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Abstract 
The objective of this work was to evaluate the sensitivity of three different satellite signals (inter- 
ferometric coherence (γ), backscattering coefficient (σ0) and NDVI) to corn biophysical parame- 
ters (leaf area index, height, biomass and water content) throughout its entire vegetation cycle. All 
of the satellite and in situ data were collected during the Multi-spectral Crop Monitoring (MCM’10) 
experiment conducted in 2010 by the CESBIO Laboratory over eight different agricultural sites lo- 
cated in southwestern France. The results demonstrated that the NDVI is well adapted for leaf 
area index monitoring, whereas γ27.3° is much more suited to the estimation of the three other Bi- 
ophysical Parameters throughout the entire crop cycle, with a coefficient of determination ranging 
from 0.83 to 0.99, using non-linear relationships. Moreover, contrary to the use of the NDVI or 
backscattering coefficients, the use of coherence exhibited a low sensitivity to the changes in ve- 
getation and soil moisture occurring during senescence, offering interesting perspectives in the 
domain of applied remote sensing. 
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1. Introduction 
Corn, which is primarily used for human and animal consumption, is the second-most-produced crop in the 
world (FAO, http://faostat.fao.org/). As food requirements increase in the future, the monitoring and manage- 
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ment of corn crops to meet demand of resources will become a social issue. Satellites offer the possibility to 
monitor corn worldwide due to their high coverage and high temporal sampling. Among the many choices of 
operational satellite sensors, this work focuses on three high-resolution optical and radar imagers (pixel size < 
20 m) that are able to monitor plots of corn ranging in size from a few to several hundred hectares. 

In the optical domain, many studies have highlighted the interest in using satellite data for crop monitoring. 
These studies have primarily used the Normalized Difference Vegetation Index (NDVI) to estimate crop func- 
tioning parameters such as the Leaf Area Index (LAI), yield, soil water demand, fraction of cover, and fraction 
of active photosynthetic radiation [1]-[4]. The primary drawbacks of these optical approaches are the limited pe- 
riods of clear skies and the lack of sensitivity to crop geometry/architecture. Fewer studies have addressed crop 
monitoring in the microwave domain than in the optical domain, and majority of them used C-band data. These 
studies have explored a wide range of radar signal processing features, such as the backscattering coefficient (σ0), 
polarimetric indexes (α angle, entropy, anisotropy) and/or interferometric coherence (γ), for crop classification 
and crop parameter estimation [5]-[12]. In our knowledge, no studies focused on estimating corn biophysical 
parameters using SAR images acquired by satellite, particularly at X-band wavelengths. 

The combined use of the optical and microwave domains within the electromagnetic spectrum began to in- 
crease at the beginning of the 21th century with the launch of synthetic aperture radar (SAR) sensors (such as 
Envisat, Terrasar-X, Radarsat-2, and Alos), which were in limited use before 2003. Recent studies have demon- 
strated an interest in combining different sources of satellite data for crop management or monitoring, although 
there have only been a few studies on this topic [13]-[18]. The primary limitation of such an approach is the lack 
of a well-adapted dataset that contains both in situ and satellite data to better explore the synergistic use of opti- 
cal and radar remote sensing satellite data, particularly for corn [19] [20]. 

In this context, the objective of this work is to assess and compare the sensitivity of optical (NDVI) and 
X-band SAR (backscattering coefficients and interferometric coherence) satellite data to changes in corn bio- 
physical parameters. Four parameters have been defined as target parameters—LAI, height, biomass and water 
content—which are all considered to be key parameters for food production and water resource management. 
Whereas the three first parameters can be used to derive the grain yield or leaf nitrogen concentration of the crop 
(based on empirical or semi-empirical approaches; [2] [21]-[23], the fourth generally serves to quantify the  
water stress of the plant [24]. 

This study is based on ground and satellite data acquired during the Multi-spectral Crop Monitoring experi- 
ment conducted by the CESBIO Laboratory in 2010 (Section 2) [20]. The methodology is presented in Section 3. 
The results and discussion are provided in Sections 4 and 5. The conclusion and perspectives are presented in 
Section 6. 

2. Study Site and Data Collection 
2.1. Study Site 
The study site is located in southwestern France in the Midi-Pyrénées region (coordinates for the center of the 
area are 43˚29'36"N, 01˚14'14"E) (Figure 1). It is strongly anthropized, governed by a temperate climate and 
primarily conditioned by agricultural activities [20]. During 2010, the annual rainfall reached 600 mm, and the 
mean daily air temperature ranged from 3.5 to 22˚C. Approximately 10% of the surface is attributed to urban, 
free water and forest areas. The remaining landscape is composed of grasslands and annual crops (e.g., corn, 
sunflower, wheat). The eight contrasted studied plots of corn are distributed inside the swath of the satellite im-
ages, as illustrated in Figure 1. The region of interest is extremely flat, with mean slopes of less than 0.4%, and 
the soil texture over the 8 studied plots is mainly defined as silty loam (silt = 54.4%, sand = 24.4%, clay = 
21.2%), following the USDA classification scheme (Table 1). In 2010, corn was sown between April 2nd and 
May 23rd to be harvested at the beginning of the autumn (from September 7th to October 27th). Plot boundaries 
were decreased by 10 m to reduce mixel effects. 

2.2. Data Collection 
Ground and satellite data were obtained from the Multi-spectral Crop Monitoring experiment (MCM’10) con- 
ducted in 2010 by the CESBIO Laboratory. 
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Figure 1. Locations of the eight monitored plots of corn and the climatic station of Lamasquère.                        

 
Table 1. Textural and topographic characteristics of the studied plots of corn.                                                

Plot ID Sand [%] Silt [%] Clay [%] Slope [˚] Surface [ha] 

1 33 51 16 0.07 12.51 

2 27 49 24 0.18 13.25 

3 13 37 50 0.23 24.02 

4 25 58 17 0.78 38.44 

5 25 60 15 0.55 14.00 

6 22 62 16 0.70 8.34 

7 27 56 17 0.28 13.84 

8 23 62 15 0.33 7.85 

2.2.1. Satellite Data 
Twenty Terrasar-X images (X-band, ∼9.65 GHz) were acquired from emergence to harvest of the crop (between 
February 21st and November 24th). The images were delivered at high resolution (pixel spacing ranging from 1 
to 3 m) in a Single-look Slant-range Complex (SSC) format from StripMap (SM) and SpotLight (SL) modes and 
were provided for two contrasting incidence angles (27.3˚ and 53.3˚) (Table 2). 

Optical images were provided by high-resolution sensors onboard Formosat-2 and Spot-4/5 satellites in the 
visible to short-wave infrared domains (Table 2). The ground spatial resolutions were equal to 8, 20 and 10 m. 
All of the images were ortho-rectified using CNES ortho-rectification tools. Cloud detection and atmospheric 
corrections of the Formosat-2 images were applied, and the Spot images were atmospherically corrected using 
the CNES Kalideos processing chain. 

Pre-processing of SAR and optical satellite data are described in Figure 2. 
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Table 2. Primary characteristics of Terrasar-X (TSX), Formosat-2 (F2) and Spot-4/5 images.                                   

Sat θ (˚) Pol Date in 2010 (Month/Day) Ground range (m) Azimuth res. (m) 

TSX-SM 27.3 HH 0326; 0509; 0520; 0611; 0622; 0703; 
0714; 0816; 0929; 1010; 1021 2.44 3.30 

TSX-SL 53.3 HH 0305; 0521; 0601; 0612; 0623; 0704; 
0715; 0817; 0930 1.47 1.60 

F2 ±45 - 0410; 0418; 0427; 0521; 0707; 0719; 
0731; 0808; 0820; 0827; 0915; 1007 8 8 

Spot 4 75; 102 - 0409; 0510; 0605; 0626; 0701; 0711; 
0901 20 20 

Spot 5 75; 102 - 0410; 0523; 0627; 0920; 0929 10 10 

 

 
Figure 2. Flow chart of the satellite data pre-processing.                                              

2.2.2. In Situ Data 
In situ data included measurements of surface soil roughness, inter-row distance, Crop Height (CH), above- 
ground Crop Dry and Fresh Biomass (CDB and CFB, respectively), Crop Water Content (CWC) and Surface 
Soil Moisture (SSM). 

The two first parameters were considered stable over time (i.e., during the crop growth cycle). Soil roughness 
was measured using a 2-m pin profilometer, and the mean statistical parameters were calculated immediately 
after sowing, when the soil was smooth (hrms = 1.2 cm, lc = 4.5 cm). The inter-row distance was constant be- 
tween the plots and was equal to 80 cm. 

The four remaining parameters, which vary substantially over space and time, were collected throughout the 
vegetation cycle, from emergence to harvest. The dielectric constant of the soil was measured using mobile theta 
probe sensors, and the volumetric soil moisture of the first five centimeters was estimated using an in situ cali- 
bration function (R2 = 0.75, RMSE = 4.1%, n = 403, [20]). For the 8 plots, the mean SSM value ranged between 
9 and 29% m3∙m−3 throughout the crop cycle. 

The mean vegetation height was derived from measurements performed over more than ten samples for each 
plot. Plant height reached its maximum value (approximately 3.5 m) 100 days (on average) after sowing (Figure 
3). 

Regular biomass measurements were performed during the corn agricultural season over two plots (plot ID #7 
and #8). For each date, five samples were weighed to obtain the fresh biomass, dried in an oven, and reweighed 
to determine the dry biomass. The total crop water content (including leaves, stems, and fruit) was derived from 
the difference between the CFB and the CDB, and the values were related to the phenological cycle of the crop. 
From emergence to flowering (approximately on DOY #220), the water content reached a maximum of 80% and 
decreased during senescence, reaching 50% only a few days before being harvested (the WC of the fruit was less 
than 30%). 

All of the in situ variables were collected quasi-synchronously with satellite acquisitions (a mean time lag of 
less than 1 day was observed). 

Radiometric corrections

Geometric corrections

NDVI calculation Backscattering coefficient 
calculation

InSAR treatments

Coherence calculation

Opticalimages SAR images

Radiometric and atmospheric 
corrections
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(a)                                                       (b) 

Figure 3. Temporal change in crop height over the 8 plots of corn (a) and in the fresh and dry biomass (b) measured over 
plot ID #7 (cross marker) and #8 (circle marker).                                                                 

3. Methodology 
Among the wide choice of Biophysical Parameters (BP), the proposed methodology focuses on the relationships 
estimated between crop and soil parameters (LAI, CH, CFB, CDB, CWC, and SSM), and three satellite indi- 
cators for the entire crop cycle: NDVI, γ27.3˚, γ53.3˚, 0

HH 27.3σ − 

 and 0
HH 53.3σ − 

 (Equation (1)). 
satellite indicatorse BPb

BP BPBP a c− ⋅= ⋅ +                                     (1) 

where BP represents the biophysical parameter under consideration (LAI, CH, CFB, CDB, CWC and SSM), and 
aBP, bBP and cBP are the associated empirical parameters. 

The relationships between biomass (wet and dry), crop water content, crop height, LAI surface soil moisture 
content and satellite signals were evaluated. The NDVI was estimated from three optical satellites (Formosat-2, 
Spot-4/5). The similarity of the NDVI values was determined by comparing the values estimated by each satel- 
lite from images acquired at the same time ( ( )

2
NDVI Spot4 F2R 0.99= , ( )

2
NDVI Spot5 F2R 0.99= , ( )

2
NDVI Spot4 Spot5R =  0.99). 

The backscattering coefficients of the Terrasar-X images (SL and SM modes) were estimated using the radi- 
ometric calibration procedure given in [16] and performed using NEST (Next ESA SAR Toolbox) software. 
Backscattering coefficients acquired at HH polarization ( 0

HHσ ) were derived from the digital number (DN) of the 
pixel (i), the calibration factor (K) and the incidence angle (θ) (Equation (2)). 

( ) ( ) ( ) ( )( )0 dB 20 log 10 log 10 log sini i iDN Kσ θ= ⋅ + ⋅ + ⋅                    (2) 

Geocoded interferometric coherence images were calculated from InSAR treatment processing based on the 
approach described in [25] and using open-source software, namely, DORIS (Delft Object-oriented Radar Inter- 
ferometric) and ADORE (Automated DORIS Environment). Master and slave images were defined for each 
SAR mode (SM and SL) to calculate the coherence coefficients (γ) over the slave images, following Equation 
(3): 

*

0

* *

0 0

1

1 1

N

i i
i

N N

i i i i
i i

M S
N

M M S S
N N

γ =

= =

⋅
=

⋅ ⋅ ⋅

∑

∑ ∑
                                     (3) 

where Mi and Si represent the value of the pixel i of the master and slave images, respectively, *
iM  and *

iS  
denote the complex conjugate matrix, and N denotes the total number of analysed pixels. 

As described in [26], decorrelation sources can be separated in four factors: γ = thermal geometrical volume temporalγ γ γ γ⋅ ⋅ ⋅ . 
Thermal decorrelation can be neglected for high signal-to-noise ratio [27] [28]. Geometric decorrelation was 
reduced by applying a spectral filter, and the spatial baselines of all of the Insar pairs were verified as being 
lower than their critical baselines (Table 3). Volumetric and temporal coherences cannot be separated as a sim- 
ple sum of independent coefficients. As demonstrated and modelled by [29], the second component is more af-
fected by the vertical change in vegetation. Therefore, we used the coherence coefficient to estimate the crop  
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Table 3. Summary of interferometric parameters for the two considered modes (SM and SL) for each pair of master and 
slave images: critical baseline (Bcritical), perpendicular (Bperp), parallel baseline (Bpar) and temporal baseline (Btemp).                  

Interferometric pair  
(master-slave) Bcritical (m) Bperp (m) Bpar (m) Btemp (days) 

Stripmap Mode 

03/26-05/09 4477 121.4 103.7 44 

05/09-05/20 4479 −49.4 −18.6 11 

05/20-06/11 4479 98.7 47.8 22 

06/11-06/22 4479 −155.1 −59.8 11 

06/22-07/03 4479 −124.9 −56.1 11 

07/03-07/14 4480 87.7 47.3 11 

07/14-06/16 4480 −16.9 −33.6 33 

08/16-09/29 4479 −259.9 −88.7 44 

09/29-10/10 4480 274.1 106.5 11 

10/10-10/21 4479 −121.8 −94.2 11 

Spotlight Mode 

03/05-05/21 13939 239.9 337.5 77 

05/21-06/01 13941 −33.7 −32.6 11 

06/01-06/12 13941 84.4 94.1 11 

06/12-06/23 13941 −112.2 −102.2 11 

07/04-07/15 13942 61.7 74.2 11 

07/15-08/17 13942 40.3 4.9 33 

08/17-09/30 13941 −155.2 −223.5 44 

 
biophysical parameters over time. 

Ten and seven coherence images were generated in the StripMap and SpotLight modes, respectively. All of 
the images were geo-referenced using ortho-photos (spatial resolution of 50 cm) provided by the French Nation-
al Geographic Institute, and the final location accuracy was less than 2 pixels, on average, considering the dif-
ferent products. Examples of NDVI, γ and 0

HHσ  images are provided in Figure 4 for a sub-area of the study site 
from May 2010. 

4. Results 
4.1. Influence of Surface Soil Moisture 
The first results confirmed that no accurate empirical relationships could be estimated between the surface soil 
moisture changes and the satellite signals over the entire vegetation phenological cycle (0 < R2 < 0.13) (Table 4). 
These weak correlations are attributed to the fact that the satellite signals were mainly acquired in the presence 
of vegetation. In these conditions, the X-band and optical electromagnetic waves did not penetrate through the 
vegetation layer but mainly interacted with the upper layer of the crop (i.e., leaves, stems, flowers) and not with 
the SSM. Nevertheless, according to [30] [31], stronger correlations can be observed when the soil is bare, from 
sowing to the first phenological stages of corn. 

4.2. Sensitivity of Satellite Signal to LAI 
The values of the statistical parameters associated with the relationships estimated between the LAI and satellite 
signals were disparate. The results associated with the optical signal confirmed that NDVI is well suited for LAI 
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(a)                                  (b)                                  (c) 

Figure 4. Examples of NDVI (a), γ (SM mode, (b) and 0
HHσ  (c) images extracted from the study site acquired on May 

21st and 20th, 2010. Plots of corns (IDs #1, 2 and 3) are outlined in green.                                               
 
Table 4. Values of the empirical parameters (aSSM, bSSM and cSMM) used to determine the SSM, number of data points used 
(n), coefficients of determination ( 2

SSMR ), and absolute and relative root mean square errors (RMSESSM and rRMSESSM, 
respectively).                                                                                                  

 aSSM bSSM cSSM n 2
SSMR  RMSESSM rRMSESSM 

 - - - - - [%Vol.] [%] 

NDVI −0.9659 0.0597 0.9481 132 0.13 6.9 36 

0
27.3σ



 −1.8164 0.0814 −7.3822 61 0.04 7.4 36 

0
53.3σ



 −48.1308 0.0032 35.1473 64 0.13 7.0 38 

γ27.3˚ 1.6134 0.002 −0.9049 53 0.07 17.2 90 

γ53.3˚ −655.3122 0.8207 0.5918 43 0.08 6.7 36 

 
retrieval, as previously noted in several studies [2]. The radar signals (either backscattering coefficients or inter- 
ferometric coherence) exhibited contrasting performances, with R2 values ranging from 0.03 to 0.51 (Table 5). 
According to the relationships based on the backscattering coefficients, the performances depended on the con- 
sidered sensor configuration, with higher R2 values associated with a high incidence angle (53.3˚ in this case). 
This result appears consistent with previous studies [32], showing that the sensitivity of the backscattering coef- 
ficients to soil and vegetation parameters depend on the considered incidence angle. 

4.3. Sensitivity of Satellite Signal to Biomass and Crop Water Content 
The performances associated with the relationships between corn biomass and satellite signals showed similar 
trends regardless of the considered fraction of the crop (CFB, CDB and CWC) (Table 6). The poorest values of 
R2 were obtained for the optical index (NDVI) or backscattering coefficients (regardless of the incidence angle), 
with values never exceeding 0.37, whereas the highest R2 values were obtained using interferometric coherences 
(regardless of the incidence angle), with values of R2 close to 0.99. Despite these strong correlations, the appli- 
cation of these relationships is limited to the first phenological stages of corn due to the early saturation of the 
interferometric coherence (Figure 5). The results demonstrated that the saturation of the coherence occurred at a 
later phenological stage with the decrease in incidence angle, regardless of the considered crop parameter (CFB, 
CDB and CWC). For example, the saturation level was close to 1080 g∙m−2 using γ53.3˚ (beginning of stage 1: 
leaf development, BBCH), whereas this level reached 1738 g∙m−2 using γ27.3˚ (end of stage 3: stem elongation, 
BBCH) for the CFB. 



F. Baup et al. 
 

 
110 

Table 5. Values of the empirical parameters (aLAI, bLAI and cLAI) used to determine the LAI, number of data points used 
(n), coefficients of determination ( 2

LAIR ), and absolute and relative root mean square errors (RMSELAI and rRMSELAI, re-
spectively).                                                                                                   

 aLAI bLAI cLAI nLAI 2
LAIR  RMSELAI rRMSELAI 

 - - - - - [m2∙m−2] [%] 

NDVI −1.1022 0.6154 0.9621 132 0.98 0.12 5 

0
27.3σ



 −9.8493 5.5725 −7.6989 61 0.03 1.61 80 

0
53.3σ



 −15.2904 2.5499 −9.1145 64 0.51 1.12 66 

γ27.3˚ 0.2426 1.2499 0.6061 53 0.44 1.09 56 

γ53.3˚ 0.0915 1.0964 0.5678 43 0.18 1.17 57 

 
Table 6. Values of the empirical parameters (a, b and c) used to determine the fresh biomass, dry biomass and biomass water 
content, number of data used (n), coefficients of determination (R2), and absolute and relative root mean square errors 
(RMSE and rRMSE, respectively). Linear relationships were applied when the value of c was not provided.                      

  a b c n R² RMSE rRMSE 

  - - - - - [g∙m−2] [%] 

Fr
es

h 
B

io
m

as
s 

NDVI −0.9573 0.0013 0.752 26 0.27 2878 61 

0
27.3σ



 −0.0001 −7.3844 - 11 0.07 7828 214 

0
53.3σ



 0.0002 −10.0205 - 11 0.17 4766 127 

γ27.3˚ 0.134 0.0013 0.6105 11 0.99 1469 40 

γ53.3˚ 0.0543 0.0021 0.5842 8 0.99 2665 74 

D
ry

 B
io

m
as

s 

NDVI 20.7021 0 −19.9434 26 0.04 - - 

0
27.3σ



 0.0001 −7.7324 - 11 0.02 7663 807 

0
53.3σ



 0.0005 −9.8427 - 11 0.26 1609 166 

γ27.3˚ 0.1379 0.011 0.6104 11 0.99 1025 108 

γ53.3˚ 0.0553 0.0169 0.5842 8 0.99 1064 119 

B
io

m
as

s W
at

er
 C

on
te

nt
 NDVI −0.4873 0.0003 0.8966 26 0.37 1897 53 

0
27.3σ



 −0.0002 −7.1376 - 11 0.22 2790 103 

0
53.3σ



 0.0002 −9.8444 - 11 0.08 5126 185 

γ27.3˚ 0.1338 0.0015 0.6102 11 0.99 997 37 

γ53.3˚ 0.0541 0.0024 0.5843 8 0.99 1692 62 

4.4. Sensitivity of Satellite Signal to Height 
Accurate estimates of corn height were obtained from relationships based on the NDVI, interferometric cohe- 
rence at 27.3˚ and backscattering coefficients at 53.3˚ (Table 7). The relationships between CH and γ27.3˚ exhi- 
bited the best statistical index value, with R2 values greater than 0.8 and a maximum rRMSE of the corn height 
estimates of 32%. The performance of the other indicators decreased gradually for relations based on 0

HH 53.3σ − 

, 
NDVI, γ53.3˚, and 0

HH 27.3σ − 

. The associated R2 and rRMSE values ranged from 0.71 to 0.04 and from 78 to 102%, 
respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Estimated relationships between the corn dry biomass (a), fresh biomass (b), 
water content (c) and interferometric coherence acquired at 27.3˚. Ninety percent of sig- 
nal sensitivity is marked by vertical and horizontal dotted black lines for each sub-plot.             
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Table 7. Values of the empirical parameters (aCH, bCH and cCH) used to determine the corn height, number of data used 
(n), coefficients of determination ( 2

CHR ), and absolute and relative root mean square errors (RMSECH and rRMSECH, re-
spectively).                                                                                                   

 aCH bCH cCH n R²CH RMSECH rRMSECH 

 - - - - - [cm] [%] 

NDVI −0.6268 0.0137 0.7464 132 0.67 116 78 
0
27.3σ



 −0.5738 0.0524 −7.7085 61 0.04 234 102 
0
53.3σ



 −5.7431 0.0307 −9.1702 64 0.71 110 92 

γ27.3˚ 0.2024 0.0157 0.6084 53 0.83 56 32 

γ53.3˚ 0.2071 0.0445 0.5698 43 0.61 166 94 

 
These observations can be interpreted based on the configuration of the X-band data and the associated sensi- 

tivity. The sensitivity of backscattering coefficients are influenced more by vegetation in images acquired at 
high incidence angles (>30˚) than at low incidence angles due to volume and double bounce contributions. At 
low incidence angles, backscattering coefficients are influenced more by a single scattering mechanism due to 
the soil contribution (associated with soil moisture and soil roughness changes). Thus, the correlation with crop 
height is lower at a low incidence angle than at a high incidence angle. According to the coherence, the low-  
incidence images are more strongly correlated with crop height, which is contrary to the results obtained from 
the backscattering coefficients (where soil moisture values more strongly affect the signal). An explanation of 
this phenomenon is that as the crop grows, the soil contribution decreases (R2 < 0.13 between coherence and 
SSM) with the increase in vegetation contribution, which decorrelates more rapidly than soil, especially close to 
the nadir (27.3˚), where the vertical dynamic of the vegetation layer strongly affects the coherence. The decrease 
in the coherence over time can be attributed to the vegetation layer and not to the soil, which is expected to be 
coherent for an interval of a few days. The overall pattern of coherence decreases with the increase in crop 
height until saturation, inducing an increase in incoherent scattering mechanisms (Figure 6). The non-linear 
shape of the relationship can be explained by the progressive decrease in the soil contribution (for which the 
correlation is high), to the benefit of the incoherent vegetation contribution. 

Figure 6 presents the best results obtained with optical and X-band satellite data. The relationships indicate 
comparable behaviors with two different periods: (i) a high sensitivity with an exponential decrease in the case 
of interferometric coherence and an exponential increase for the NDVI and backscattering coefficients, and (ii) a 
signal saturation phase for height values depending on the satellite signal under consideration. This level of sa- 
turation (highlighted in Figure 6 by the point located at 90% of the overall relationship saturation) is reached for 
corn heights near 75, 150 and 160 cm for the relationships based on backscattering coefficients, interferometric 
coherence and NDVI, respectively. Figure 6 also illustrates that surface changes (SSM, CWC, phenological 
stage), which occurred after 90% signal saturation, have a smaller effect on the coherence relationship than on 
the relationships based on the backscattering coefficients and/or NDVI. In addition, the results (figure not shown 
here) confirmed that parallel and/or perpendicular baselines values do not affect the values of coherence because 
they are inferior to the critical baseline. 

5. Discussion 
As expected, none of the tested satellite signals can be used to estimate the surface soil moisture changes 
throughout the vegetation cycle, especially when the presence of the vegetation layer masks the soil layer. This 
well-known phenomenon can be explained by the low penetration depth of the wavelength (both in optical and 
X-band frequencies) into the crop layer. The estimation of SSM under the crop layer remains challenging and is 
presently investigated using the POLSAR technique (giving access to the double bounce mechanism, partially 
associated with the SSM) or L-band signals (offering higher penetration depth and thus a stronger correlation 
with SSM) [33] [34]. The results obtained in this paper confirm that techniques based only on backscattering 
coefficients, coherence or optical signals are not well adapted for monitoring SSM under the crop layer, and they 
reinforce the interest in developing new approaches such as those proposed by [34]. However, the weak correla-  
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Figure 6. Estimated relationships between corn height and backscattering coefficients (a), interferometric cohe- 
rence (b) and NDVI (c); 90% sensitivity is marked by vertical and horizontal dotted black lines for each sub-plot.   



F. Baup et al. 
 

 
114 

tions obtained between the satellite signals and SSM values indicate that the empirical relationships estimated 
between the biophysical parameters of the vegetation (CDB, CFB, LAI and height) and the satellite signals are 
slightly influenced by variation in SSM. 

The analyses of the relationships estimated between the satellite signals and the vegetation parameters re- 
vealed several important points. First, the results showed that among all of the tested satellite signals, optical 
data appear more suited to monitor the LAI of corn with sufficient confidence. Considering X-band signals, only 
the backscattering coefficient acquired at high incidence angle (53.3˚) could justifiably be used to estimate the 
LAI (with lower confidence than with optical data). Therefore, the monitoring of corn should be performed us- 
ing a multi-temporal approach mainly based on optical data and partially composed of radar data, the latter be- 
ing used only to replace optical data in case of cloud cover. Under these conditions, the combine use of optical 
and radar data could be used to accurately estimate some variables strongly correlated with the LAI, such as leaf 
transpiration, the interaction with the radiation by the leaf, and latent and sensible heat fluxes [35] [36]. 

The second part of the results demonstrated that the dry or fresh biomass and crop water content are strongly 
correlated over time. Consequently, considering that crop water content is a key parameter in the management of 
agricultural crops, the monitoring of dry or fresh biomass could be investigated to further estimate the water 
content of the crop, particularly to determine the maturity of the crop before harvest [37]. Concerning the esti- 
mates of CDB, CFB and CWC, the best correlations were achieved using the coherence estimated from images 
acquired at 27.3˚ (R2 = 0.99). Although these relationships quickly saturated (for values of fresh biomass close 
to 1738 g∙m−2), the results (Figure 5) demonstrated that coherence is strongly sensitive to the first phenological 
stages of the crop (from emergence to the end of the stem elongation, as defined in the BBCH classification), 
contrary to other satellite signals, which were too strongly affected by SSM changes during the bare soil period 
or by the color changes and decrease in CWC during senescence. This accurate and early detection of the first 
phenological stages could be then implemented to estimate crop yields by using an agro-meteorological model, 
as demonstrated by [2] [38]-[42]. 

The estimate of CH demonstrated the potential of using the coherence instead of the other satellite signals, 
especially from images acquired at low incidence angle (27.3˚). Consequently, the coherence values could be 
implemented in empirical and/or semi-empirical methods for predicting yields as demonstrated by [21] [22]. 
Moreover, the estimate of CH could be used as a key parameter in land-use mapping to more precisely differen- 
tiate similar crops where architectural differences mainly accrue from height differences [43]. For example, the 
method could be investigated to improve corn and sorghum classification given their heights of approximately 1 
and 3 m, respectively, over the study region. 

6. Conclusions 
This study evaluated the sensitivity of three sources of satellite data (X-band backscattering coefficients, inter- 
ferometric coherence, and NDVI) to crop parameters over an entire vegetation cycle. The first part of the results 
demonstrated that the SSM changes were not correlated with satellite signals due to the presence of vegetation 
and the low penetration depth of the electromagnetic wave into the crop layer (regardless of the spectral domain). 
Consequently, we demonstrated that SSM did not significantly affect the relationships estimated between the 
satellite signals and the vegetation components (CDB, CFB, LAI and height). The second part of the results 
demonstrated that the LAI of corn can be estimated well using the NDVI (as was known from previous studies) 
and partially substituted by the use of backscattering coefficients acquired at a high incidence angle (53.3˚). The 
results also demonstrated the potential of using the coherence acquired at a low incidence angle (despite the 
early saturation of the coherence) to estimate the dry or fresh biomass and the water content, especially for the 
first phenological stages of the corn (R2 = 0.99). The best corn height estimates were obtained by considering 
the interferometric coherence extracted from the images acquired at a low incidence angle (27.3˚) due to its 
higher decorrelation effects. In this case, crop height can be accurately estimated before 150 cm (R2 = 0.83, 
RMSE = 56 cm, rRMSE = 32%). The use of backscattering coefficients at a high incidence angle and the use of 
NDVI were less accurate, even though the coefficients of determination were higher than 0.67 (the relative er- 
rors, which ranged between 78 and 92%, are still important). Moreover, the use of coherence is of particular in- 
terest for monitoring vegetation parameters because it is less sensitive to SSM and CWC than are σ0 or NDVI 
during senescence. 

In the near future, these relationships could be used in empirical or semi-empirical approaches to estimate 
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crop yield at the landscape scale as presented in the “Discussion” section. Moreover, these results must be ex- 
tended to other optical and X-band satellite missions such as Sentinel-2, COSMO-SkyMed, TamDEM-X and 
PAZ. 
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