the appropriate needs of and resources allo-
cated to the wetland managers. Many vegetation indices were tested to provide the best estimate for NPP 
throughout southern Appalachian wetlands. 

2. Materials and Methods 
2.1. Study Area 
Three wetland sites in the southern Appalachians, one in Alabama and two in Tennessee (Figure 1 and Figure 2) 
were selected from southern Appalachian wetlands based on the presence of emergent wetland vegetation and the 
lack of forest using the Wetlands Mapper website operated by the US Fish and Wildlife Service. Tennessee and 
Alabama sites provided a low amount of surrounding forest cover, which was desirable for the remote sensing 
portion of this research. Tree cover would limit the capture of images by creating shadows or by being captured 
within a pixel for Landsat 8 OLI. 

2.2. Vegetation Sampling 
Leaf area index (LAI) data were collected along with peak standing aboveground biomass, which was assumed to 
be NPP, for each quadrat [5]. Vegetation was sampled within a 0.09 m2 quadrat along 10-m transects for each 
wetland site [5]. The biomass collected from each quadrat was assumed to be NPP and NPP values were generated 
for each quadrat. Biomass samples were refrigerated until further analysis. For biomass sample analysis, samples 
 

 
Figure 1. Site map for southern Appalachian wetlands in this study.                                                  
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Figure 2. Landsat 8 OLI imagery for southern Appalachian wetlands in this study. Red dots mark the field sites.      

 
were oven-dried for 12 hours at 50˚C [5]. Biomass samples were massed before and after drying. One above 
canopy and four below canopy LAI values were taken for each quadrat [5]. LAI served as an ancillary value for 
WDRVI as well as calculating the L value for SAVI. 

2.3. Proximally Sensed Data Collection 
Generating a spectral signature involved collecting top of canopy reflectance using OceanOptics JAZ hyper-
spectral radiometers (OceanOptic Inc., Dunedin, FL, USA) following [5]. Each of the radiometers was calibrated 
for white, using a Spectralon white reference board (ASD Inc., Boulder, CO), and dark by covering the end of the 
radiometer. Radiance and irradiance were collected from the two calibrated hyperspectral radiometers, which 
were operated at least 1 m above the canopy [3] [5]. One of the radiometers was pointed toward the sky in order to 
collect one sample of incoming irradiance [5]. The other radiometer was pointed toward the ground with 25˚ field 
of view (FOV) to collect one sample of upwelling radiance [5]. One signature was collected for each biomass 
sample by collecting one sample of irradiance and one sample of radiance from the vegetation. 

After field collection of radiometer data, a reflectance value was generated for each proximally sensed data 
sample. Radiance and irradiance data were downloaded from the radiometers and a reflectance value was gener-
ated by dividing the radiance by the irradiance. The reflectance value generated was a measure of the percentage 
of irradiance that was radiated back by the vegetation (radiance) for each band, unless vegetation indices dictated 
otherwise (e.g. VARIGreen). Reflectance values generated from the radiometers were averaged over the band-
widths of NAIP radiometers. For example, the red band for NAIP captured by an ADS radiometer is 607 - 662 nm, 
thus the values for the reflectance of radiometers were averaged over the same range in order to generate a red 
reflectance for the radiometers for comparison to NAIP data. 

2.4. Remotely Sensed Data Acquisition and Calibration 
NAIP data were acquired by downloading data from the USDA Geospatial Data Gateway  
(http://datagateway.nrcs.usda.gov/). The year of the field work was used for the data collection. If the year of the 
field work was not available, the closest year was used. Local governments proximal to each site were contacted 
to inquire about data collected closer to field work dates. GPS coordinates were used to find the pixel associated 
with the NPP sample collection point and reflectance values for red, green, and NIR were recorded for vegeta-
tion index calculations. 

NAIP imagery was calibrated using ERDAS Imagine (Hexagon Geospatial, Norcross, GA). NAIP images 
were calibrated using the empirical line calibration (ELC). Images were calibrated by band by using a spectral 
library (ASTER). Ground cover types were selected (e.g. grass, asphalt) that occurred near the site and five 
points were taken of each ground cover within the image. The spectral signatures for the ground points were run 
against the spectral library signatures for that band. A new image was generated from the ELC. Brightness val-

http://datagateway.nrcs.usda.gov/
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ues were taken from that image for vegetation indices. 
Landsat 8 OLI images were downloaded from the USGS Earth Explorer website (http://earthexplorer.usgs.gov/). 

Imagery was downloaded for the date closest to the date of field work before field work was conducted. 20% 
cloud cover was the maximum cloud cover; if an image exceeded 20% cloud cover for the collection date, the 
image from the previous collection period was used. GPS coordinates were used to locate the pixel for each qu-
adrat. Brightness values were recorded for blue, green, red, and NIR for each pixel in order to calculate vegeta-
tion indices. 

2.5. Vegetation Indices 
After reflectance values were generated from radiometer and brightness values were recorded from NAIP data, 
vegetation indices were calculated for all NPP sites using combinations of green, red, and NIR reflectance data, 
depending on the vegetation index equation. NDVI was employed because it is the most common vegetation in-
dex and generally accepted as the best vegetation index for estimating biomass. The MSR (Equation (3)), RDVI 
(Equation (4)), DVI (Equation (1)), and WDRVI (Equation (2)) were also used because success has been found 
in estimating biomass from these indices [5] [14]. LAI was used in order to estimate for VF to calculate WDRVI. 
LAI values were put into 15 categories to account for the 15 values (0.05 - 0.2) within the range of the VF value 
used by [14] with the lowest LAI category representing 0.05 and the highest LAI category representing 0.2. 

2.6. Data Analysis 
The objectives of this study were to determine which vegetation index best identifies variance in NPP and, thus, 
best informs wetland managers on wetland health. Linear regressions of the vegetation indices calculated for each 
sample point for in situ and NAIP data and compared to NPP will determine which of the vegetation indices was 
best able to explain variance in NPP. Because Landsat has coarser spatial resolution than in situ and NAIP imagery, 
NPP values that fell within one Landsat pixel were averaged [5] and the vegetation index for the pixel was 
compared to the average NPP value within the pixel via scatter plot. 

3. Results 
3.1. Abbreviations and Acronyms 
There was a large amount of variability in NPP among sites in this chapter as well as a smaller amount of varia-
bility in NPP within each site (Figure 3). The range in NPP among all sites was 915 g/m2/yr, with an NPP 
maximum of 1101 g/m2/yr (sd = 470 g/m2/yr, n = 2) at TN-1 and an NPP minimum of 185 g/m2/yr (sd = 66 
g/m2/yr, n = 9) at AL-1. TN-1 and AL-1 were also the sites in this study with the highest and lowest amount of 
intra-site variability, respectively. 
 

 
Figure 3. Variability in NPP among sites. Error bars represent one standard deviation.   

http://earthexplorer.usgs.gov/
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3.2. Vegetation Indices from in Situ Radiometer Data 
Vegetation indices calculated from in situ radiometer data were able to explain a moderate amount of variance in 
NPP in southern Appalachian wetlands (Figure 4). The VARI700 showed the most sensitivity to NPP and was  
 

 
Figure 4. Linear regressions between NPP and the vegetation indices calculated from in situ radiometers.                    
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able to explain the most amount of variance in NPP (r2 = 0.65, p < 0.05), though all of the index values were 
negative and there appeared to be an outlier. After removing the outlier, it appears as though VARI700 is not as 
sensitive to NPP (Figure 5). The SAVI was able to explain 39% of variance in NPP and the VARIGreen index 
was able to explain 32% of variance in NPP. Five of the eight vegetation indices used to estimate NPP were able 
to explain less than 30% of variance in NPP. 

3.3. Vegetation Indices from NAIP Data 
Most of the vegetation indices calculated from NAIP data were unable to explain more than 10% of variance in 
NPP in southern Appalachian wetlands (Figure 6). The NDVI was able to explain 35% of variance in NPP, 
ranking as the most sensitive vegetation index for NAIP. The WDRVI and MSR were able to explain 8% of va-
riance in NPP and the SAVI was able to explain 6% of variance in NPP. The DVI and RDVI were the least sen-
sitive vegetation indices and were able to explain the least amount of variance in NPP. 

3.4. Vegetation Indices from Landsat 8 OLI Data 
The amount of variance in NPP by vegetation indices from Landsat 8 OLI were the lowest among all vegetation 
indices tested in this study (Figure 7). The DVI was able to explain the most amount of variance in NPP (r2 = 
0.37, p = 0.10) among vegetation indices calculated from Landsat 8 OLI. The MSR was able to explain 5% of 
variance in NPP. All other vegetation indices calculated from Landsat 8 OLI were not able to explain more than 
2% of variance in NPP.keep using lower-cased. 

3.5. Trends among Vegetation Indices by Platform Level 
In examining NPP by vegetation indices at three platform levels, a trend was noted for most of the vegetation 
indices along a change in height of the platform (Figure 8). Generally the highest coefficients of determination 
between NPP and vegetation indices were noted for the in situ radiometer. As the platform level moves from the 
in situ radiometer to airborne (NAIP), there is a sharp decline in coefficients of determination for all vegetation 
indices except NDVI, which increased from 0.28 to 0.35. The coefficient of determination for NDVI dropped 
sharply when the platform increased in elevation from airborne to satellite. The coefficients of determination for 
all other vegetation indices, except for the DVI, decreased with an increase in elevation from airborne to satellite 
platforms. 

4. Discussion 
4.1. Performances of the Vegetation Indices 
There was a disparity in the ability of vegetation indices to explain variance in NPP at all levels, though no ve- 
 

 
Figure 5. Linear regression between NPP and VARI700 without the outlier.                   
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Figure 6. Linear regressions between NPP and the vegetation indices calculated from NAIP.                            

 
getation index was best able to explain variance consistently at all levels. The difference in the ability of vegeta-
tion indices to explain variance in NPP is due in part to differences in the indices themselves, but also is related to 
the type of vegetation and ecosystems in which the indices were employed. No vegetation indices have been 
developed to specifically study montane wetland NPP. Another cause for the lack of a vegetation index that was 
able to explain NPP variance at all three levels is that the data is different for all three levels. At the in situ level, 
hyperspectral radiometers were employed and thousands of bands were used at a high spatial resolution. At the 
airborne level, NAIP data are limited in the context of spectral resolution, though spatial resolution is still high. At 
the satellite level, spatial resolution is low, though spectral resolution is higher than NAIP. 

At the in situ level, the VARI700 was best able to explain variance in NPP and the SAVI was the second most 
sensitive vegetation index with respect to NPP. The VARI700 was only applicable to the in situ radiometers be-
cause the VARI700 requires hyperspectral data. The VARI700 is a useful vegetation index that was developed by [4], 
which estimated canopy chlorophyll content well for maize (r2 = 0.93), however, VARI700 was not as strong at 
estimating NPP in this study (r2 = 0.65). Like the VARI700, the SAVI requires field work to establish an L value 
which is based on soil exposure. SAVI was sensitive to NPP variations when radiometers are used in the field but 
it is not as sensitive at remote or airborne platforms. While the SAVI, which was developed by [19], is useful for  
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Figure 7. Linear regressions between NPP and the vegetation indices calculated from Landsat 8 OLI.                   

 

 
Figure 8. Ability of vegetation indices to explain NPP variance at in situ and airborne platform levels.                     



M. Maguigan et al. 
 

 
128 

examining reeds [20], especially when vegetation cover is low and soil exposure is high [21], it was not as ef-
fective in estimating NPP in this study concerning emergent vegetation. 

The NDVI, which is one of the main vegetation indices used for examining or monitoring vegetation, was the 
most sensitive vegetation index for NAIP data. While the NDVI may be criticized, it is still very useful in mon-
itoring vegetation. The NDVI was one of the original vegetation indices developed by [23] and [24] and has since 
been modified to better estimate vegetation characteristics (e.g. WDRVI) [9] [14]. The NDVI serves well in any 
land management where vegetation biomass or LAI is low before the NDVI is saturated [2]. NDVI was able to 
explain a similar amount of variation in NPP (35%) as in [10] (39%) using imagery with high spatial resolution. 
Other than the problem of saturation, the NDVI would provide a useful tool for wetland management if NAIP data 
were used. 

The DVI was the most sensitive vegetation index when using Landsat 8 OLI data. Similarly, [14] found a high 
amount of variance in wetland biomass (r2 = 0.85) was explained by the DVI calculated from Landsat 7 ETM+ [8]. 
The DVI would be useful for Landsat 8 OLI data, which is available at a high temporal resolution (16 days). For 
constant monitoring of montane wetland vegetation, the use of the DVI calculated from Landsat 8 OLI data would 
serve as the best tool. 

4.2. Limitations 
There were some limitations associated with this research. More specifically, there was a lack of sample size to 
examine the associations between field NPP estimates and the estimates gathered from vegetation indices. There 
were limitations associated with the congruence of dates between the field work and the collection of remotely 
sensed data. Also, there might be some differences in the season in which the biomass was collected and when 
the imagery was collected. For imagery with lower spatial resolution (i.e. Landsat 8 OLI), there may exist a dif-
ference in the NPP from field samples and the ecosystem NPP. There might also exists differences between 
scales concerning NPP and imagery. 

5. Conclusions 
This study provided valuable tools for wetland managers in the southern Appalachians and contributes to the 
scientific community with intellectual merit. By conducting an examination on vegetation indices and NPP, the 
people in charge of southern Appalachian wetlands can now make better informed decisions on how to monitor 
wetlands with remote sensing data. The results of this study also contribute to the scientific community by further 
testing vegetation indices in an environment where few, if any, similar studies have been conducted. 

The choice in vegetation index depends on the platform that is being used to examine southern Appalachian 
wetlands. At the in situ level, the VARI700 (r2 = 0.65) was most sensitive to changes in NPP, with SAVI (r2 = 0.39) 
and VARIGreen (r2 = 0.33) also showing sensitivity toward NPP. At the airborne level, most vegetation indices saw 
a drop in coefficient of determination with NPP. The exception was the NDVI, which was more sensitive to NPP 
at the airborne level (r2 = 0.35) than the in situ level (r2 = 0.28). All other vegetation indices were insensitive to 
changes in NPP. At the satellite platform, the DVI (r2 = 0.37) was the most sensitive vegetation index. 

Within the broader context of vegetation index usage across ecosystems and in different areas of the world, it 
would appear that a variety of indices should be tested and performance may depend on the platform level. For 
future studies concerning the use of vegetation indices, it is important to start with the NDVI as that is still the 
main index and was effective at the airborne level with high spatial resolution. It is also important to consider the 
ecosystem in which the study takes place. As few studies have been focused on remote sensing use in wetlands, it 
is important to expand efforts to study wetlands with remote sensing so as not to disturb these sensitive ecosystems, 
yet to understand them because of their sensitivity, especially as it relates to climate change. 
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