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ABSTRACT 

For the first time we report quantitative struc-
ture activity relationship (QSAR) studies based 
on Kier-Hall Electrotopological State (E-State) 
Indices for Dihydroalkoxybenzyloxopyrimidines 
(DABO) derivatives acting as NNRTIs of HIV-1. A 
dataset of 74 compounds was compiled from 
published studies and randomly subdivided into 
training and test sets. To understand the phar-
macophoric effect, Kier-Hall Electrotopological 
State descriptors namely 

1N , 
3N , SF, SAr, SS, 

SO, 
2NO , SCl, SY (Y = S-alkyl and NH-alkyl), SX (X 

= Me) and biological activity were used as in-
dependent and dependent variable respectively. 
Statistical results were highly encouraging for 
the training set [multiple linear regression 
[(MLR): r2 = 0.961, F = 100.41 and q2 = 0.926, 
neural networks (NN): r2 = 0.966, F = 115.594, 
degrees of freedom = 40 and k-nearest neigh- 
bour (k-NN): r2 = 0.770, q2 = 0.757, degrees of 
freedom = 40]. Results of validation using a test 
set showed the same trend as training set (NN > 
MLR > kNN). The above results suggest that of 
various functional groups present in DABO 

3N , 
SO, SCl, SAr and 

2NOS contribute more signifi-
cantly towards activity. On the other hand 

1N , 
S

S S
S

S

S
S, and SF do not play any role in enhancing the 

activity. The substitution of S-alkyl and NH-alkyl 
at C2 position is essential though it does not 
contribute much towards the activity. The sub-
stitution of methyl group at C5 position is unfa-
vorable and exhibit negative impact on inhibi-
tory activity. Therefore, it seems reasonable to 
choose E-State indices as suitable and signifi-

cant descriptors for exploring the relationship 
between the pIC50 and the pharmacological 
properties of the compounds. 

Keywords: AIDS; HIV-1; NNRTIs; DABOs; QSAR; 
pIC50; Kier Hall E-State Indices; MLR; NN; k-NN 

1. INTRODUCTION 

Acquired Immunodeficiency Syndrome (AIDS) is a 
set of symptoms and infections resulting from the dam-
age of the human immune system caused by the human 
immunodeficiency virus (HIV) [1]. AIDS cause very 
serious public health problem and economic burden. 
Globally, an estimated 33.4 million people are living 
with HIV with nearly 7500 new infections each day [2]. 
An anti-HIV agent may exert its activity by inhibiting a 
variety of steps in the life cycle of the virus [3]. Reverse 
transcription is a highly choreographed, multistep proc-
ess in which the plus-strand RNA genome of the HIV-1 

is converted into a double-stranded cDNA [4]. HIV-1 
reverse transcriptase (RT) is an asymmetric heterodimer 
composed of two related subunits, p66 (560 amino acids) 
and p51 (440 amino acids). p66 folds into two domains: 
polymerase and RNase H. The polymerase domain of 
p66 is divided into four subdomains fingers (amino acids 
1 - 85 and 118 - 155), a palm (amino acids 86 - 117 and 
156 - 237) and a thumb (amino acids 238 - 318) domain. 
[5] The two subunits form a stable dimer which is essen-
tial for the enzymatic activity [6]. The RT enzyme is 
known to be flexible, moving both the domains to ac-
commodate inhibitors and to take on different shapes 
depending on the inhibitor bound to it [7]. Inhibitors of 
HIV-1 RT fall under two categories: the nucleoside 
(NRTIs) and the non-nucleoside reverse transcriptase  
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inhibitors (NNRTIs). The NRTIs are substrate analogs 
that act as chain terminators, whereas the NNRTIs are a 
chemically diverse group of compounds that non-com-
petitively inhibit DNA polymerization [8]. Twenty-five 
years ago, nucleoside analog 3’-azidothymidine (AZT) 
was shown to efficiently block the replication of HIV in 
a cell culture [9]. NNRTIs form a second class of com-
pounds that target HIV-1 RT. [10] NNRTIs bind at an 
allosteric site about 10 Å away from the polymerase 
active site. The structural mechanism of NNRTI inhibi-
tion involves distortion of the catalytically essential triad 
of aspartic acid residues [11]. The non-nucleoside site, 
although contained within the p66 subunit, also has 
Glu138 from the p51 subunit located at the edge of the 
inhibitor pocket [12]. Over 40 amino acid substitutions 
have been identified to be associated with NNRTI resis-
tance, in vitro and in vivo [13]. Almost twenty-one years 
ago, the NNRTIs i.e., 1-(2-2-hydroxyethoxy methyl)-6- 
(phenylthio) thymine (HEPT) [14,15] and Tetrahydro-
imidazo[4,5,1-jkj] [1,4] benzodiazepin-2(1H)-one and 
thione (TIBO) compounds [16,17] have been discovered. 
[18] Since then three more NNRTIs-nevirapine, de-
lavirdine and efavirenz have been approved for the treat-
ment of HIV-1 and a few more are in clinical develop-
ment, including rilpivirine, etravirine and dapivirine [19]. 
Till date various molecular modelling studies have been 
performed using QSAR [20], QSPR [21], Simple dock-
ing [22] and Template docking [23] on some NNRTIs. 

Pharmacophore based descriptors are of immense 
importance in understanding the structure activity rela-
tionships of ligand molecules. Dihydroalkoxybenzy-
loxopyrimidines (DABO) derivatives have been suc-
cessfully used as HIV-1 reverse transcriptase inhibitors 
[24] and are useful precursors for deriving novel potent 
compounds. The first step of rational drug design often 
consists of performing QSAR modeling, based on con-
generic structures of ligands; this procedure has been 
carried out by several researchers for a class of DABO 
derivatives [25-28]. Like other NNRTIs, DABOs also 
assume a “butterfly like” spatial arrangement with the 
methylene group or moiety serving as a bridge between 
the two wings of the benzene and pyrimidine rings [27]. 

5-isopropyl-2-[(methylthiomethyl)thio]-6-benzylpyrimid
in-4-(1H)-one DABO analogue was found to be very 
potent against HIV-1 Reverse Transcriptase (RT) [28]. 
Dihydro-alkyl-thio-benzyl-oxopyrimidines (S-DABOs) 
are common with EBUs (Emivirine, formerly MKC-442) 
in having a benzyl moiety at position C-6 of the 
pyrimidine ring while they differ from EBUs in that the 
alkoxy chain is linked at position C-2 instead of N-1. 
Sudbeck et al. have performed derivatization of DABO 
by modelling studies of potent 1-[(2-hydroxy ethoxy) 
methyl]-6-(phenylthio) thymine (HEPT) and by the sub-

stitution of benzyl moiety with phenyl thio moiety at the 
C-6 position of the pyrimidine ring [29]. A struc-
ture-activity relationship (SAR) profile of DABOs to-
gether with molecular modeling investigation on their 
putative binding mode have shown that the presence of a 
C-2-alkoxy (DABOs), C-2-alkylthio (S-DABOs), or 
C-2-alkylamino (NH-DABOs) side chain is the struc-
tural determinant for the antiviral activity of these de-
rivatives, with the length and size of the C-2 side chain 
having only modulator effects on potency [30-34]. The 
2,6-difluoro substitution at the C-6-benzyl moiety of 
S-DABOs and NH-DABOs produced favorable π- 
stacking interactions with the Tyr188 side chain into the 
non-nucleoside binding site (NNBS), leading to com-
pounds (F2-S-DABOs and F2-NH-DABOs) active in the 
nanomolar range. [35] The biological testing results 
clearly indicated that the substitution of halogen at the 
C5 position of pyrimidine ring could increase the anti- 
HIV-1 RT activity. The most active compounds showed 
activity in the lower micromole range with IC50 values 
(IC50 0.18 - 3.03 μM) comparable to nevirapine (IC50 
4.12 μM). The docking showed that a new halogen bond 
was formed between halogen and carbonyl of TYR188 
in the HIV-I RT [36]. 

Various statistical modeling techniques have been 
widely used in quantitative structure-activity relationship 
(QSAR) studies, such as multiple linear regression 
(MLR), [37] partial least squares (PLS), [37] artificial 
neural networks (ANN) [38]. Using such an approach, 
one could predict the activities of newly designed com-
pounds before a decision is being made whether these 
compounds should be really synthesized and tested. 
Thus, for the first time a QSAR study based on Kier- 
Hall Electrotopological State (E-State) [39-41] indices is 
performed on DABO derivatives to analyze the phar-
macophoric effect on their inhibitory activities. Recently, 
a comparative molecular field analysis (CoMFA) study 
was performed in order to derive three-dimensional 
quantitative structure activity relationship (3D-QSAR) 
models of DABO analogues [28]. The rationale of the 
present work is to explore the structure activity relation-
ship of E-State indices of DABO compounds and the 
biological activity in a quantitative manner using linear 
(MLR) as well as non-linear (NN and k-NN) techniques.  

2. MATERIALS AND METHODS 

A series of 74 compounds of DABO derivatives was 
taken from the literature [28] for the QSAR study. All 
the 74 compounds were sketched using V-life MDS 
software [41]. The inhibitory activity pIC50 was taken as 
the biological activity variable (dependent). The func-
tional groups namely 

1N , SN3, SO, SX, SY, SAr, SS, SF, 
SCl, and  were considered as descriptor variable 

S

2NOS
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(independent) in the QSAR analysis. The Kier-Hall 
Electrotopological State (E-State) indices of such func-
tional groups were calculated using E-Calc version 1.1 
[42]. Multiple linear regression (MLR), neural network 
(NN) regression and k-Nearest Neighbor (k-NN) were 
calculated with V-Life MDS software. 

2.1. Kier-Hall Electrotopological State 
(E-State) Indices [38] 

Electrotopological State (E-State) indices are widely 
used in QSAR modeling, including AIDS related re-
search [21,43,44]. The large amount of variables in 
E-State Indices represent the structural characteristics of 
molecules such as information about their non-covalent 
interactions. It encodes electronic and topological in-
formation in a single number for each skeletal atom in 
the hydrogen suppressed graph of a molecule. The 
E-State index value (S) of an atom “I” is given by the 
sum of the intrinsic state value (I) and perturbations (ΔI) 
by the fields of all other atoms in the chemical graph, 
including substituent atoms. Thus, S is defined by the 
following set of equations: 

S I I    

  2
2 1vI N     

πv n h      

h    

  2
i i j ijI I I r     

where, N = Principal quantum number (i.e., row in 
which the atom occurs in the periodic table) 
σ = the number of sigma electron contributed by the 

atom. 
Π = the number of pi electron contributed by the atom. 
h = the number of hydrogen atoms attached to the 

atom 
n = the number of lone pair of e– on the atom 
r = the number of atoms in the shortest graph path 

connecting atom “I” and other atom “j” in the chemical 
graph of the whole molecule. 

The resulting E-State of any atom is a numerical value 
depicting the accessibility of that atom to interaction 
across space with some reference atom (s) or group (s). 

2.2. Statistical Analyses 

2.2.1. Multiple Linear Regression (MLR) 
Multiple linear regression (MLR) is a method used to 

model the relationship between two or more explanatory 
variables and a response variable by fitting a linear equa-
tion to the observed was employed to correlate the bind-

ing affinity and molecular descriptors. This method has 
been widely applied in many QSAR studies, and has 
proven to be a useful linear regression method to build 
QSAR models that may explore straightforward the 
properties of the chemical structure in combination with 
its ability of inducing a pharmacological response [45]. 
The advantage of MLR is its simple form and easily 
interpretable mathematical expression.  

2.2.2. Neural Network (NN) 
Intriguing approaches using machine learning meth-

ods have been studied in the field of QSAR modeling 
[46]. The concept of neural network was first introduced 
in 1943 by McCulloch and Pitts [47]. Interest in neural 
networks was slow until the 1980s when new computer 
architecture and learning algorithms began to appear. 
The use of neural networks (NN) in all fields has since 
grown substantially. In 1988, Hoskins et al. reported the 
first use of process control in chemistry [48]. NNs are 
well suited for modelling complex relationships between 
the variables and non-linearity in the relationships is 
suspected. 

2.2.3. Kernel Nearest Neighbor (k-NN) 
k-NN [49,50] is a simple decision scheme that re-

quires practically no training and is asymptotically op-
timal, i.e., with increase in training data it converges to 
the optimal prediction error. For a given compound in 
the descriptor space, the method analyzes its k-nearest 
neighboring compounds from the training set and pre-
dicts the activity class that is most highly represented 
among these neighbors. 

3. RESULTS AND DISCUSSION 

Table 1 records a series of 74 DABO derivatives 
along with the position of substituents (X, Ar and Y), 
where X represents substituent such as methyl attached 
at C-5 position, Ar represents the aryl groups substituted 
with the terminal methyl group which is attached at C-6 
position of the pyrimidinone ring and Y represents sul-
phur substituted moieties attached at C-2 position of the 
basic nucleus. It also records the inhibitory concentration 
pIC50 (where IC50 is the effective concentration of a 
compound required to activate 50% protection of MT-4 
cell against the cytopathic effect of HIV-1) and the cal-
culated E-State values (N1, N3, O, X, Y, Ar, S, F, Cl, and 
NO2) of various atoms or groups in the DABO ana-
logues. 

The correlation matrix for the correlation of E-State 
Indices with pIC50 for the training set of DABO deriva-
tives is shown in Table 2. A perusal of the correlation 
matrix indicates that in univariate correlation 

1N has the 
highest correlation potential while SX has the lowest one.  

S
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Table 1. Table represents the various substituents with the anti-HIV-1 activity (pIC50) and E-State indices of Dihydroalkoxybenzy-
loxopyrimidines (DABO) derivatives. 

N

N

HX

O

Ar

Y

3

2

1

5

6

4

 
S.No.* X Y Ar pIC50

** 
1NS  

3NS  SO SX SY SAr SS SF SCl 2NOS

1 H 1-naphtyl S-Cyclopentyl 4.31 4.71 2.89 12.03 0.00 7.35 18.32 1.73 0.00 0.00 0.00

2 Me 1-naphtyl S-Cyclopentyl 4.35 4.81 2.96 12.38 1.87 7.35 18.39 1.74 0.00 0.00 0.00

3 H 2-naphtyl S-sec-Bu 4.83 4.60 2.83 11.88 0.00 7.38 18.28 1.62 0.00 0.00 0.00

4 H 4-F-Ph S-sec-Bu 4.83 4.45 2.74 11.66 0.00 7.16 19.78 1.56 12.86 0.00 0.00

5 H 4-Cl-Ph S-sec-Bu 5.02 4.51 2.78 11.70 0.00 7.31 15.26 1.60 5.86 0.00 0.00

6 H 3-Me-Ph S-tert-Bu 5.09 4.55 2.80 11.75 0.00 7.91 12.74 1.58 0.00 0.00 0.00

7 Me 3-Me-Ph S-sec-Bu 5.27 4.65 2.88 12.08 1.84 7.41 12.83 1.63 0.00 0.00 0.00

8 Me Ph S-Me 5.31 4.45 2.75 11.70 1.81 3.35 11.22 1.45 0.00 0.00 0.00

9 Me 3-Me-Ph S-tert-Bu 5.34 4.65 2.87 12.10 1.84 7.93 12.80 1.59 0.00 0.00 0.00

10 H 3-Cl-Ph S-sec-Bu 5.42 4.51 2.78 11.70 0.00 5.18 15.33 1.59 0.00 5.97 0.00

11 Me 3-Me-Ph S-Cyclopentyl 5.47 4.73 2.94 12.18 1.86 7.40 12.93 1.74 0.00 0.00 0.00

12 Me 3-F-Ph S-sec-Bu 5.52 4.53 2.80 12.01 1.75 7.13 20.19 1.55 13.25 0.00 0.00

13 H 2,6-di-Cl-Ph S-Me 5.52 4.42 2.71 11.81 1.75 3.25 19.59 1.39 0.00 6.14 0.00

14 H Ph S-Cyclohexyl 5.52 4.63 2.88 11.83 0.00 8.75 11.34 1.74 0.00 0.00 0.00

15 H Ph S-Cyclopentyl 5.55 4.60 2.86 11.77 0.00 7.40 11.33 1.72 0.00 0.00 0.00

16 H 3-Me-Ph S-Cyclohexyl 5.59 4.66 2.89 11.90 0.00 8.74 12.89 1.74 0.00 0.00 0.00

17 Me 3-Me-Ph S-Me 5.60 4.48 2.76 11.77 1.82 5.18 12.76 1.45 0.00 0.00 0.00

18 H 4-NO2-Ph S-sec-Bu 5.62 4.45 2.73 11.72 0.00 7.05 28.05 1.53 0.00 0.00 0.00

19 Me 3-Me-Ph S-Cyclohexyl 5.66 4.76 2.96 12.25 1.87 8.74 12.95 1.75 0.00 0.00 0.00

20 Me Ph S-tert-Bu 5.72 4.62 2.86 12.03 1.83 7.92 11.27 1.58 0.00 0.00 0.00

21 H 2,6-di-Cl-Ph S-iso-Pr 5.89 4.44 2.72 11.68 0.00 5.95 19.58 1.51 0.00 6.14 0.00

22 Me 2,6-di-Cl-Ph S-iso-Pr 5.94 4.54 2.79 12.03 1.76 5.96 19.72 1.52 0.00 6.19 0.00

23 Me 2,6-di-Cl-Ph S-n-Bu 5.94 4.57 2.82 12.08 1.77 6.85 19.80 1.57 0.00 6.21 0.00

24 Me 2,6-di-Cl-Ph S-tert-Bu 5.96 4.59 2.82 12.13 1.76 7.70 19.76 1.52 0.00 6.21 0.00

25 Me 2-Cl-Ph S-sec-Bu 6.10 4.61 2.85 12.06 1.80 7.29 15.54 1.60 0.00 6.19 0.00

26 Me 3-NO2-Ph S-sec-Bu 6.10 4.53 2.79 12.08 1.72 7.00 28.53 1.52 0.00 0.00 21.31

27 H 3-NO2-Ph S-sec-Bu 6.22 4.43 2.72 11.73 0.00 6.99 28.33 1.52 0.00 0.00 21.17

28 H 2,6-di-Cl-Ph S-tert-Bu 6.22 4.49 2.75 11.78 0.00 7.68 19.61 1.52 0.00 6.16 0.00

29 H 2,6-di-Cl-Ph S-n-Bu 6.30 4.47 2.75 11.73 0.00 6.84 19.65 1.56 0.00 6.16 0.00

30 H 2,6-di-Cl-Ph S-Cyclopentyl 6.40 4.57 2.82 11.87 0.00 7.12 19.78 1.67 0.00 6.19 0.00

31 H 2,6-di-F-Ph S-tert-Bu 6.70 4.27 2.63 11.66 0.00 7.23 29.63 1.39 13.65 0.00 0.00

32 H 2,6-di-F-Ph S-sec-Bu 7.00 4.27 2.64 11.65 0.00 6.73 29.65 1.44 13.64 0.00 0.00

33 Me 2,6-di-F-Ph S-sec-Bu 7.00 4.37 2.71 11.99 1.61 6.74 29.95 1.45 13.78 0.00 0.00

34 H 2,6-di-F-Ph S-Cyclohexyl 7.05 4.38 2.72 11.82 0.00 7.88 2.96 1.56 13.75 0.00 0.00
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35 Me 2,6-di-F-Ph S-tert-Bu 7.05 4.27 2.63 11.66 0.00 7.23 29.63 1.39 13.65 0.00 0.00

36 H 2,6-di-F-Ph S-Cyclopentyl 7.10 4.35 2.70 11.75 0.00 6.62 29.85 1.54 13.71 0.00 0.00

37 Me 2,6-di-F-Ph S-Cyclopentyl 7.10 4.45 2.77 12.10 1.63 6.62 30.16 1.55 13.84 0.00 0.00

38 H 2,6-di-F-Ph NH-Cyclopentyl 7.15 4.28 2.62 11.72 0.00 7.86 29.76 0.00 13.70 0.00 0.00

39 Me 2,6-di-F-Ph NH-Cyclopentyl 7.52 4.37 2.69 12.07 1.61 7.88 30.06 0.00 13.83 0.00 0.00

40 Me 1-naphtyl S-sec-Bu 4.35 4.73 2.90 12.28 1.85 7.39 18.27 1.63 0.00 0.00 0.00

41 H 2-naphtyl S-Cyclohexyl 4.48 4.74 2.91 12.10 0.00 8.69 18.35 1.74 0.00 0.00 0.00

42 H Ph S-sec-Bu 5.27 4.52 2.80 11.66 0.00 7.39 11.24 1.62 0.00 0.00 0.00

43 Me Ph S-Cyclopentyl 5.47 4.70 2.93 12.12 1.86 7.40 11.38 1.73 0.00 0.00 0.00

44 H 3-Me-Ph S-Cyclopentyl 5.59 4.63 2.87 11.83 0.00 7.40 12.87 1.73 0.00 0.00 0.00

45 Me Ph S-iso-Pr 5.60 4.62 2.86 12.01 1.84 7.40 11.30 1.63 0.00 0.00 0.00

46 Me 3-Cl-Ph S-sec-Bu 5.74 4.61 2.85 12.05 1.81 7.31 15.42 1.60 0.00 6.01 0.00

47 H 2-NO2-Ph S-sec-Bu 6.22 4.40 2.70 11.75 0.00 6.91 28.76 1.49 0.00 0.00 21.67

48 H 2,6-di-Cl-Ph S-Cyclohexyl 6.40 4.60 2.84 11.94 0.00 8.44 19.83 1.68 0.00 6.21 0.00

49 Me 2,6-di-F-Ph S-Me 6.70 4.20 2.59 11.68 1.59 3.04 29.53 1.27 13.59 0.00 0.00

50 Me 2,6-di-F-Ph S-n-Bu 7.05 4.36 2.70 11.96 1.61 6.44 29.94 1.45 13.76 0.00 0.00

51 Me 2,6-di-F-Ph S-Cyclohexyl 7.15 4.48 2.79 12.17 1.63 7.88 30.26 1.57 13.88 0.00 0.00

52 Me 4-Cl-Ph S-sec-Bu 4.77 4.61 2.85 12.05 1.81 7.32 15.34 1.61 0.00 5.90 0.00

53 Me 2,6-di-Cl-Ph S-Cyclohexyl 5.31 4.70 2.91 12.29 1.79 8.44 19.98 1.69 0.00 6.26 0.00

54 Me 2,6-di-Cl-Ph S-sec-Bu 6.92 4.59 2.83 12.12 1.77 7.18 19.79 1.57 0.00 6.22 0.00

55 H 3-F-Ph S-sec-Bu 5.92 4.43 2.73 11.66 0.00 7.12 20.04 1.55 13.15 0.00 0.00

56 Me 2-naphtyl S-sec-Bu 4.23 4.70 2.89 12.22 1.85 7.39 18.35 1.63 0.00 0.00 0.00

57 Me 4-F-Ph S-sec-Bu 4.59 4.55 2.81 12.01 1.77 7.18 19.91 1.57 12.94 0.00 0.00

58 H 1-naphtyl S-sec-Bu 4.79 4.63 2.83 11.93 0.00 7.38 18.19 1.62 0.00 0.00 0.00

59 H Ph S-tert-Bu 5.07 4.52 2.79 11.68 0.00 7.90 11.21 1.57 0.00 0.00 0.00

60 Me Ph S-sec-Bu 5.32 4.62 2.86 12.01 1.84 7.40 11.30 1.63 0.00 0.00 0.00

61 Me Ph S-Cyclohexyl 5.37 4.73 2.95 12.18 1.86 8.75 11.40 1.75 0.00 0.00 0.00

62 Me 4-NO2-Ph S-sec-Bu 5.44 4.55 2.80 12.07 1.74 7.07 28.21 1.54 0.00 0.00 20.95

63 H 2-Cl-Ph S-sec-Bu 5.49 4.51 2.78 11.71 0.00 7.27 15.44 1.59 0.00 6.14 0.00

64 H 3-Me-Ph S-iso-Pr 5.54 4.51 2.77 11.64 0.00 6.14 12.74 1.57 0.00 0.00 0.00

65 Me 3-Me-Ph S-iso-Pr 5.60 4.61 2.84 11.99 1.83 6.16 12.80 1.58 0.00 0.00 0.00

66 Me 2,6-di-Cl-Ph S-Cyclopentyl 5.80 4.66 2.89 12.22 1.79 8.91 19.93 1.68 0.00 6.25 0.00

67 H 2,6-di-F-Ph S-Me 6.10 4.10 2.52 11.33 0.00 3.02 29.23 1.26 13.46 0.00 0.00

68 Me 2-F-Ph S-sec-Bu 6.10 4.50 2.78 12.00 1.72 7.07 20.63 1.54 13.75 0.00 0.00

69 H 2-F-Ph S-sec-Bu 6.22 4.40 2.72 11.65 0.00 7.06 20.44 1.53 13.62 0.00 0.00

70 H 2,6-di-F-Ph S-n-Bu 6.70 4.26 2.63 11.61 0.00 6.43 29.63 1.44 13.63 0.00 0.00

71 H 2,6-di-Cl-Ph S-sec-Bu 6.70 4.49 2.76 11.77 0.00 7.16 19.64 1.56 0.00 6.16 0.00

72 H 2,6-di-F-Ph S-iso-Pr 7.30 4.23 2.60 11.56 0.00 5.57 29.52 1.39 13.59 0.00 0.00

73 H 3-Me-Ph S-sec-Bu 5.62 4.55 2.81 11.73 0.00 7.39 12.77 1.62 0.00 0.00 0.00

74 Me 2,6-di-F-Ph S-iso-Pr 7.30 4.33 2.67 11.91 1.60 5.59 29.82 1.40 13.72 0.00 0.00
  
*Compounds no. (1-55) corresponds to training set and underlined numbers (56-74) corresponds to test set. **pIC50 = –logIC50 (where IC50 is the effective 
concentration of a compound required to activate 50% protection of MT-4 cell against the cytopathic effect of HIV-1) 
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Table 2. Correlation matrix between the E-State Indices and biological activity of DABO derivatives. 

 pIC50 1NS  3NS  SO SX SY SAr SS SF SCl 2NOS  

pIC50 1           

1NS  0.54 1          

3NS  0.46 0.98 1         

SO 0.05 0.46 0.48 1        

SX 0.00 0.07 0.08 0.49 1       

SY 0.00 0.20 0.22 0.12 0.05 1      

SAr 0.35 0.41 0.42 0.01 0.00 0.03 1     

SS 0.25 0.29 0.31 0.02 0.00 0.00 0.20 1    

SF 0.44 0.50 0.43 0.04 0.00 0.00 0.34 0.22 1   

SCl 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.10 1  

2NOS  0.00 0.01 0.02 0.00 0.00 0.00 0.09 0.00 0.00 0.01 1 

 
The order of univariate correlations of E-State values for 
various substituents attached to the parent compound 
with inhibitory activity follow the order: 

1NS > > SF > SAr > SS > SO > > SCl = SY > SX 3NS
2NOS

The QSAR models were generated using MLR, NN 
and k-NN techniques to study the antiviral activity of 
Dihydroalkoxybenzyloxopyrimidines derivatives. The 
dataset of 74 compounds was divided into a training set 
of 55 compounds for developing the MLR, NN and 
k-NN models and a prediction test set of 19 compounds 
were used to determine the external predictivity of the 
QSAR model. Both the training and the test sets were 
divided manually according to a representative range of 
biological activities and structural variations. Similar 
training and test sets were used to perform MLR, NN 
and k-NN methods. 

3.1. Multiple Linear Regression (MLR)  

The statistical analysis was performed by multiple 
linear regression method using back-propagation. The 
best model is presented by the Eq.1 for the training set 
of 55 compounds. 

1 350 N NpIC 32.263 S 35.330 S 3.359 SO         

X Y Ar0.168 S 0.189 S 0.001 S 0.271 S        S   

Openly accessible at  

2F CL NO0.0754 S 0.0500 S 0.000 S 12.597        (1) 

(n = 51; r2 = 0.961; F = 100.114; q2 = 0.926) 

In Eq.1 a high positive coefficient for 
3N indicates 

that the presence of nitrogen at 3rd position in the com-
pound enhances the activity while a high negative coef-
ficient for 

1NS  indicates the presence of nitrogen at 1st 
position will decrease the antiviral activity to a great 

extent. It has been deduced earlier that the 3-NH function 
enhances anti-HIV activity by donation of a hydrogen 
bond to the carbonyl oxygen of Lys101 in RT. [51] This 
result coincide with the results reported by Guang Fu Sun 
et al that 3-NH of DABO was essential for the inhibition 
of HIV RT. [52] As far as functional groups such as 
oxygen, nitro and sulphur are concerned, O and NO2 are 
the ones contributing towards enhancing the activity 
whilst presence of sulphur is exhibiting a retarding effect 
on the biological activity. Although, the coefficients for 
halogen groups namely F and Cl are not very significant 
(low coefficient) for activity, but substitution of fluorine 
group at benzyl group is less beneficial than chlorine 
moiety. This has been also observed in the work of Elena 
Petricci et al. [53] but their previous finding also high-
lighted the importance of 2, 6-difluorobenzyl substituent 
at position 6 for optimal activity. [54] The substitution of 
S-alkyl and NH-alkyl at C-2 position is essential, though 
it does not contribute much towards the activity. Simi-
larly, presence of Ar exhibit negligible effect on inhibi-
tory activity with its low positive coefficient value. On 
the other hand substitution of methyl group at C-5 posi-
tion is unfavorable and exhibits a negative impact on the 
inhibitory activity. An earlier work also suggest that the 
DABOs are active when an H atom is present at position 5 
of the pyrimidine ring of DABO derivatives [25]. 

S

3.2. Neural Networks (NN)  

An NN model was developed for a training set of 55 
DABO derivatives. V-life MDS software has been used 
to perform NN analysis. A typical artificial neural net-
work (ANN) consists of an input layer, a hidden layer 
and an output layer (neurons). Each neuron in any layer 
is fully connected with the neuron of a succeeding layer. 
There are neither connections between the neurons 
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within a layer nor any direct connections between those 
of the input and output layers. A convergence criterion 
implies that the rms error value between the predicted 
and observed values is lower than the convergence crite-
ria. Epoch means number or iterations in neural network 
runs. Pruning limit indicates the limit of variance of 
weights. Following parameters were set for the NN re-
gression: max training epoch was set to 100,000 with 
pruning limit 0.3, two hidden neurons were set in the hid-
den layer. The convergence criteria were set to 0.01 and 
the variance cut off was 0.01 without scaling the data.  

3.3. k-Nearest Neighbour (k-NN)  

The k-NN model was built using V-life Molecular 
Design Software. The k-NN regression analysis was 
performed using following parameters: data were pre- 
processed using auto scaling option from the software, 
number of max neighbour = 5, number of min neighbour 
= 2 and variance cut-off = 0.01. The prediction ability 
method used was distance based weighted average.  

The corresponding observed and predicted values of 
the pIC50 values of 55 compounds studied by MLR, NN 
and k-NN in this work are given in Table 3. The predic-
tive model building abilities of all the three methods 
were analyzed and compared. Also, the quality of corre-
lation is demonstrated by their respective residual values 
i.e. the difference between observed and calculated pIC50 

values. The respective residual values thus obtained are 
also given in Table 3. 

The models predictive power was judged based on 
various statistical parameters namely correlation coeffi-
cient (r2), Fischer statistical or fitness value (F) and cross 
validation coefficient (q2). All these statistical parameters 
were computed as defined in the V-Life MDS software. 

A plot of observed and calculated pIC50 values of NN, 
MLR and k-NN for the training set of DABO derivatives 
is presented in Figure 1.  
 

 

Figure 1. Graph between observed and calculated pIC50 values 
for training set. 

3.4. Uni-column Statistics 

The min and max values in both train and test set 
should be compared in a way that 
 The maximum of the test should be less than or equal 

to maximum of training set. 
 The minimum of the test set should be greater than or 

equal to minimum of the training set. 
The above observation show that the test set is inter-

polative i.e. derived within the min-max range of the 
training set. The mean and standard deviation of the 
training and test set provides insight to the relative dif-
ference of mean and point density distribution (along 
mean) of the test set. In this case the mean in the training 
set slightly higher than the test set shows the presence of 
relatively more active molecules as compared to the inac-
tive ones. Also a relatively higher standard deviation in 
training set indicated that training set has widely distrib-
uted activity of the molecules as compared to the test set.  

 
Uni-column statistics for training set: 

Name Average Max Min StdDev Sum 

pIC50 5.888 7.52 4.31 0.819 300.30 

 
Uni-column statistics for test set: 

Name Average Max Min StdDev Sum 

pIC50 5.747 7.30 4.23 0.832 132.00 

 
A test set of 19 compounds are reported in Table 4 

and is used to verify the validity of the QSAR model of 
training set. Table 4 also represents the predicted and 
observed values obtained by the statistical methods 
(MLR, NN and k-NN) showing a degree of relatedness. 

A plot of observed and calculated pIC50 values of 
MLR, k-NN and NN for the test set of DABO deriva-
tives is presented in Figure 2.  

Methods namely MLR, NN and k-NN regression are 
widely used methods for building QSAR model. It is 
simple to interpret a regression model, in which contri-
bution of each descriptor could be observed by the mag-
nitude of its regression coefficient. In case of MLR, high 
value of squared regression coefficient r2 = 0.961 was 
observed. The results obtained from NN were the most 
significant and gave a very high value of squared regres-
sion coefficient r2 = 0.966. Though, the results of k-NN 
were significant with squared regression coefficient r2 = 
0.770, but were inferior amongst all the three methods. 
The results of all the three methods could be cross vali-
dated with the squared regression coefficient between 
observed activity and predicted activity values of the test 
set compounds. For the best linear model, i.e., MLR (r2 = 
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Table 3. Observed and calculated anti-HIV-1 activity (pIC50) of dihydroalkoxybenzyloxopyrimidines (DABO) derivatives (training set). 

S.No. pIC50 Obs. pIC50 Calc MLR pIC50 Calc k-NN pIC50 Calc NN Residual MLR Residual k-NN Residual NN 

1 4.31 4.36 4.66 4.29 0.05 0.35 0.02 

2 4.35 4.42 4.42 4.53 0.07 0.07 –0.18 

3 4.83 4.73 4.36 4.83 –0.10 –0.47 0.00 

4 4.83 5.04 5.52 5.07 0.21 0.69 –0.24 

5 5.02 5.13 5.33 5.13 0.11 0.31 –0.11 

6 5.09 5.16 5.54 5.35 0.07 0.45 –0.26 

7 5.27 5.28 5.47 5.52 0.01 0.20 –0.25 

8 5.31 5.23 5.53 5.38 –0.08 0.22 –0.07 

9 5.34 5.23 5.48 5.49 –0.11 0.14 –0.15 

10 5.42 5.50 5.94 5.63 0.08 0.52 –0.21 

11 5.47 5.34 5.39 5.53 –0.13 –0.08 –0.06 

12 5.52 5.36 4.83 5.59 –0.16 –0.69 –0.07 

13 5.52 5.76 6.01 5.71 0.24 0.49 –0.19 

14 5.52 5.82 5.43 5.70 0.30 –0.09 –0.18 

15 5.55 5.61 5.36 5.61 0.06 –0.19 –0.06 

16 5.59 5.49 5.38 5.57 –0.10 –0.21 0.02 

17 5.60 5.25 5.41 5.53 –0.35 –0.19 0.08 

18 5.62 5.86 4.47 5.71 0.24 –1.15 –0.09 

19 5.66 5.55 5.43 5.65 –0.11 –0.23 0.01 

20 5.72 5.55 5.48 5.65 –0.17 –0.24 0.07 

21 5.89 5.86 6.22 6.04 –0.03 0.33 –0.15 

22 5.94 5.94 6.04 6.05 0.00 0.10 –0.11 

23 5.94 6.22 6.08 6.18 0.28 0.14 –0.24 

24 5.96 6.06 6.11 6.20 0.10 0.15 –0.24 

25 6.10 6.02 5.73 6.00 –0.08 –0.37 0.10 

26 6.10 6.14 6.22 6.14 0.04 0.12 –0.04 

27 6.22 6.05 6.19 6.18 –0.17 –0.03 0.04 

28 6.22 5.97 6.28 6.23 –0.25 0.06 –0.01 

29 6.30 6.14 6.21 6.23 –0.16 –0.09 0.07 

30 6.40 6.09 6.20 6.44 –0.31 –0.20 –0.04 

31 6.70 6.85 7.05 7.05 0.15 0.35 –0.35 

32 7.00 6.91 6.97 7.05 –0.09 –0.03 –0.05 

33 7.00 7.01 7.08 7.08 0.01 0.08 –0.08 

34 7.05 7.11 5.25 7.14 0.06 –1.80 –0.09 

35 7.05 6.85 6.91 7.05 –0.20 –0.14 0.00 

36 7.10 6.95 6.95 7.17 –0.15 –0.16 –0.07 

37 7.10 7.04 7.05 7.19 –0.06 –0.05 –0.09 

38 7.15 7.29 7.06 7.35 0.14 –0.09 –0.20 
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39 7.52 7.39 7.10 7.37 –0.13 –0.42 0.15 

40 4.35 4.37 4.42 4.50 0.02 0.07 –0.15 

41 4.48 4.57 4.51 4.61 0.09 0.03 –0.13 

42 5.27 5.54 5.50 5.60 0.28 0.23 –0.33 

43 5.47 5.67 5.55 5.68 0.20 0.08 –0.21 

44 5.59 5.28 5.30 5.41 –0.31 –0.29 0.18 

45 5.60 5.61 5.51 5.67 0.01 –0.09 –0.07 

46 5.74 5.98 6.05 5.92 0.24 0.31 –0.18 

47 6.22 6.34 6.19 6.40 0.12 –0.03 –0.18 

48 6.40 6.30 6.22 6.57 –0.10 –0.18 –0.17 

49 6.70 6.71 7.05 6.76 0.01 0.35 –0.06 

50 7.05 7.13 7.06 7.06 0.08 0.01 –0.01 

51 7.15 7.24 7.13 7.24 0.09 –0.02 –0.09 

52a 4.77 5.95 5.93 5.88 1.18 1.16 –1.11 

53a 5.31 6.37 5.94 6.47 1.06 0.63 –1.16 

54a 6.92 6.11 5.94 6.20 –0.81 –0.98 0.72 

55a 5.92 5.29 6.37 5.45 –0.63 0.45 0.47 

aData points not included in the equation. 

 
Table 4. Observed and calculated anti-HIV-1 activity (pIC50) of dihydroalkoxybenzyloxopyrimidines (DABO) derivatives (test set). 

S.No. pIC50 Obs. pIC50 Calc MLR pIC50 Calc k-NN pIC50 Calc NN Residual MLR Residual k-NN Residual NN 

56 4.23 4.79 5.14 5.07 0.57 0.91 –0.84 

57 4.59 5.12 6.63 5.25 0.53 2.04 –0.67 

58 4.79 4.31 5.15 4.27 –0.48 0.36 0.52 

59 5.07 5.48 5.38 5.56 0.41 0.31 –0.50 

60 5.32 5.61 5.49 5.66 0.29 0.17 –0.35 

61 5.37 5.88 5.45 5.73 0.51 0.08 –0.37 

62 5.44 5.96 5.77 6.03 0.52 0.33 –0.59 

63 5.49 5.95 6.06 6.02 0.46 0.57 –0.54 

64 5.54 5.04 5.30 5.19 –0.50 –0.24 0.35 

65 5.60 5.11 5.48 5.37 –0.49 –0.12 0.23 

66 5.80 6.50 5.94 6.26 0.70 0.14 –0.46 

67 6.10 6.61 6.91 6.66 0.52 0.81 –0.57 

68 6.10 5.79 6.66 6.20 –0.31 0.56 –0.11 

69 6.22 5.72 6.42 6.12 –0.50 0.20 0.09 

70 6.70 7.03 6.66 7.02 0.33 -0.04 –0.32 

71 6.70 6.03 6.08 6.23 –0.67 -0.62 0.47 

72 7.30 6.76 6.65 6.94 –0.54 -0.65 0.36 

73 5.62 5.22 5.27 5.39 –0.40 -0.35 0.23 

74 7.30 6.86 7.01 6.99 –0.44 -0.29 0.30 
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MLR 
R2 = 0.961

k-NN 
R2 = 0.464

NN 
R2 = 0.726
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Figure 2. Graph between observed and calculated pIC50 values 
for test set. 
 
0.645) was lower in comparison to the best non-linear 
model developed using NN (r2 = 0.726) but that of k-NN 
non-linear model gave very low value of correlation co-
efficient (r2 = 0.464). Also the degree of relatedness 
could be visualized by the difference between the ob-
served and predicted values of pIC50 i.e. from the residual 
values. Thus, the above results account for some 
non-linear relationship between the pIC50 and E-State 
Indices.  

4. CONCLUSIONS 

From the above study related to Dihydroalkoxyben-
zyloxopyrimidines derivatives following conclusions can 
be drawn: The 2D-QSAR studies indicated that the an-
ti-HIV-1 activity of DABO derivatives was strongly 
dependent on the nature of the substituents at N1, N3, C2, 
C4, C5, and C6 of the pyrimidine ring. Three models de-
veloped here viz. MLR, NN and k-NN has different 
level of robustness for the complete set of compounds. 
Among the three methods, NN was found to be more 
successful than the linear model MLR, reflecting that the 
relationship between descriptors and antiviral activity of 
DABO derivatives being nonlinear. Though, MLR re-
gression is a simple but powerful method to obtain a 
subset of significant input variables but it does not ac-
count for non-linear relationships while NN plays a sig-
nificant role depicting non-linearity in building structure 
activity relationships. Also the degrees of freedom were 
found to be 40 less than the data points i.e. 51 which 
proves that the model fits the general trend. Our studies 
have proven the feasibility of the combination of the 
E-State indices and the NN method to build successful 
QSAR models. 

The most relevant structural conclusions of this study 
are the following: 1) replacement of pyrimidine nucleus 
with pyridine nucleus enhance the activity; 2) the pres-
ence of bulkiness at the C2 position would lead to higher 

activity compounds; 3) presence of oxygen group at C4 
position in the parent compound is favourable for the 
activity; 4) DABOs are active with hydrogen in the fifth 
position comparable with compounds having methyl 
group.  
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