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Abstract 
The group-theorytic approach is applied for solving the problem of the unsteady MHD mixed con-
vective flow past on a moving curved surface. The application of two-parameter groups reduces 
the number of independent variables by two, and consequently the system of governing partial 
differential equations with boundary conditions reduces to a system of ordinary differential equa-
tions with appropriate boundary conditions. The obtained ordinary differential equations are 
solved numerically using the shooting method. The effects of varying parameters governing the 
problem are studied. A comparison with previous work is presented. 
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1. Introduction 
Applications of group-theory in fluid mechanics and boundary layer flow have received much attention by many 
researchers as the concepts of group theory are extensively used in similarity and non-similarity related prob-
lems. Group-theory method provides a powerful tool to nonlinear differential models. The transformation group 
theory approach is applied to present an analysis of the similarity problem of MHD mixed convective flow past 
on a moving curved surface with suction. The natural flow originates from body force variations in fluids, whe-
reas the forced convection is generally introduced by moving a body through a quiescent fluid or by forcing a 
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fluid past a stationary body. This flow regime is concerned with circumstances where in both the natural and 
forced mechanisms of the flow must be considered simultaneously. The laminar boundary layer flow due to such 
combined forced and natural convection i.e. mixed convection has received considerable attention for steady and 
unsteady situations in evaluating flow parameters for technical purposes. The problem of mixed convective 
boundary layer flow gained different dimensions in the manufacturing processes in industry. There has been 
great interest in the study of Magnetic Hydro-Dynamic (MHD) flow due to the effect of magnetic fields on the 
boundary layer flow control and on the performance of many systems using electrically conducting fields. This 
type of flow has attracted the interest of many researchers due to its applications in many engineering problems 
such as MHD generators, plasma studies, nuclear reactors, geothermal energy extraction etc. 

Sparrow, Eichorn and Gregg [1], were the first investigators, who dealt with the combined forced and free 
convective boundary layer flow about a vertical flat plate. The laws governing the motion of mixed convective 
boundary layer incompressible viscous fluid expressed in general orthogonal curvilinear co-ordinates are re-
cently studied by Maleque [2]. Quiser Azam [3] studied mixed convection about the vertical developable flow 
surfaces with transpiration and heat flux effects. “Mixed convection boundary layer flow over a permeable ver-
tical cylinder with prescribed surface heat flux” studied by Anuar Is hak et al. [4]. M.Y. Ali et al. [5] investi-
gated similarity solutions for unsteady laminar boundary layer flow around a vertical heated curvilinear surface. 
Zakerullah [6] derived similarity solutions of some of possible cases of unsteady mixed convection by group 
theory without suction. Alam et al. [7] investigated “Magnetohydrodynamic free convection along a vertical 
wavy surface. S.M.M. EL-Kabeir et al. [8] studied Unsteady MHD combined convection over a moving vertical 
sheet in a fluid saturated porous medium with uniform surface heat flux. Dipika Rani Dhar [9] studied group- 
theory method on similarity solution of unsteady free convection flow from a moving vertical surface with suc-
tion and injection. 

The mathematical technique used in the present analysis is two-parameter group transformation that leads to a 
similarity representation of the problem. Morgan [10] presented a theory that led to improvements over earlier 
similarity methods. Michal [11] extended Morgan’s theory. Group methods, as a class of methods which lead to 
a reduction of the number of independent variables, were first introduced by Birkoff [12]. He made use of one 
parameter group transformations to reduce a system of partial differential equations in two independent va-
riables to a system of ordinary differential equations in one independent variable, the similarity variable. Morgan 
and Gaggioli [13] presented general systematic group formalism for similarity analysis, where a given system of 
partial differential equations was reduced to a system of ordinary differential equations. 

In this work, the effect of MHD mixed convective flow past on a moving curved surface has been investigated. 
Problems are solved analytically using group methods and then numerically by Runge-Kutta shooting method. 
Under the application of two-parameter group, the governing partial differential equations are reduced to system 
of ordinary differential equations with the appropriate boundary conditions and then numerically using the sixth 
order Runge-Kutta shooting method known as Runge-Kutta-Butcher initial value solver of Butcher [14] together 
with the Nachtsheim-Swigert iteration scheme described by Nachtsheim and Swigert [15]. Programming codes 
have been written in FORTRAN 90 to implement shooting method for the present problem. 

Attention has been taken on the evaluation of the velocity profiles as well as temperature profiles for selected 
values of parameters consisting ,magnetic parameter M, Prandtl number Pr, buoyancy parameter λ1 and suction 
parameter Ew. The numerical results of the velocity profiles as well as temperature profiles are displayed graph-
ically for different values of magnetic parameter M, Prandtl number Pr, buoyancy parameter λ1 and suction pa-
rameter Ew. The post processing software TECPLOT has been used to display the numerical results. A compari-
son with previous work is presented. 

2. Governing Equations 
We consider the flow direction along the ξ-axis and η-axis and be defined in the surface over which the boun-
dary layer is flowing. For simplicity ( )3 , 1h ξ η =  has been set such that ζ represents actual distance measured 
normal to the surface. The body force is taken as the gravitational force ( ) ( )( ), , , , 0g g gξ ηξ η ξ η . The physical 
configuration is considered as shown in Figure 1. 

The governing boundary layer equations of the flow field in general orthogonal curvilinear co-ordinates are: 
Continuity equation 
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Figure 1. Physical model and co-ordinate system.                       
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the magnetic parameter; 0B  is the magnetic induction; pc
Pr

k
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=  is the Prandtl number of the fluid; α  is  

the thermal diffusivity. 
From the continuity Equation (1), there exists two stream functions ( ), , ,tψ ξ η ζ  and ( ), , ,tφ ξ η ζ  such 

that 
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Applying h1 = 1 and h2 = ξ in Equations (2)-(4) we have 
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3. Solution of the Problem 
The problem is solved by applying a two parameter group transformation to the partial differential Equations 
(6)-(8). This transformation reduces the four independent variables ( ), , ,t ξ η ζ  to one similarity variable 
( ), , ,tγ ξ η ζ  and the governing Equations (6)-(8) are transformed to a system of ordinary differential equations 

in terms of the similarity variable γ. 

3.1. The Group Systematic Formulation 
Define the procedure is initiated with the group G, a class of transformation of two parameters ( )1 2,a a  of the 
form 

( ) ( )1 2 1 2: , ,S SG S c a a S K a a= +                                (10) 

S stands for t, ξ, η, ζ, Ψ, ϕ, Ue, Ve, ∆T and θ, CS and KS are real-valued and at least differentiable in their real 
arguments ( )1 2,a a . 

3.2. The Invariance Analysis 
The transformation of the dependent variables and their partial derivatives are obtained from G via chain-rule 
operations 

( )
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 etc. 

Equation (6) is said to be invariantly transformed whenever 
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Substitution from Equations (10) & (11) into Equation (12) yields  
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where ( )1 1 2, constant.=H a a  
In a similar manner, the invariant transform of (7) gives 
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where ( )2 1 2, constant.=H a a  
Similarly equation (8) is invariantly transformed giving 
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where ( )3 1 2, constantH a a =  
The initial and boundary conditions being also invariant implies that kt = 0, kζ = 0. 
The invariant transformation of (6)-(8), the initial condition and the boundary conditions summarize in a 

group G of the form 
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3.3. The Complete Set of Absolute Invariants 
Our aim is to make use of group methods to represent the problem in the form of an ordinary differential equa-
tion (Similarity representation) in a single independent variable (Similarity variable). Then we have to proceed 
in our analysis to obtain a complete set of absolute invariants. 

The complete set of absolute invariants is: 
a) ( ), , ,tγ γ ξ η ζ=  is the absolute invariant of the independent variables t, ξ, η, ζ. 
b) ( ) ( )( ), , , ; , , , , , , , , , 1, 2,3, 4,5j e e jg t U V T F t jξ η ζ ϕ θ γ ξ η ζΨ ∆ = =  are the five absolute invariants corres-

ponding to the five dependent variables Ψ, ϕ, Ue, Ve,θ, ∆T. 
A function ( ), , , ; , , , , ,e eg t U V Tξ η ζ ϕ θΨ ∆  is an absolute invariant of a two-parameter group if it satisfies 

the following two first- order linear differential equations: 
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1 2,a a  indicates the value of ( )1 2,a a  which yields the identity element of the group. 

Independent Variables as Absolute Invariants 
The absolute invariant ( ), , ,tγ ξ η ζ  of the independent variables ( ), , ,t ξ η ζ  is determined using Equation 

(14) 
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A successive elimination of  and γ γζ ξ
ζ ξ
∂ ∂
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 from Equations (15) yields 
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where , , 1, 2,3, 4,5,6,7,8ij i j j i i jλ α β α β= − =  
Invoking the group given in Equation (13) and the definition of the α’s and β’s we get 1 3 72α α α= = , 

1 3 7 0β β β= = =  thus 

13 73 0λ λ= =  

From Equation (16b) we obtain 0γ
η
∂

=
∂

, which means that γ is independent of η and γ is a function of t, ξ and  

ζ; Solving Equations (16a) and (16b) implies ( ),tγ ζπ ξ=  
Dependent Variables as Absolute Invariants 
Similarly the absolute invariants of the dependent variables; Ψ, ϕ, Ue, Ve, θ are obtained from the group trans- 

formation (13), 
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A function ( )4 , , , ;g t ξ η ζ ψ  is absolute invariant of a two-parameter group if it satisfies the first-order linear 
differential equations 
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The solution of Equation (17) gives 

( ) ( )( ) ( )4 1 1, , , ; , ,g t t Eξ η ζ ψ χ ψ ξ η γ= Γ =                          (18) 

In similar manner, we get 

( ) ( )( ) ( )5 2 2, , , ; , ,g t t Fξ η ζ ϕ χ ϕ ξ η γ= Γ =                          (19) 

( )( ) ( )6 3 3( , , ; ) , ,g t T T t Gξ η χ ξ η γ∆ = ∆ Γ =                          (20) 

Since Ue(γ) and Ve(γ) are independent of ζ, whereas γ depends on ζ, it follows that Ue(γ) and Ve(γ) must be 
equal to constant, say one. Without loss of generality, the χ’s in Equations (18)-(19) are selected to the identity 
functions. So we can write  

( ) ( ) ( )1, , , , ,t t Eψ ξ η ζ ξ η γ= Γ                                    (21) 

( ) ( ) ( )2, , , , ,t t Fϕ ξ η ζ ξ η γ= Γ                                    (22) 

( ) ( ) ( )3, , , ,T t t Gξ η ξ η γ∆ = Γ                                     (23) 

Again ∆T is independent of ζ, whereas γ depends on ζ, it follows that G(γ) is equal to a constant, say G0. 
Without loss of generality G0 is equated to one. So 

( ) ( )3, , , ,T t tξ η ξ η∆ = Γ                                         (24) 

4. The Reduction to the Ordinary Differential Equation 
The system of ordinary differential Equations (6)-(8) eventually reduces to 
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and c’s are constant ( )( ) ( )( )23 2 2 2
1 Tg L T U L Gr Reξλ β ξ ν ξ ν= ∆ =  and ( ) ( )23 2

2 Tg L T ULηλ β ν ν= ∆  
are buoyancy parameter or mixed convection parameter. 

Let in (28) c9/c10 = 1; then it follows that 1 2
1 12, 0, 0c cπ ξ −= = =  

By considering c5 may be taken to be unity, we get from (28) the following 
3 2

1 2 3 4 6 9 10 21 22 27, 0, 3 2 , 1 2, 0, 1, 1, 1 2, 3 2, 1c c c c c c c c cξΓ = = = = − = = = = − = =  

Now if we consider c8 = 1, (28) implies 
1 2

2 11 13 14 15 16 17 18 19 20 23, 0, 1 2 , 1 2, 0, 0, 0, 1, 1, 1, 0c c c c c c c c c cξΓ = = = = − = = = = = = = , 25 1c = −   

implies 1
3 24 26, 0, 0c cξ −Γ = = =  

Evaluation of c’s implies 1 2γ ζξ −= . 
Equations (25)-(27) gives u-momentum equation 
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v-momentum equation  
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Energy equation 
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with related boundary conditions: 
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                       (32) 

Equations (29)-(31) together with the boundary condition (32) are solved numerically using the sixth order 
Runge-Kutta shooting method known as Runge-Kutta-Butcher initial value solver of Butcher (1974) together 
with the Nachtsheim-Swigert iteration scheme described by Nachtsheim and Swigert (1965). 

The numerical results of the velocity profiles as well as temperature profiles for different values of magnetic 
parameter M, Prandtl number Pr, buoyancy parameter λ1 and suction parameter Ew will be discussed and display 
graphically. 

5. Results and Discussion 
The main objective of the present study is to analyze the effect of MHD mixed-convection flow on a moving 
curved surface. Figure 2 and Figure 3 illustrate the dimensionless velocity profiles along ξ and η directions, re-
spectively for fixed values of Pr = 0.73, λ1 = −13.29, λ2 = −0.76 and Ew = 1.53 with several values of M. Since 
magnetic parameter is inversely proportional with Reynold number, Re so increasing values of the magnetic pa-
rameter M decreases the flow rate in the velocity boundary layer thickness. It has been seen from Figure 2, due 
to moving surface the u-velocity profiles at the boundary surface fall down slowly then u-velocity profiles de-
creases rapidly corresponds to opposing flow up to the peak points γ = 3.25, 2.85, 2.55 and then velocity inte- 
 

 
Figure 2. Dimensionless u-velocity profiles against similarity 
variable γ for different values of M  (Pr,λ1,λ2 and Ew are fixed).   

 

 
Figure 3. Dimensionless v-velocity profiles against similarity 
variable γ for different values of M  (Pr,λ1,λ2 and Ew are fixed).   
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grate slowly for magnetic parameter M = 0.9, 0.09, 0.01. It is observed from Figure 3 that v-velocity profiles 
decreases with the increasing values of magnetic parameter M that is velocity profiles meet together at the posi-
tion of γ = 3.4 and cross the sides. It has been seen from Figure 4 when the Prandtl number Pr = 0.80, 0.74, 
0.73, 0.70 u-velocity profiles fall down up to the position of γ = 2.05, 2.15, 2.50 and from that positions of γ, 
u-velocity profiles rising up and finally approach to one. In Figure 5 shown that the maximum values of 
v-velocities are recorded as 1.9452, 1.9515, 1.9580 and 1.9768 for Prandtl number Pr = 0.75, 0.74, 0.73, 0.70 at 
the position of γ = 1.30, 1.35, 1.35, 1.40 respectively. It is observed from Figure 6 that u-velocity profiles de-  
 

 
Figure 4. Dimensionless u-velocity profiles against similarity 
variable γ for different values of Pr (M, λ1, λ2 and Ew are fixed).   

 

 
Figure 5. Dimensionless v-velocity profiles against similarity 
variable γ for different values of Pr (M, λ1, λ2 and Ew are fixed).   

 

 
Figure 6. Dimensionless u-velocity profiles against similarity 
variable γ for different values of Ew (M, λ1, λ2 and Pr are fixed).        
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creases with the increasing values of suction parameter Ew. It has been seen from Figure 7 that as the suction 
parameter Ew increases, the v-velocity profiles increases up to the position of γ = 1.50, 1.50, 1.35, 1.30 and from 
that positions of γ velocity profiles decreases with the increasing values of suction parameter Ew. From Figure 8, 
it is observed that owing to the effect of the buoyancy parameter λ1 = −13.29, −12.80, −12, −11, u-velocity pro-
files decreases up to the position of γ = 2.10, 1.85, 1.65, 1.45 and from those positions of γ, u-velocities integrate 
rapidly and increases for increasing values of γ. In Figure 9 it is shown that the v-velocities of the fluid against γ 
decreases for increasing values of buoyancy parameter λ1. The maximum values of the v-velocity are found to be  
 

 
Figure 7. Dimensionless v-velocity profiles against similarity 
variable γ for different values of Ew (M, λ1, λ2 and Pr are fixed).   

 

 
Figure 8. Dimensionless u-velocity profiles against similarity 
variable γ for different values of λ1 (M, Ew, λ2 and Pr are fixed).   

 

 
Figure 9. Dimensionless v-velocity profiles against similarity 
variable γ for different values of λ1 (M, Ew, λ2 and Pr are fixed).   
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1.9628, 1.9548, 1.9453 and 1.9334 for λ1 = −13.29, −12.80, −12, −11 respectively. It is noted that the v-velocity 
decreases by approximately1.5% as λ1 increases from −13.29 to −11. Figure 10 illustrates for fixed values of Pr 
= 00.73, λ1 = −13.29, λ2 = −0.76 and Ew = 1.53 the temperature profiles decreases with the increasing values of 
magnetic parameter M. Figure 11 and Figure 12 display the results for the temperature profiles. It is observed 
from the Figure 11 and Figure 12 that the thermal boundary layer thickness decrease for the increasing values 
of Prandtl number Pr and suction parameter respectively. Figure 13 shows the small increment on the tempera-
ture for increasing values of the buoyancy parameter λ1. 
 

 
Figure 10. Dimensionless temperature profiles against similarity 
variable γ for different values of Pr (M, λ1, λ2 and Ew are fixed).          

 

 
Figure 11. Dimensionless temperature profiles against similarity 
variable γ for different values of Pr (M, λ1, λ2 and Ew are fixed).         

 

 
Figure 12. Dimensionless temperature profiles against similarity 
variable γ for different values of Ew (M, λ1, λ2 and Pr are fixed).       
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Figure 13. Dimensionless temperature profiles against similarity 
variable γ for different values of λ1 (M, Ew, λ2 and Pr are fixed).       

 
Table 1. Comparison of the values of ( )0E′′ , ( )0F ′′  and ( )0θ ′  with Maleque Kh.A. [2] and Present work for the varia-

tion of Prandtl number Pr while M = 0.0, Ew = 0 and 2 2 2 2
1 2 100F e F eU U V Vλ λ= = = = .                                       

Pr 
( )0E ′′  ( )0F ′′  ( )0θ ′  

Maleque kh.A. [2] Present results Maleque Kh.A. [2] Present results Maleque Kh.A. [2] Present results 

0.7 1.33198 1.35000 1.20973 1.21000 −0.88811 −0.90000 

1.0 1.32807 1.31200 1.20539 1.20500 −1.01137 −1.08000 

5.0 1.31467 1.30500 1.19094 1.19050 −1.79200 −1.78000 

7.0 1.31229 1.30100 1.18842 1.19000 −2.01368 −2.00000 

10.0 1.30993 1.29500 1.18594 1.17250 −2.27706 −2.10000 

6. Comparison with Previous Work and Code Validation 
A comparison of the present numerical results of ( )0E′′ , ( )0F ′′  and ( )0θ ′  with this, obtained by Maleque 
Kh.A. [2], is depicted in Table 1. Here, the parameters M and Ew are igno red with different values of Prandtl 
number Pr. It is evidently seen from Table 1 that the current results are concurrence with the solution of Male-
que Kh.A. [2]. 
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